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Matrices and Vectors

Matrix

Matrix

Matrix is a rectangular array of numbers, i.e. A ∈ Rm×n

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn
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Matrices and Vectors

Matrix: Examples

A =

(
23 12 56
18 89 45

)
B =


45 17
22 15
−18 14
21 −13.6


A ∈ R2×3

B ∈ R4×2

m and n are matrix dimensions
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Matrices and Vectors

Multiplication with a scalar

Scalar multiplication

Given a matrix A ∈ Rm×n and a scalar α ∈ R the scalar multiplication of
A with α is the matrix B = αA ∈ Rm×n, where

Bij = αAij

αA =


αa11 αa12 . . . αa1n
αa21 αa22 . . . αa2n

...
...

. . .
...

αam1 αam2 . . . αamn
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Matrices and Vectors

Multiplication with a scalar: example

2 ·
(

23 12 56
18 89 45

)
=

(
46 24 112
36 178 90

)
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Matrices and Vectors

Vector

Vector

Vector is a matrix consisting of one column, i.e. x ∈ Rn. A row vector is a
matrix consisting of one row.

x =


x1
x2
...
xn
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Matrices and Vectors

Vector: Example

x =


10
12
15
−100


x ∈ R4

n is the vector dimension
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Matrix Multiplication

Matrix Multiplication

Matrix Multiplication

The product of two matrices A ∈ Rm×n and B ∈ Rn×p is the matrix
C = AB ∈ Rm×p, where

Cij =
n∑

k=1

AikBkj (1)

For the product to exist: the number of columns in A must equal the
number of rows in B
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Matrix Multiplication

Matrix Multiplication: Example

(
1 2 3
3 2 1

) 4 5
10 2
2 10

 =

(
a11 a12
a21 a22

)
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Matrix Multiplication

Matrix Multiplication: Example

(
1 2 3
3 2 1

) 4 5
10 2
2 10

 =

(
a11 a12
a21 a22

)

a11 = 1 · 4+
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Matrix Multiplication

Matrix Multiplication: Example

(
1 2 3
3 2 1

) 4 5
10 2
2 10

 =

(
a11 a12
a21 a22

)

a11 = 1 · 4 + 2 · 10+
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Matrix Multiplication

Matrix Multiplication: Example

(
1 2 3
3 2 1

) 4 5
10 2
2 10

 =

(
30 a12
a21 a22

)

a11 = 1 · 4 + 2 · 10 + 3 · 2 = 30
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Matrix Multiplication

Matrix Multiplication: Example

(
1 2 3
3 2 1

) 4 5
10 2
2 10

 =

(
30 39
a21 a22

)

a12 = 1 · 5 + 2 · 2 + 3 · 10 = 39
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Matrix Multiplication

Matrix Multiplication: Example

(
1 2 3
3 2 1

) 4 5
10 2
2 10

 =

(
30 39
34 a22

)

a21 = 3 · 4 + 2 · 10 + 1 · 2 = 34
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Matrix Multiplication

Matrix Multiplication: Example

(
1 2 3
3 2 1

) 4 5
10 2
2 10

 =

(
30 39
34 29

)

a22 = 3 · 5 + 2 · 2 + 1 · 10 = 29
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Matrix Multiplication

Vector-Vector products

Inner product

Given two vectors x, y ∈ Rn the quantity xTy, sometimes called the inner
product or dot product, is a real number given by

xTy =
(
x1 x2 . . . xn

) y1
y2
...yn

 =
n∑

i=1

xiyi

The inner products are just special cases of matrix multiplication

Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 18 / 74



Matrix Multiplication

Inner product: Example

(
3 2 1

) 5
2

10

 = 29

xTy = 3 · 5 + 2 · 2 + 1 · 10 = 29
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Matrix Multiplication

Vector-Vector products

Outer product

Given two vectors x ∈ Rm and y ∈ Rn the matrix xyT is called the outer
product of the vectors. The elements of the matrix are given by
(xyT )ij = xiyj , i.e.

xyT =


x1
x2
...
xm

(y1 y2 . . . yn
)

=


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
...

. . .
...

xmy1 xmy2 . . . xmyn
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Matrix Multiplication

Matrix-Vector products

Matrix-vector product

Given a matrix A ∈ Rm×n and a vector x ∈ Rn, their product is a vector
y = Ax ∈ Rm, i.e.

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn



x1
x2
...
xn

 =


∑n

i=1 a1ixi∑n
i=1 a2ixi

...∑n
i=1 amixi

 =


aT
1 x

aT
2 x
...

aT
mx
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Matrix Multiplication

Matrix-Vector products: Example

(
1 2 3
3 2 1

) 4
10
2

 =

(
30
y2

)

y1 = 1 · 4 + 2 · 10 + 3 · 2 = 30
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Matrix Multiplication

Matrix-Vector products: Example

(
1 2 3
3 2 1

) 4
10
2

 =

(
30
34

)

y2 = 3 · 4 + 2 · 10 + 1 · 2 = 34
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Matrix Multiplication

Matrix-Vector products

Matrix-vector product

Given a matrix A ∈ Rm×n and a vector x ∈ Rm, their (left row) product is
a vector yt = xTA ∈ Rn, i.e.

xT A =
(
x1 x2 . . . xm

)


a11 a12 . . . a1n
a21 a22 . . . a2n
.
.
.

.

.

.
. . .

.

.

.
am1 am2 . . . amn


=

(∑m
i=1 ai1xi

∑m
i=1 ai2xi . . .

∑m
i=1 ainxi

)
=
(

xT a1 xT a2 . . . xT am

)
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Matrix Multiplication

Matrix-Vector products: Example

(
4 10

)(1 2 3
3 2 1

)
=
(
34 y2 y3

)
y1 = 4 · 1 + 10 · 3 = 34
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Matrix Multiplication

Matrix-Vector products: Example

(
4 10

)(1 2 3
3 2 1

)
=
(
34 28 y3

)
y2 = 4 · 2 + 10 · 2 = 28
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Matrix Multiplication

Matrix-Vector products: Example

(
4 10

)(1 2 3
3 2 1

)
=
(
34 28 22

)
y3 = 4 · 3 + 10 · 1 = 22
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Matrix Multiplication

Properties of matrix multiplication

Matrix multiplication is associative: (AB)C = A(BC)

Matrix multiplication is distributive: A(B + C) = AB + AC

Matrix multiplication is not commutative: AB 6= BA
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Matrix Multiplication

Matrix Sum

Matrix Sum

The sum of two matrices A ∈ Rm×n and B ∈ Rm×n is the matrix
C = A + B ∈ Rm×n, where

Cij = Aij + Bij (2)

For the sum to exist: the dimension of A and B must be equal
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Matrix Multiplication

Matrix Sum: Example

(
1 2 3
3 2 1

)
+

(
4 5 10
2 2 10

)
=

(
5 7 13
5 4 11

)
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Matrix Multiplication

Linear combinations of vectors

Linear combination

Given are k vectors xi ∈ Rn and k scalars αi ∈ R. Then the linear
combination of those vectors with those scalars is defined as:

α1x1 + α2x2 + . . . αkxk =
k∑

i=1

αixi (3)
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Matrix Multiplication

Linear combinations of vectors: example

1
3
6

 = 1 ·

1
0
0

+ 3 ·

0
1
0

+ 6 ·

0
0
1

 (4)

In fact, any vector in R3 is a linear combination of those three vectors
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Operations and Properties

Identity matrix

Identity matrix

The identity matrix, denoted I ∈ Rn×n is a square matrix with ones on the
diagonal and zeros everywhere else, that is

Iij =

{
1, i = j

0, i 6= j

The identity matrix has the property that for all A ∈ Rm×n

AI = A = IA (5)
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Operations and Properties

Identity matrix

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Operations and Properties

Diagonal matrix

Diagonal matrix

A diagonal matrix, denoted D ∈ Rn×n is a square matrix with all
non-diagonal elements zero. This is typically denoted D =
diag(d1, d2, . . . , dn), with

Dij =

{
di , i = j

0, i 6= j

The identity matrix is then I = diag(1, 1, . . . , 1)
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Operations and Properties

Diagonal matrix

D =


5 0 0 0
0 1 0 0
0 0 6 0
0 0 0 −10
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Operations and Properties

The Transpose

Transpose

The transpose of a matrix results from “flipping” the rows and columns.
Given a matrix A ∈ Rm×n, its transpose AT ∈ Rn×m, is the n ×m matrix
whose entries are given

AT
ij = Aji

We have been using the transpose for describing row vectors

Transpose of a column vector is a row vector
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Operations and Properties

Properties of transpose

(AT )T = A

(AB)T = BTAT

(A + B)T = AT + BT
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Operations and Properties

Transpose: Example

(
1 2 3
3 2 1

)T

=

1 3
2 2
3 1
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Operations and Properties

Symmetric Matrices

Symmetric matrices

A square matrix A ∈ Rn×n is symmetric if A = AT .

For any matrix A ∈ Rn×n, the matrix A = AT is symmetric

Proof left for exercise ;)

Symmetric matrices occur very often in practice and they have many
nice properties
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Operations and Properties

Symmetric Matrices: Example

A =


0 1 0 0 1
1 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 1 0 0

 (6)
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Operations and Properties

Trace

Trace

The trace of a square matrix A ∈ Rn×n, denoted by tr(A) is the sum of
diagonal elements in the matrix:

tr(A) =
n∑

i=1

Aii (7)
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Operations and Properties

Trace: example

tr(A) = tr(


5 0 15 0
0 1 0 21
0 −19 6 0

10 12 16 −10

) = 2
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Operations and Properties

Norms

Norm

A norm of a vector ||x|| is informally a measure of the “length” of the
vector. For example, we have the commonly used Euclidean or `2 norm,

||x||2 =

√√√√ n∑
i=1

x2i (8)

Note that: ||x||22 = xTx
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Operations and Properties

Norms

Norm

A norm is any function f : Rn → R that satisfies 4 properties:

1 For all x ∈ Rn, f (x) ≥ 0 (non-negativity)

2 f (x) = 0, if and only if x = 0 (definiteness)

3 For all x ∈ Rn, t ∈ R, f (tx) = |t|f (x) (homogeneity)

4 For all x, y ∈ Rn, f (x + y) ≤ f (x) + f (y) (triangle inequality)

Norms are used to normalize vectors and obtain unit vectors (vectors
of “length” 1)
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Operations and Properties

Norms

Other examples of norms include `1, `∞, or more generally `p, with
p ≥ 1

||x||1 =
n∑

i=1

|xi |

||x||∞ = maxi |xi |

||x||p =

(
n∑

i=1

|xi |p
)1/p
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Operations and Properties

Norms: example

x =

 4
−10

2


||x||1 = 16

||x||2 = 10.95

||x||1 = 10
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Operations and Properties

Linear independence

Linear independence

A set of vectors {x1, x2, . . . , xk} ⊂ Rn is said to be linearly independent if
no vector can be represented as a linear combination of the remaining
vectors.

Linear independence

A set of vectors {x1, x2, . . . , xk} ⊂ Rn is said to be linearly independent if
no scalars {α1, α2, . . . , αk} exist such that

k∑
i=1

αixi = 0

Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 48 / 74



Operations and Properties

Linear independence: example

x1 =

1
0
0

 x2 =

0
1
0

 x3 =

0
0
1
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Operations and Properties

Linear dependence

Conversly, if one vector belonging to the set can be represented as a
linear combination of the remaining vectors the vectors are linearly
dependent

x1 =

1
2
3

 x2 =

4
1
5

 x3 =

 2
−3
−1


Dependent because: x3 = −2x1 + x2
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Operations and Properties

Vector bases

Span

A set of n vectors {x1, x2, . . . , xn} ⊂ Rn is said to span Rn, i.e. they form
a basis for the space. Any vector v ∈ Rn can be written as a linear
combination of x1 through xn.
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Operations and Properties

Vector bases

Orthogonal basis

An orthogonal basis {x1, x2, . . . , xn} ⊂ Rn satisfies

xTi xj = 0, if i 6= j

Orthonormal basis

An orthonormal basis {x1, x2, . . . , xn} ⊂ Rn satisfies

xTi xj = 0, if i 6= j

xTi xj = 1, if i = j
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Operations and Properties

Orthonormal basis: example

x1 =

1
0
0

 x2 =

0
1
0

 x3 =

0
0
1


Orthonormal basis for R3

Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 53 / 74



Operations and Properties

Rank

Rank

The column rank of a matrix A ∈ Rm×n is the size of the largest subset of
columns that constitute a linearly independent set. The row rank is the
largest subset of rows that constitute a linearly independent set.

For any matrix A ∈ Rm×n the columns rank is equal to row rank and
both quantities are referred to as the rank of A, denoted as rank(A)
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Operations and Properties

Rank: example

rank(

 5 0 15
0 1 0
−5 1 −15

) = 2
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Operations and Properties

Properties of the matrix rank

Some basic properties of the rank:
1 For A ∈ Rm×n, rank(A) ≤ min(m, n). If rank(A) = min(m, n) then A

is said to be full rank.
2 For A ∈ Rm×n, rank(A) = rank(AT )
3 For A ∈ Rm×n, B ∈ Rn×p, rank(AB) = min(rank(A), rank(B))
4 For A,B ∈ Rm×n, rank(A + B) ≤ rank(A) + rank(B)
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Operations and Properties

The Inverse

Inverse

The inverse of a square matrix A ∈ Rn×n is denoted A−1 and is a unique
matrix such that

A−1A = I = AA−1

Not all matrices have inverses

If A−1 exists we say that A is invertible or non-singular

If A−1 does not exist we say that A is non-invertible or singular
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Operations and Properties

The Inverse

For A to be invertible it must be full rank

There are many alternative conditions for invertability

The inverse is used in e.g. solving the system of linear equations:
Ax = b

With A ∈ Rn×n and x,b ∈ Rn

Then x = A−1b
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Operations and Properties

Properties of inverse

(A−1)−1 = A

(AB)−1 = B−1A−1

(A−1)T = (AT )−1
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Operations and Properties

Inverse: Example

(
a b
c d

)−1
=

1

ad − bc

(
d −b
−c a

)
(

6 2
1 5

)−1
=

1

28

(
5 −2
−1 6

)
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Operations and Properties

Orthogonal matrices

Inverse

A square matrix U ∈ Rn×n is orthogonal if all its columns are orthonormal
(orthogonal to each other and normalized). It follows from the definition:

UTU = I = UUT

In other words, the inverse of an orthogonal matrix is its transpose
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Operations and Properties

Orthogonal matrices: Example

(
1√
2
− 1√

2
1√
2

1√
2

)T ( 1√
2
− 1√

2
1√
2

1√
2

)
=

(
1 0
0 1

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)(
1√
2
− 1√

2
1√
2

1√
2

)T
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Operations and Properties

The determinant

Determinant

The determinant is a real number associated with a square matrix
A ∈ Rn×n, denoted det(A). Depending on n it can be calculated by
different arithmetic expressions.

det(

(
a b
c d

)
) = ad − bc

det(

(
6 2
1 5

)
) = 28
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue of A
and x ∈ Cn is the corresponding eigenvector if

Ax = λx, x 6= 0

Intuitively, multiplying A by the vector x does not change the
direction of x

The new vector points in the same direction but is scaled by factor λ
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors

Also, for any eigenvector x ∈ Cn, and scalar c ∈ C:

A(cx) = cAx = cλx = λ(cx)

Thus, cx is also an eigenvector with eigenvalue λ

For this reason, we usually normalize the eigenvector x to have length
1
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors

We can rewrite the equation from above (it holds: x 6= 0):

Ax = λx

Ax = λIx

λIx− Ax = 0

(λI− A)x = 0
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors

(λI− A)x = 0, x 6= 0 has a non-zero solution only if the matrix
(λI− A) is singular, i.e.:

det(λI− A) = 0

This can be expanded in a very large polynomial in λ, with maximal
degree n

We then find the roots of that polynomial and obtain the eigenvalues
λ1, . . . , λn
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors

To find the eigenvector corresponding to the eigenvalue λi we simply
solve the linear equation:

(λi I− A)x = 0
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors: example

A =

(
2 −4
−1 −1

)

det(λI− A) = det(

(
λ− 2 4

1 λ+ 1

)
) = (λ− 2)(λ+ 1)− 4

= λ2 − 2λ+ λ− 2− 4 = λ2 − λ− 6 = (λ− 3)(λ+ 2)

Thus, λ1 = 3, and λ2 = −2 are eigenvalues of A

We now solve (λi I− A)x = 0 for each eigenvalue to find the
corresponding eigenvectors

Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 69 / 74



Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors: example

For λ1 = 3

(
1 4
1 4

)(
x1
x2

)
=

(
0
0

)

x1 + 4x2 = 0

x1 + 4x2 = 0

Thus, x1 = −4x2, and we might pick x =

(
−4
1

)
And we normalize to:

(
−4/
√

17

1/
√

17

)
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors: example

For λ1 = −2

(
−4 4
1 −1

)(
x1
x2

)
=

(
0
0

)

−4x1 + 4x2 = 0

x1 − x2 = 0

Thus, x1 = x2, and we might pick x =

(
1
1

)
And we normalize to:

(
1/
√

2

1/
√

2

)
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Eigenvalues and Eigenvectors

Properties of eigenvalues and eigenvectors

For A ∈ Rn×n, eigenvalues λ1, . . . , λn, and associated eigenvectors
x1, . . . , xn the following are properties:

1 The trace of A is equal to the sum of its eigenvalues:

tr(A) =
n∑

i=1

λi

2 The determinant of A is equal to the product of its eigenvalues:

det(A) =
n∏

i=1

λi
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Eigenvalues and Eigenvectors

Properties of eigenvalues and eigenvectors

For A ∈ Rn×n, eigenvalues λ1, . . . , λn, and associated eigenvectors
x1, . . . , xn the following are properties:

3 The rank of A is equal to the number of non-zero eigenvalues of A
4 If A is non-singular then 1/λi is an eigenvalue of A−1 with associated

vector xi , i.e. A−1xi = (1/λi )xi
5 The eigenvalues of a diagonal matrix D = diag(d1, . . . , dn) are just the

diagonal entries d1, . . . , dn
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Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of symmetric matrices

There are two important properties of eigenvalues and eigenvectors of
symmetric matrices

All eigenvalues are real

The eigenvectors are orthonormal

If the eigenvectors are linearly independent then we can decompose A
as UΛAT

U is an orthogonal matrix where colums are the eigenvectors

Λ = diag(λ1, . . . , λn)
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