1. Symmetric matrices. Show that for any matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ matrices $\mathbf{A} \mathbf{A}^{T}$ and $\mathbf{A}^{T} \mathbf{A}$ are symmetric.
2. Postive semidefinite matrices. Show that for any matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ matrices $\mathbf{A} \mathbf{A}^{T}$ and $\mathbf{A}^{T} \mathbf{A}$ are postive semidefinite.
3. Postive definite matrices. Show that for any matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ with independent rows and columns matrices $\mathbf{A} \mathbf{A}^{T}$ and $\mathbf{A}^{T} \mathbf{A}$ are postive definite.
4. Eigenvalues and eigenvectors. Find the eigenvalues and eigenvectors of the following matrix. Normalize the eigenvectors to unit vectors.

$$
\mathbf{A}=\left(\begin{array}{ll}
3 & -7 \\
1 & -5
\end{array}\right)
$$

5. Linear independence. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct eigenvalues of a matrix from $\mathbb{R}^{n \times n}$. Show that the corresponding eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ form a linearly independent set.
6. Independence. Let $\Omega=\{1,2,3,4\}$ be a state (atomic event) space, and $\mathcal{A}=2^{\Omega}$ be a set of all possible events. Let $P(i)=\frac{1}{4}$, where $i=1,2,3,4$ be the probability of an atomic event taking place and let $A=\{1,2\}, B=\{1,3\}, C=\{2,3\}$ be three events.
a) Are A, B, and C pairwise independent?
b) Are A and B conditionally independent given C ?
7. Independence and covariance. Let X and Y be two independent discrete random variables:
a) Show that the expectation of the product of $X Y$ equals to the product of their individual expectations:

$$
\begin{equation*}
E[X Y]=E[X] E[Y] . \tag{1}
\end{equation*}
$$

b) Show that if X and Y are independent then their covariance $\operatorname{cov}(X, Y)=0$.
8. Bayes Theorem.: Suppose A and B are events such that $P(A)>0$ and $P(B)>0$.
a) State the Bayes theorem.
b) Prove the Bayes theorem.
9. Sample mean. Suppose X_{1}, \ldots, X_{n} are independent and identical r.v. with the expectation μ and variance σ^{2}. Let S_{n} be the n-th sample average of $X_{i}: S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. How is S_{n} distributed for large n ?
10. Maximum Likelihood Estimation. We make m experiments with n coin flips each. Let X_{1}, \ldots, X_{m} be r.v. denoting number of heads in each experiment. We can model X_{i} as a binomial r.v. with parameters (p, n). Estimate p with the method of maximum likelihood.

