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Outline

1 Introduction
2 Graph Partitioning
3 Simple Greedy Algorithm
4 Spectral Partitioning
5 Modularity Maximization
6 Other Greedy Algorithms
7 Probabilistic Models

Slides
Slides on stochastic block models are partially based on slides by Prof.
Aaron Clauset from University of Colorado at Boulder.
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Introduction

Dividing networks

Graph partitioning and community detection refer to the division of
nodes into groups, clusters, or communities
Network internal criteria
According to the pattern of links in the network
External criteria are also possible, but we do not discuss them here
Most commonly, the goal is to divide nodes so that the groups have
many links inside groups and only a few between groups
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Introduction

Dividing Networks

   

Community structure
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Introduction

Dividing Networks
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Introduction

Dividing networks

Groups of nodes are of interest in many different areas
World Wide Web
Citation networks
Social networks
Biological, metabolic networks, etc.
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Introduction

Groups

    Adamic & Glance 2005Figure: Political Blogosphere: US 2004 Elections [Adamic and Glance]
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Introduction

Groups
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Introduction

Dividing networks

How to approach network division?
If we have some external information (e.g. political party) the division
is easy
If networks are small visual identification is sometimes possible
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Introduction

Dividing networks

   

Community structure
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Dividing networks
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Introduction

Dividing networks
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Introduction

Dividing networks

However, we are interested in large networks
Apply algorithms
There are several reasons why we want to divide a network into
groups or clusters
However, there are two general reasons and that leads to two
corresponding types of algorithms
Two types are graph partitioning and community detection
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Introduction

Graph partitioning

Graph partitioning is a classical problem in computer science
It is the problem of dividing nodes into a given number of
non-overlapping groups of given sizes such that the number of links
between groups is minimized
The important point: the number and the sizes of groups are fixed
Sometimes the sizes are fixed within a range but they are still fixed
A prototypical example is dividing a network into two groups of equal
size such that the number of links between them is minimized
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Introduction

Graph partitioning

A typical example from computer science is parallel computation
Nodes are computation tasks and links represent data exchange
between tasks
There is a fixed number of CPUs
We want to balance the workload between CPUs → equal group sizes
We want to minimize the transfer of data between CPUs → minimize
the number of links between groups
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Introduction

Community detection

The other type of network division is the community detection
It differs from graph partitioning in that the number and size of the
groups is not specified
Instead they are determined by the network itself
The goal of community detection is to find the natural lines along
which a network separates
The sizes of the groups may vary widely from one group to another
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Introduction

Community detection

The most common use of community detection is understanding of
the network data
E.g in social networks social communities
E.g. in the Web clusters of related Web pages
In metabolic networks functional units within the network
Community detection is a less well-posed problem than graph
partitioning
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Introduction

Community detection

Community detection aims to find the natural divisions of a network
into groups
There are “many” links within groups and “few” links between groups
How much is “many” or “few”?
In summary, the main difference between graph partitioning and
community detection
The number and size of the groups is specified in graph partitioning
and unspecified in community detection
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Graph Partitioning

Graph bisection

The simplest graph partitioning problem is the division of a network
into two parts
Graph bisection
We minimize the number of links (cut size) between two parts
We can partition the graph into more than two parts by successive
bisection of one or both parts of the first bisection
Naive approach for bisection: look through all (exhaustive search)
possible divisions and choose the one with the smallest cut size
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Graph Partitioning

How difficult is graph partitioning?

How many ways to divide a network with 𝑛 nodes into two groups of
𝑛1 and 𝑛2 nodes
How many ways to choose 𝑛1 (or 𝑛2) nodes from 𝑛 nodes
The number of combinations without repeating and without
replacement and without regard to their order is given by binomial
coefficients

Binomial coefficients

(𝑛
𝑘) = 𝑛!

𝑘!(𝑛 − 𝑘)! (1)
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Graph Partitioning

How difficult is graph partitioning?

For graph bisection: 𝑛1 + 𝑛2 = 𝑛

( 𝑛
𝑛1

) = 𝑛!
𝑛1!(𝑛 − 𝑛1)! = 𝑛!

𝑛1!𝑛2! = ( 𝑛
𝑛2

) (2)
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Graph Partitioning

How difficult is graph partitioning?

We can approximate the factorials using Stirling’s formula

𝑛! = √2𝜋𝑛 (𝑛
𝑒 )

𝑛
(3)

𝑛!
𝑛1!𝑛2! =

√2𝜋𝑛 (𝑛
𝑒 )𝑛

√2𝜋𝑛1 (𝑛1
𝑒 )

𝑛1 √2𝜋𝑛2 (𝑛2
𝑒 )

𝑛2

= 1
√2𝜋

𝑛(𝑛+ 1
2 )

𝑛(𝑛1+ 1
2 )

1 𝑛(𝑛2+ 1
2 )

2

(4)
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Graph Partitioning

How difficult is graph partitioning?

E.g. if we want to bisect the graph into two parts of equal size
𝑛1 = 𝑛2 = 𝑛

2 the number of different ways is approximately:

1
√2𝜋

𝑛(𝑛+ 1
2 )

(𝑛
2 )

𝑛+1
2 (𝑛

2 )
𝑛+1

2
= 2(𝑛+ 1

2 )

√𝜋𝑛 (5)

Thus, the amount of time to look through all divisions go up
exponentially with the size of the network
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Graph Partitioning

Heuristics for graph partitioning

Therefore we fall back to using heuristics that find approximate but
acceptable results
There are three approaches to such heuristics

1 Greedy algorithms such as Kernighan-Lin algorithm or hierarchical
clustering

2 Optimization of some “reasonable” global criteria such as cut size,
spectral clustering, or modularity

3 Model-based methods that fit a probabilistic model for a network with
communities
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Simple Greedy Algorithm

Kernighan-Lin algorithm

One of the simplest and best known heuristic algorithms for the graph
bisection problem
Brian Kernighan:
http://en.wikipedia.org/wiki/Brian_Kernighan
We start by dividing nodes into two groups of the required sizes in
any way we like
For instance, we can divide nodes randomly
Then for each pair of nodes (𝑖, 𝑗) that lie in different groups we
calculate how much the cut size would change if 𝑖 and 𝑗 change groups
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Simple Greedy Algorithm

Kernighan-Lin algorithm

Among all pairs we find the pair that reduces the cut size by the
largest amount
If no pair reduces the cut size than we pick a pair which increases the
cut size by the smallest amount
Then we swap those nodes
The process is repeated with the restriction that each node can be
moved only once
Thus, on the second step we consider all nodes and their pairs except
the two nodes that have been swapped on the first step
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Simple Greedy Algorithm

Kernighan-Lin algorithm

The algorithm proceeds until eventually there are no pairs left to be
swapped
When all swaps have been completed we go back through every state
and pick the one in which the cut size takes the smallest value
Then the entire process is repeated starting each time with the best
division from the last round
We continue until no improvement in the cut size occurs
The best division from the last round is the result of the algorithm
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Simple Greedy Algorithm

Kernighan-Lin algorithm

Note that if the initial assignment is random the algorithm may not
give the same answer if it is run twice on the same network
Probabilistic algorithm if the initial assignment is random
For this reason you might want to run the algorithm a couple of times
and compare the results
The heuristic works very well for practical purposes
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Simple Greedy Algorithm

Complexity of Kernighan-Lin algorithm

The primary disadvantage of Kernighan-Lin algorithm is that is slow
The size of the groups lie between 𝑛

2 and 𝑛
In the worst case there is 𝑂(𝑛) swaps in a single round
For each swap we have to examine all pairs of nodes from different
groups
In the worst case: 𝑛

2 × 𝑛
2 = 𝑛2

4 = 𝑂(𝑛2)
For each of these we need to determine the change in the cut size
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Simple Greedy Algorithm

Complexity of Kernighan-Lin algorithm

When node 𝑖 moves from one group to another any links connecting
to nodes in the current group become links between the groups after
the swap
Similarly, any links that 𝑖 has to nodes in the other group become
within-group links except for the link to node 𝑗, which is swapped
with 𝑖
To evaluate this in the adjacency list format we need to go through
lists for node 𝑖 and 𝑗
On average they will be 𝑚/𝑛 long, and thus this step has 𝑂(𝑚/𝑛)
The total time: 𝑂(𝑛 × 𝑛2 × 𝑚/𝑛) = 𝑂(𝑚𝑛2)
On a sparse network this is 𝑂(𝑛3) and on a dense network 𝑂(𝑛4)
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Spectral Partitioning

Spectral clustering: formalization

We consider a network with 𝑛 nodes and 𝑚 links
We divide network into two groups: 𝑔1 and 𝑔2
The cut size of the division is given by:

𝑅 = 1
2 ∑

𝑖,𝑗 in different groups
𝐴𝑖𝑗 (6)
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Spectral Partitioning

Spectral clustering: formalization

Let us define a vector s of quantities 𝑠𝑖, which represent the division
of the network:

𝑠𝑖 =
⎧{
⎨{⎩

1 if node 𝑖 belongs to 𝑔1
−1 if node 𝑖 belongs to 𝑔2

(7)
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Spectral Partitioning

How to calculate R?

Lets calculate 𝑠𝑖 − 𝑠𝑗
First 𝑖 and 𝑗 may be from the same group: 𝑠𝑖 − 𝑠𝑗 = 0
From different groups: 𝑠𝑖 − 𝑠𝑗 = 2 or 𝑠𝑖 − 𝑠𝑗 = −2, and (𝑠𝑖 − 𝑠𝑗)2 = 4
Laplacian quadratic form: 𝐬𝑇𝐋𝐬 = ∑(𝑖,𝑗)∈𝐸(𝑠𝑢 − 𝑠𝑗)2 = 4𝑅

Thus, 𝑅 = 1
4𝐬𝑇𝐋𝐬
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Spectral Partitioning

Spectral clustering as an optimization problem

We want to minimize 𝑅
Thus, it is now an optimization problem
We want to find s that minimizes 𝑅, i.e. the cut size
As seen previously this is a hard problem
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Spectral Partitioning

Spectral clustering as an optimization problem

What is hard in practice is that 𝑠𝑖 can not take just any values
They are restricted to special values ±1
If they were allowed to take any values then we could just
differentiate to find the minimum
This suggests a possible approximate approach
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Spectral Partitioning

Spectral clustering as an optimization problem

Suppose we let 𝑠𝑖 to take any values but subject to certain constraints
We find approximate values but they might be “good” enough
This is a so-called relaxation method in mathematical optimization
How should we define the constraints?
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Spectral Partitioning

Relaxation

Let us first take a look at the constraints if 𝑠𝑖 can take only on values
±1
The first constraint determines the direction and the length of the
vector s
s is a vector in an 𝑛 dimensional Euclidean space
s always points to one of the 2𝑛 corners of a 𝑛-dimensional hypercube
centered on the origin
s always has the same length, which is √𝑛
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Spectral Partitioning

Relaxation

Let us now relax the direction constraint and allow s to point in any
direction
We will keep the length constraint, i.e. the length of s remains √𝑛
It would not make much sense to allow the length to vary
In that case, the minimization problem would have a trivial solution
s = 0
Thus, we drop the direction constraint and keep the length constraint

∑
𝑖

𝑠2
𝑖 = 𝑛 (8)
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Spectral Partitioning

Relaxation
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Spectral Partitioning

Relaxation

The second constraint on the vector s is on the number of +1 and −1
These numbers must equal the sizes of the groups 𝑔1 and 𝑔2
Let us denote these sizes with 𝑛1 and 𝑛2

∑
𝑖

𝑠𝑖 = 𝑛1 − 𝑛2 (9)

1𝑇𝑠 = 𝑛1 − 𝑛2 (10)

We keep this second constraint unchanged
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Spectral Partitioning

Constrained optimization: Lagrange multipliers

Original objective function that we want to minimize: ∑𝑖𝑗 𝐿𝑖𝑗𝑠𝑖𝑠𝑗

This function is subject to constraint: constrained optimization
Typically solved by the method of Lagrange multipliers

Objective function: 𝑓 (s) = ∑
𝑖𝑗

𝐿𝑖𝑗𝑠𝑖𝑠𝑗

Subject to: ∑𝑖 𝑠2
𝑖 = 𝑛

Subject to: ∑𝑖 𝑠𝑖 = 𝑛1 − 𝑛2
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Spectral Partitioning

Lagrange multipliers

For each constraint we need one Lagrange multiplier, e.g. 𝜆 and 2𝜇
Lagrange formulation of the optimization problem will be a new
objective function that is a function of s, 𝜆 and 𝜇

𝐿(s, 𝜆, 𝜇) = ∑
𝑖𝑗

𝐿𝑖𝑗𝑠𝑖𝑠𝑗 + 𝜆(𝑛 − ∑
𝑖

𝑠2
𝑖 ) + 2𝜇((𝑛1 − 𝑛2) − ∑

𝑖
𝑠𝑖) (11)
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Spectral Partitioning

Constrained optimization

To minimize 𝐿 we find s, 𝜆 and 𝜇 that make its gradient 0
▽𝐿 = 0 ∶

𝜕𝐿
𝜕𝑠𝑖

= 0, ∀𝑖

𝜕𝐿
𝜕𝜆 = 0
𝜕𝐿
𝜕𝜇 = 0
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Spectral Partitioning

Constrained optimization

𝜕𝐿
𝜕𝜆 = 0 and 𝜕𝐿

𝜕𝜇 = 0 give back the constraints

𝜕𝐿
𝜕𝑠𝑖

= 2 ∑
𝑗

𝐿𝑖𝑗𝑠𝑗 − 2𝜆𝑠𝑖 − 2𝜇 = 0 (12)

∑
𝑗

𝐿𝑖𝑗𝑠𝑗 = 𝜆𝑠𝑖 + 𝜇 (13)

Ls = 𝜆s + 𝜇1 (14)
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Spectral Partitioning

Solution

Recall that 1 is an eigenvector of L with the eigenvalue 0 so that
L ⋅ 1 = 0
Let us multiply the last equation on the left with 1𝑇 and use
1𝑇𝑠 = 𝑛1 − 𝑛2:

𝜆(𝑛1 − 𝑛2) + 𝜇𝑛 = 0 (15)

𝜇 = −𝑛1 − 𝑛2
𝑛 𝜆 (16)
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Spectral Partitioning

Solution

Let us define a new vector x

x = s + 𝜇
𝜆1 = s − 𝑛1 − 𝑛2

𝑛 1 (17)

s = x + 𝑛1 − 𝑛2
𝑛 1 (18)

Denis Helic (ISDS, TU Graz) NetSci December 5, 2018 46 / 134



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Spectral Partitioning

Solution

Let us calculate Lx, using again L ⋅ 1 = 0

Lx = L(s + 𝜇
𝜆1) = Ls = 𝜆s + 𝜇1 = 𝜆(s + 𝜇

𝜆1) = 𝜆x (19)

Thus, x is an eigenvector of L
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Spectral Partitioning

Solution

Any eigenvector satisfies the last equation
We should choose the eigenvector which minimizes 𝑅
Can we take 1

1𝑇x = 1𝑇s − 𝑛1 − 𝑛2
𝑛 1𝑇1 = (𝑛1 − 𝑛2) − 𝑛1 − 𝑛2

𝑛 𝑛 = 0 (20)

x is orthogonal to 1 → we must pick another one
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Spectral Partitioning

Solution

𝑅 = 1
4s

𝑇Ls

s𝑇Ls = (x + 𝑛1 − 𝑛2
𝑛 1)𝑇Ls = ((x𝑇 + 𝑛1 − 𝑛2

𝑛 1𝑇)L)s

= (x𝑇L + 𝑛1 − 𝑛2
𝑛 1𝑇L)s = (x𝑇L)s = x𝑇(Ls)

= x𝑇Lx = 𝜆x𝑇x (21)
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Spectral Partitioning

Solution

x𝑇x = (s − 𝑛1 − 𝑛2
𝑛 1)𝑇(s − 𝑛1 − 𝑛2

𝑛 1)

= (s𝑇 − 𝑛1 − 𝑛2
𝑛 1𝑇)(s − 𝑛1 − 𝑛2

𝑛 1)

= s𝑇s − 𝑛1 − 𝑛2
𝑛 s𝑇1 − 𝑛1 − 𝑛2

𝑛 1𝑇s + (𝑛1 − 𝑛2
𝑛 )21𝑇1

= 𝑛 − 𝑛1 − 𝑛2
𝑛 (𝑛1 − 𝑛2) − 𝑛1 − 𝑛2

𝑛 (𝑛1 − 𝑛2) + (𝑛1 − 𝑛2
𝑛 )2𝑛

= 𝑛 − (𝑛1 − 𝑛2)2

𝑛
= 4𝑛1𝑛2

𝑛 (22)
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Spectral Partitioning

Solution

𝑅 = 1
4s

𝑇Ls

= 1
4𝜆x𝑇x

= 𝑛1𝑛2
𝑛 𝜆 (23)

Thus, the cut size is proportional to the eigenvalue 𝜆
We want to minimize 𝑅 → we should choose the smallest allowed
eigenvalue
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Spectral Partitioning

Eigenvalues of the graph Laplacian

The vector 1 is always an eigenvector of L with eigenvalue 0
There are no negative eigenvalues, thus this is the lowest eigenvalue
Convention: 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆𝑛
We always have 𝜆1 = 0
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Spectral Partitioning

Eigenvalues of the graph Laplacian

However, we can not take 𝜆1, and should choose 𝜆2
The second eigenvalue of the Laplacian is called algebraic connectivity
Thus, we take as x the v2 corresponding to 𝜆2
Cut size is proportional to algebraic connectivity, which is a direct
measure of how easy is to divide a network
We might recover s by

s = x + 𝑛1 − 𝑛2
𝑛 1
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Spectral Partitioning

Solution

Vector s is however subject to further constraints, i.e. its elements
take on values ±1 and there are exactly 𝑛1 elements with value 1 and
exactly 𝑛2 elements with value −1
These constraints prevent s from taking the values from the last
equation
Let us do the best and choose s to be as close as possible to the ideal
solution
The ideal solution: s𝑇s = 𝑛
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Spectral Partitioning

Solution

Thus, we should try to maximize:

s𝑇(x + 𝑛1 − 𝑛2
𝑛 1) = ∑

𝑖
𝑠𝑖(𝑥𝑖 + 𝑛1 − 𝑛2

𝑛 ) (24)

The maximum of this expression is achieved by assigning 𝑠𝑖 = +1 for
the nodes with most positive values of (𝑥𝑖 + 𝑛1−𝑛2

𝑛 ) and 𝑠𝑖 = −1 for
the remainder
The most positive values of (𝑥𝑖 + 𝑛1−𝑛2

𝑛 ) are the most positive values
of 𝑥𝑖, which are the most positive elements of v2
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Spectral Partitioning

Solution

Thus, we calculate the eigenvector v2 and place 𝑛1 nodes with the
most positive elements in group 1 and the rest in group 2
It is arbitrary which group we call group 1 and which group 2
Thus, if the sizes of two groups are different then we can make cut by
taking 𝑛1 most positive elements or 𝑛2 most positive elements for
group 1
We can make both splits and calculate the cut size and then take the
division which has a smaller cut size
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Spectral Partitioning

Spectral clustering algorithm

The final algorithm
1 Calculate the eigenvector v2 corresponding to 𝜆2
2 Sort the elements of the eigenvector in descending order
3 Take 𝑛1 nodes corresponding to the 𝑛1 largest elements in group 1,

the rest in group 2 and calculate 𝑅
4 Take 𝑛1 nodes corresponding to the 𝑛1 smallest elements in group 1,

the rest in group 2 and calculate 𝑅
5 Between those two divisions choose one that gives the smaller cut size
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Spectral Partitioning

Properties of spectral clustering

In comparison to e.g. Kernighan-Lin spectral clustering produces
typically similar division but the cut size is slightly worse
This is typical of spectral method
It tends to find divisions that have the right general shape but are
perhaps not as good as those returned by the other methods
However, the advantage of the spectral method is its speed
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Spectral Partitioning

Complexity of spectral clustering

The complexity is dominated by the calculation of the eigenvector v2
This has complexity 𝑂(𝑚𝑛)
On a sparse network this is 𝑂(𝑛2)
On a dense network this is 𝑂(𝑛3)
The majority of real-world networks are sparse
Kernighan-Lin has the complexity of 𝑂(𝑛3) on sparse networks and
𝑂(𝑛4) on dense networks
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Spectral Partitioning

Further applications of spectral clustering

We can apply the same approach to discover two communities
Community detection algorithm

1 Calculate the eigenvector v2 corresponding to 𝜆2
2 Sort the elements of the eigenvector in descending order
3 Take nodes corresponding to the positive elements in group 1, the rest

in group 2
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Spectral Partitioning

Further applications of spectral clustering

We can apply the same approach to general community detection
Community detection algorithm

1 Calculate the eigenvector v2 corresponding to 𝜆2
2 Sort the elements of the eigenvector in descending order
3 Take nodes between large gaps in element values in corresponding

groups
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Spectral Partitioning

Example

1

2

3

4 5

6

7

8

9
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Modularity Maximization

Alternatives to cut size measure

For community detection cut size minimization has some
disadvantages
We want to discover the communities such that the cut size is
minimal
But minimal cut size is 0
The optimal division is then to not divide the network at all but put
all the nodes into a single group
An alternative strategy would be to focus on a different measure of
the quality of division
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Modularity Maximization

Alternatives to cut size measure

A good division of the network is not merely one in which there are
few links between communities
On the contrary, a good division is one where there are fewer than
expected of such links
If we find a division in which there are few links between
communities, but nonetheless the number of these links is what we
expect anyway than we did not find anything significant
It is not the total cut size that matters but how that cut size
compares to what we expect to see
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Modularity Maximization

Alternatives to cut size measure

In fact, the conventional idea is that we consider the number of links
within groups and not the number of links between groups
The two approaches are equivalent since every link that lies within a
group does not lie between groups
Thus, we need a measure that quantifies how many links lie within
groups relative to the number of such links expected on the basis of
chance
We already introduced the idea of assortative mixing and a measure
that quantifies it
Modularity
Thus, we want to look for division that have the highest modularity
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Modularity Maximization

Simple example
Network Analysis and Modeling, CSCI 5352
Lecture 17

Prof. Aaron Clauset
7 November 2013

Lgood = 0.001875 . . . Lbad = 0.000244 . . .

Mgood red blue

red 3/3 1/9
blue 1/9 3/3

Mbad red blue

red 4/6 2/8
blue 2/8 1/1

1.4 Choosing the number of groups k

Recall that we fixed k the number of groups. In many applications, we would like to allow k to
vary and thus decide whether some choice k′ > k is better.

Because k determines the “size” of the model, allowing k to vary presents a difficulty: the larger
a value of k we choose, the more parameters we have in M , which may lead to over fitting. In
the limit of k = n, every vertex is in a group by itself, the matrix M becomes identical to the
adjacency matrix A and the likelihood is maximized at L = 1. That is, the model has memorized
the data exactly. Thus, as we increase k, the SBM distribution over networks becomes increasingly
concentrated around the empirically observed network G.

Thus, the SBM has a downside relative to modularity maximization, which had no free parameter
controlling its model complexity.2 There are, however, statistically principled ways of choosing k,
but these require additional steps as increasing k directly increases the number of parameters in the
model, which increases the risk of over fitting the data. A method for regularization or complexity
control is thus necessary in order to penalize larger models for their additional flexibility. That is,
we would only want to use a larger model (larger k) if the additional flexibility was statistically
warranted. Popular choices for regularization include Bayesian marginalization, Bayes factors,
various information criteria (BIC, AIC, etc.), minimum description length (MDL) approaches, and
likelihood ratio tests. We will not cover any of these techniques here.

2The downside is not as great as you may imagine, however, as the modularity function has a built in preference
for modules with certain characteristics, which the SBM lacks.

4

Figure: “Good” modularity
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Modularity Maximization

Simple exampleNetwork Analysis and Modeling, CSCI 5352
Lecture 17

Prof. Aaron Clauset
7 November 2013

Lgood = 0.001875 . . . Lbad = 0.000244 . . .

Mgood red blue

red 3/3 1/9
blue 1/9 3/3

Mbad red blue

red 4/6 2/8
blue 2/8 1/1

1.4 Choosing the number of groups k

Recall that we fixed k the number of groups. In many applications, we would like to allow k to
vary and thus decide whether some choice k′ > k is better.

Because k determines the “size” of the model, allowing k to vary presents a difficulty: the larger
a value of k we choose, the more parameters we have in M , which may lead to over fitting. In
the limit of k = n, every vertex is in a group by itself, the matrix M becomes identical to the
adjacency matrix A and the likelihood is maximized at L = 1. That is, the model has memorized
the data exactly. Thus, as we increase k, the SBM distribution over networks becomes increasingly
concentrated around the empirically observed network G.

Thus, the SBM has a downside relative to modularity maximization, which had no free parameter
controlling its model complexity.2 There are, however, statistically principled ways of choosing k,
but these require additional steps as increasing k directly increases the number of parameters in the
model, which increases the risk of over fitting the data. A method for regularization or complexity
control is thus necessary in order to penalize larger models for their additional flexibility. That is,
we would only want to use a larger model (larger k) if the additional flexibility was statistically
warranted. Popular choices for regularization include Bayesian marginalization, Bayes factors,
various information criteria (BIC, AIC, etc.), minimum description length (MDL) approaches, and
likelihood ratio tests. We will not cover any of these techniques here.

2The downside is not as great as you may imagine, however, as the modularity function has a built in preference
for modules with certain characteristics, which the SBM lacks.

4

Figure: “Bad” modularity
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Modularity Maximization

Simple modularity maximization

Analog to Kernighan-Lin
We divide the network into two communities starting from some
initial (random) division
The algorithm considers each node in the network and calculates how
much the modularity would change if that node is moved into the
other group
It then selects among all nodes the one node which the highest
increase (or smallest decrease) in the modularity
Then it repeats the process with the important constraint that a node
once moved can not be again moved in the same round
In this version we do not swap nodes, but just move a single node
from one community to another (we do not need to keep the sizes of
the communities constant)
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Modularity Maximization

Simple modularity maximization

When all nodes have been moved exactly once we go back over all
the states and select the state with the highest modularity
That is the input for the next round
We keep repeating the process until no further improvement in the
modularity occurs
In practice this gives very good results
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Modularity Maximization

Complexity of simple modularity maximization

The node moving algorithm is quite efficient
At each step of the algorithm we have to evaluate the change in the
modularity due to movement of 𝑂(𝑛) nodes
Each such evaluation requires again 𝑂(𝑚/𝑛) in the adjacency list form
This is repeated 𝑛 times in one round of algorithm
Total time: 𝑂(𝑛 × 𝑚/𝑛 × 𝑛) = 𝑂(𝑚𝑛)
This is 𝑂(𝑛2) on a sparse and 𝑂(𝑛3) on a dense network
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Modularity Maximization

Spectral modularity maximization: formalization

Is there an analog of the spectral clustering for modularity
maximization?

𝑄 = 1
2𝑚 ∑

𝑖𝑗
(𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚 )𝛿(𝑐𝑖, 𝑐𝑗) = 1

2𝑚 ∑
𝑖𝑗

𝐵𝑖𝑗𝛿(𝑐𝑖, 𝑐𝑗) (25)

𝐵𝑖𝑗 = 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚 (26)
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Modularity Maximization

Spectral modularity maximization: formalization

Note the following property of 𝐵𝑖𝑗

∑
𝑗

𝐵𝑖𝑗 = ∑
𝑗

𝐴𝑖𝑗 − 𝑘𝑖
2𝑚 ∑

𝑗
𝑘𝑗 = 𝑘𝑖 − 𝑘𝑖

2𝑚2𝑚 = 0 (27)

Similarly ∑𝑖 𝐵𝑖𝑗 = 0
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Modularity Maximization

Spectral modularity maximization: formalization

Let us first consider the division of a network in just two parts
We introduce the division vector s as before

𝑠𝑖 =
⎧{
⎨{⎩

1 if node 𝑖 belongs to 𝑔1
−1 if node 𝑖 belongs to 𝑔2
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Modularity Maximization

Spectral modularity maximization: formalization

Note that the quantity 1
2(𝑠𝑖𝑠𝑗 + 1) is 1 if 𝑖 and 𝑗 are in the same group

and 0 otherwise, so that:

𝛿(𝑐𝑖, 𝑐𝑗) = 1
2(𝑠𝑖𝑠𝑗 + 1) (28)

𝑄 = 1
4𝑚 ∑

𝑖𝑗
𝐵𝑖𝑗(𝑠𝑖𝑠𝑗 + 1) = 1

4𝑚 ∑
𝑖𝑗

𝐵𝑖𝑗𝑠𝑖𝑠𝑗 (29)

𝑄 = 1
4𝑚s𝑇Bs (30)
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Modularity Maximization

Constrained optimization

The form of equation is very similar to cut size for spectral clustering
The constraint on s determines the direction and the length of the
vector
I.e. we have as before the following two constraints

1 s always points to one of the 2𝑛 corners of a 𝑛-dimensional hypercube
centered on the origin

2 s always has the same length, which is √𝑛

However, we do not have constraints on the size of the division
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Modularity Maximization

Relaxation method

Again, let us relax the direction constraint and allow s to point in any
direction
Also, we will keep the length constraint, i.e. the length of s remains
√𝑛

∑
𝑖

𝑠2
𝑖 = 𝑛 (31)
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Modularity Maximization

Lagrange multipliers

Original objective function that we want to maximize: ∑𝑖𝑗 𝐵𝑖𝑗𝑠𝑖𝑠𝑗

This function is subject to constraint: we use again Lagrange
multipliers

Objective function: 𝑓 (s) = ∑
𝑖𝑗

𝐵𝑖𝑗𝑠𝑖𝑠𝑗

Subject to: ∑𝑖 𝑠2
𝑖 = 𝑛

(32)
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Modularity Maximization

Lagrange multipliers

Now we need a single Lagrange multiplier, e.g. 𝛽
Lagrange formulation of the optimization problem will be a new
objective function that is a function of s and 𝛽

𝐿(s, 𝛽) = ∑
𝑖𝑗

𝐵𝑖𝑗𝑠𝑖𝑠𝑗 + 𝛽(𝑛 − ∑
𝑖

𝑠2
𝑖 ) (33)
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Modularity Maximization

Solution

To maximize 𝐿 we find s and 𝛽 that make ▽𝐿 = 0 ∶

𝜕𝐿
𝜕𝑠𝑖

= 0, ∀𝑖

𝜕𝐿
𝜕𝛽 = 0

(34)
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Modularity Maximization

Solution

𝜕𝐿
𝜕𝛽 = 0 gives back the constraints

𝜕𝐿
𝜕𝑠𝑖

= 2 ∑
𝑗

𝐵𝑖𝑗𝑠𝑗 − 2𝛽𝑠𝑖 = 0 (35)

∑
𝑗

𝐵𝑖𝑗𝑠𝑗 = 𝛽𝑠𝑖 (36)

Bs = 𝛽s (37)
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Modularity Maximization

Solution

In other words s is one of the eigenvectors of the modularity matrix

𝑄 = 1
4𝑚s𝑇Bs = 1

4𝑚𝛽s𝑇s = 𝑛
4𝑚𝛽 (38)

For maximum modularity we should choose s to be the vector u1 that
corresponds to the largest eigenvalue of the modularity matrix
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Modularity Maximization

Solution

As before, vector s is however subject to further constraints, i.e. its
elements take on values ±1
These constraints prevent s from taking the values from s = u1
Let us do the best and choose s to be as close as possible to the ideal
solution
Thus, we should maximize the product

s𝑇u1 = ∑
𝑖

𝑠𝑖[u1]𝑖 (39)
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Modularity Maximization

Solution

The maximum is achieved when each sum term is non-negative, i.e.,
when

𝑠𝑖 =
⎧{
⎨{⎩

+1 if [u1]𝑖 > 0
−1 if [u1]𝑖 < 0

(40)
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Modularity Maximization

Algorithm

Community detection algorithm
1 Calculate the leading eigenvector of the modularity matrix

(corresponding to the largest eigenvalue)
2 We assign nodes to communities according to the signs of vector

elements

Denis Helic (ISDS, TU Graz) NetSci December 5, 2018 84 / 134



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modularity Maximization

Example

1

2

3

4 5

6

7

8

9
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Modularity Maximization

Example

1

2

3

4 5

6

7

8

9
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Modularity Maximization

Complexity of spectral modularity maximization

One potential problem with the algorithm is that B is unlike the
Laplacian a dense matrix
Finding the leading eigenvector of a matrix has complexity 𝑂(𝑚𝑛),
which for a dense matrix is 𝑂(𝑛3)
However, by exploiting some special properties of the modularity
matrix this can be achieved in 𝑂(𝑛2)
Overall, the spectral method is as efficient as the simple modularity
maximization method
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Modularity Maximization

Other modularity maximization methods

Simulated annealing
Genetic algorithms
Greedy algorithm that starts with each node in a single community
It then aggregate communities in larger communities by picking the
aggregation that increases modularity at most
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Other Greedy Algorithms

Further heuristics

Betweenness-based methods: look for links that lie between
communities
Use a betweenness centrality score for links and remove the links with
high score
Hierarchical clustering
Agglomerative method in which we start with individual nodes and
then join them to form groups
Joining is based on a similarity between nodes
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Probabilistic Models

Model-based methods

A third important method for community detection is based on fitting
a probabilistic model of a network
The idea is based on a probabilistic or generative model
Such models assign a link probability for each pair 𝑖 and 𝑗 of nodes in
a network
Generative models are a powerful method to encode specific
assumptions of how unknown parameters interact to create links
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Probabilistic Models

Generative models

Generative models have many advantages:
1 they make our assumptions about the world explicit (rather than

encoding them within a procedure or algorithm)
2 their parameters can be directly interpreted with respect to certain

hypothesis about network structure
3 comparison of different parameterizations is based on likelihood, which

is a fundamental principle in probability theory and statistics
4 they make probabilistic statements about observation (lack-of) specific

network features
5 they allow for prediction of future features based on the past

observations
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Probabilistic Models

Generative models

The main disadvantage is that fitting of the models can be more
complicated than a heuristic algorithmic approach
How does a generative network model work?
It defines a probability distribution over all possible networks 𝑃(𝐺|𝜃)
𝜃 is a set of parameters that govern the link probabilities under the
model
Given 𝜃 we flip coin for each pair of nodes and depending on the result
of the coin flip assign or do not assign a link between those nodes
In that way we generate an instance network 𝐺 from the model
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Probabilistic Models

Inference

(Statistical) inference is the reverse of the generation process
We are given an instance 𝐺 of the network, e.g. an empirical network
We want to estimate the model, or more precisely the parameters 𝜃
that most likely generated the network

generation

inference

P(D|θ) D

generation

inference

G(V,E)P(D|θ)

generation

inference

P(D|θ) D

generation

inference

G(V,E)P(D|θ)
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Probabilistic Models

Bernoulli (Erdös-Renyi) model

The most standard generative model for networks
We are given 𝑛 nodes and a link between any two nodes is present
with probability 𝑝, independently on any other link
We have (𝑛

2) potential links in a simple undirected network
Expected degree of a node is (𝑛 − 1)𝑝 and is same for all nodes
Degree distribution follows a Poisson distribution
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Probabilistic Models

Fitting a Bernoulli model

We observe a simple undirected network with 𝑛 nodes and 𝑚 links
We are interested in parameter 𝑝 that most likely generated the
network
𝑝 is now an unknown parameter
Again, we can estimate the parameter with MLE
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Probabilistic Models

Fitting a Bernoulli model

First, we need to write down the likelihood function
That is the probability of observing the network given parameter 𝑝
We need to iterate through all (𝑛

2) potential links and write down the
probability of observing or otherwise not-observing the link
As links are independent on each other given the parameter 𝑝 the
final probability is the product of single probabilities
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Probabilistic Models

Fitting a Bernoulli model

𝑃(𝐺|𝑝) = 𝑝 ⋅ 𝑝 … 𝑝⏟
𝑚

⋅(1 − 𝑝) ⋅ (1 − 𝑝) … (1 − 𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑛

2)−𝑚

= 𝑝𝑚(1 − 𝑝)
𝑛(𝑛−1)

2 −𝑚 (41)

Log-likelihood

ℒ(𝑝) = 𝑚𝑙𝑛(𝑝) + (𝑛(𝑛 − 1)
2 − 𝑚)𝑙𝑛(1 − 𝑝) (42)
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Probabilistic Models

MLE for a Bernoulli model

Now, we are interested in 𝑝 that most likely generated the data
The data are most likely to have been generated by the model with 𝑝
that maximizes the log-likelihood function
Setting 𝑑ℒ

𝑑𝑝 = 0 and solving for 𝑝 we obtain the maximum likelihood
estimate

MLE

𝑑ℒ
𝑑𝑝 = 𝑚

𝑝 −
𝑛(𝑛−1)

2 − 𝑚
1 − 𝑝 = 0 (43)

𝑝 = 2𝑚
𝑛(𝑛 − 1) (44)
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Probabilistic Models

Erdös-Renyi mixture models

It is also known as latent block models
Also stochastic block models (SBM)
Social science terminology
Nodes are of different types, e.g. there are 𝑘 different types
The probability of a link varies depending on node types
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Probabilistic Models

Stochastic block models

In its most simple form an SBM is defined by
1 Number of nodes 𝑛
2 Number of types 𝑘
3 𝑛 × 1 vector s of node type indices
4 𝑘 × 𝑘 stochastic block matrix M where 𝑀𝑢𝑣 gives the probability that

a node of type 𝑢 is connected to a node of type 𝑣
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Probabilistic Models

Stochastic block models

Given a choice for 𝑛, 𝑘, s and M we can draw a network instance
from the model
We iterate through all (𝑛

2) potential links and flip a coin for each link
Each link is a Bernoulli r.v. with parameter 𝑝 = 𝑀𝑢𝑣, where 𝑢 and 𝑣
are types of two nodes in question
Links are independent but not identically distributed
However, they are i.i.d. for a given pair of types 𝑢 and 𝑣
Note that (for undirected case) we need to specify (𝑘+1

2 ) probabilities
in M
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Probabilistic Models

Stochastic block models

For 𝑀𝑢𝑣 = 𝑝 constant for all pairs of types 𝑢 and 𝑣 we get a Bernoulli
random graph

Network Analysis and Modeling, CSCI 5352
Lecture 16

Prof. Aaron Clauset
5 November 2013

Random graphs.
Suppose Mij = p constant for all pairs i, j. In this case, the SBM reduces to the Erdős-Rényi
random graph model G(n, p). In this case, all the results from ER graphs, from the calculations of
the component sizes to the appearance of the giant component, would hold. For k = 5, below is an
example of a stochastic block matrix and a corresponding network instance drawn from it.

If the values of M are not all the same, then the SBM generates Erdős-Rényi random graphs within
each community i, with an internal density given by Mii, and random bipartite graphs between
pairs of communities i and j.

stochastic block matrix random graph

Assortative and disassortative communities.
When communities are assortative, then vertices tend to connect to vertices that are like them,
i.e., there are relatively more edges within communities. Under the SBM, assortative community
structure appears as a pattern on M in which the values on the diagonal are greater than the
values off the diagonal. That is, Mii > Mij for i 6= j. Similarly, disassortative structure implies
that unlike vertices are more likely to connect than like vertices, i.e., Mii < Mij for i 6= j.

The figures on the next page illustrate these patterns, where each network has the same mean
degree. Notably, the disassortative network looks visually similar to the ER network above, but
this hides the fact that vertices with similar colors are not connecting with each other. In contrast,
the assortative network shows nicely what we normally expect from communities, and what the
modularity function Q prefers.

3
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Probabilistic Models

Stochastic block models

For 𝑀𝑢𝑢 > 𝑀𝑢𝑣, 𝑢 ≠ 𝑣 diagonal elements greater than off diagonal
elements we get assortative mixingNetwork Analysis and Modeling, CSCI 5352

Lecture 16
Prof. Aaron Clauset

5 November 2013

stochastic block matrix assortative communities

stochastic block matrix disassortative communities

Core-periphery and ordered communities.
In an ordered network, communities connect to each other according to a latent sequence.

Physical proximity networks exhibit this kind of structure with age acting as a latent ordering
variable. That is, individuals tend to associate physically with others who are close to them-
selves in age, so that children tend to be physically proximate to other children, teenagers with
teenagers, 20-somethings with 20-somethings, etc. This induces a strong diagonal component in
the stochastic block matrix, as in assortative communities, plus a strong first-off-diagonal compo-
nent, i.e., communities connect to those just above and below themselves in the latent ordering
Mii ≈ Mi,i+1 ≈ Mi,i−1. In social networks, an exception to this pattern occurs during the child-
bearing years, so that individuals split their time between their peers and their children (who are
generally 20-30 years younger).2

2This fact was demonstrated nicely in a longitudinal study in Scandinavia, in which individuals were asked to

4
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Probabilistic Models

Stochastic block models

For 𝑀𝑢𝑢 < 𝑀𝑢𝑣, 𝑢 ≠ 𝑣 diagonal elements smaller than off diagonal
elements we get disassortative mixing

Network Analysis and Modeling, CSCI 5352
Lecture 16

Prof. Aaron Clauset
5 November 2013

stochastic block matrix assortative communities

stochastic block matrix disassortative communities

Core-periphery and ordered communities.
In an ordered network, communities connect to each other according to a latent sequence.

Physical proximity networks exhibit this kind of structure with age acting as a latent ordering
variable. That is, individuals tend to associate physically with others who are close to them-
selves in age, so that children tend to be physically proximate to other children, teenagers with
teenagers, 20-somethings with 20-somethings, etc. This induces a strong diagonal component in
the stochastic block matrix, as in assortative communities, plus a strong first-off-diagonal compo-
nent, i.e., communities connect to those just above and below themselves in the latent ordering
Mii ≈ Mi,i+1 ≈ Mi,i−1. In social networks, an exception to this pattern occurs during the child-
bearing years, so that individuals split their time between their peers and their children (who are
generally 20-30 years younger).2

2This fact was demonstrated nicely in a longitudinal study in Scandinavia, in which individuals were asked to

4
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Probabilistic Models

Stochastic block models

In ordered networks individuals connect to other individuals according
to a latent sequence

Network Analysis and Modeling, CSCI 5352
Lecture 16

Prof. Aaron Clauset
5 November 2013

stochastic block matrix ordered communities

Core-periphery structure is a form of ordering on communities, but where we place the additional
constraint that the density of connections decreases with the community index. The following
instance shows only one way to specify this structure, in which each layer of the network connects
to all other layers, but with exponentially decreasing probability. In the stochastic block matrix,
you can see evidence in the upper left corner of the nested structure of this core-periphery network.
In the network instance, the green vertices are the inner core, while the magenta and cyan vertices
are the outer periphery.

stochastic block matrix core-periphery structure

record in a journal the characteristics of the people they associated with at different times of the day. I don’t have
the reference handy, but will try to find it.

5
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Probabilistic Models

Stochastic block models

Ordered communities but the density of connections decreases with a
community index

Network Analysis and Modeling, CSCI 5352
Lecture 16

Prof. Aaron Clauset
5 November 2013

stochastic block matrix ordered communities

Core-periphery structure is a form of ordering on communities, but where we place the additional
constraint that the density of connections decreases with the community index. The following
instance shows only one way to specify this structure, in which each layer of the network connects
to all other layers, but with exponentially decreasing probability. In the stochastic block matrix,
you can see evidence in the upper left corner of the nested structure of this core-periphery network.
In the network instance, the green vertices are the inner core, while the magenta and cyan vertices
are the outer periphery.

stochastic block matrix core-periphery structure

record in a journal the characteristics of the people they associated with at different times of the day. I don’t have
the reference handy, but will try to find it.

5
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Probabilistic Models

Stochastic block models

Power-law degree distribution is achieved by a small community that
tends to connect to other communities

Network Analysis and Modeling, CSCI 5352
Lecture 16

Prof. Aaron Clauset
5 November 2013

Degree heterogeneity.
The networks the SBM generates are Erdős-Rényi random graphs within the groups, and random
bipartite networks between the groups. As such, the degree distribution of the generated networks
are always mixtures of Poisson degree distributions. Each bundle of edges contributes to the degrees
of the vertices it runs between, and so if its density is large, it will contribute many more edges to
the degrees of its end points. We can use this flexibility to create more heavy-tailed degree distri-
butions than we would normally expect from an ER graph by placing a small number of vertices
in a group with large densities to other, larger groups.

The following example illustrates this idea, where we now modify the number of vertices in each
group to be {2, 8, 10, 15, 15}. In the stochastic block matrix, the smallest group, with 2 vertices
(green, in the network image), connects to 0.25 of the other vertices, and thus each of these vertices
has expected degree E[k] = 12, which is about twice as large as the expected degree of the other
vertices. (Do you see how to calculate E[k]?)

10
0

10
1

10
−2

10
−1

10
0

degree, k

P
r(

K
 ≥

 k
)

stochastic block matrix heterogeneous degrees degree distribution

Directed or undirected.
As a final comment, the SBM can naturally handle directed networks, by relaxing the previous
assumption that the stochastic block matrix be symmetric. In this way, the probability of an
edge running from u→ v can be different from the probability of an edge running in the opposite
direction, from v → u.

2 At home

1. Read Chapter 8 (pages 359–418) in Pattern Recognition

2. Next time: fitting block models to data

6
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Probabilistic Models

Stochastic block models

SBM can naturally handle directed networks
We relax the previous assumption that M is symmetric
In this way the probability of a link running in one direction is
different of the probability that a link runs in the opposite direction
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Probabilistic Models

SBM: Inference

Given a choice of 𝑘 and an observed network 𝐺 we can use the SBM
to infer the model parameters
I.e. we infer the vector of group assignments s and the stochastic
block matrix M

The simplest method is to use MLE
We aim to select s and M that maximize the likelihood of observing
the data
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Probabilistic Models

Fitting an SBM

𝑃(𝐺|M, s) = ∏
𝑖,𝑗

𝑃(𝑖, 𝑗|M, s)

= ∏
(𝑖,𝑗)∈𝐸

𝑃(𝑖, 𝑗|M, s) ∏
(𝑖,𝑗)∉𝐸

(1 − 𝑃(𝑖, 𝑗|M, s)) (45)

For a simple undirected graph the product contains (𝑛
2) terms
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Probabilistic Models

Fitting an SBM

For each of 𝑘 × 𝑘 blocks with 𝑢 ≠ 𝑣 holds
The number of potential links is given by 𝑛𝑢𝑣 = 𝑛𝑢𝑛𝑣 where 𝑛𝑢 and
𝑛𝑣 are the number of nodes in block 𝑢 and 𝑣 respectively
𝑀𝑢𝑣 is the probability of a link between nodes from block 𝑢 and 𝑣
The number of links is binomially distributed r.v. with parameters 𝑛𝑢𝑣
and 𝑀𝑢𝑣
If the number of observed links is 𝑚𝑢𝑣 then the MLE for that block is
given by

MLE for a single block (𝑢 ≠ 𝑣)

�̂�𝑢𝑣 = 𝑚𝑢𝑣
𝑛𝑢𝑣

(46)
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Probabilistic Models

Fitting an SBM

For each of 𝑘 blocks with 𝑢 = 𝑣 holds
The number of potential links for a simple undirected network is given
by 𝑛𝑢𝑢 = (𝑛𝑢

2 )
Keeping this in mind the MLE for diagonal blocks is again given by

MLE for a single block

�̂�𝑢𝑣 = 𝑚𝑢𝑣
𝑛𝑢𝑣

(47)
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Probabilistic Models

Fitting an SBM

Now we substitute MLEs for 𝑀𝑢𝑣 into the likelihood function for the
complete network

Likelihood for an SBM

𝑃(𝐺|M, s) = ∏
(𝑖,𝑗)∈𝐸

𝑀𝑠𝑢,𝑠𝑣
∏

(𝑖,𝑗)∉𝐸
(1 − 𝑀𝑠𝑢,𝑠𝑣

)

= ∏
𝑢,𝑣

𝑀𝑚𝑢𝑣𝑢𝑣 (1 − 𝑀𝑢𝑣)(𝑛𝑢𝑣−𝑚𝑢𝑣)

= ∏
𝑢,𝑣

(𝑚𝑢𝑣
𝑛𝑢𝑣

)𝑚𝑢𝑣(1 − 𝑚𝑢𝑣
𝑛𝑢𝑣

)(𝑛𝑢𝑣−𝑚𝑢𝑣) (48)
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Probabilistic Models

Fitting an SBM

Log-likelihood is then given by:

Likelihood for an SBM

ℒ = ∑
𝑢,𝑣

(𝑚𝑢𝑣𝑙𝑛( 𝑚𝑢𝑣
𝑛𝑢𝑣

) + (𝑛𝑢𝑣 − 𝑚𝑢𝑣)𝑙𝑛(1 − 𝑚𝑢𝑣
𝑛𝑢𝑣

))

= ∑
𝑢,𝑣

(𝑚𝑢𝑣𝑙𝑛(𝑚𝑢𝑣) + (𝑛𝑢𝑣 − 𝑚𝑢𝑣)𝑙𝑛(𝑛𝑢𝑣 − 𝑚𝑢𝑣) − 𝑛𝑢𝑣𝑙𝑛(𝑛𝑢𝑣)) (49)
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Probabilistic Models

MLE for an SBM

Now, we are interested in s that maximizes ℒ
As before, one possibility is to maximize ℒ with Kernighan-Lin
algorithm
Another possibility would be sampling (Markov Chain Monte Carlo)
E.g. random selection of nodes to move from one group to another
Rejection of moves that decrease ℒ
After sufficiently large number of movements we find the maximum of
ℒ
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Probabilistic Models

MCMC: Simulated annealing

MCMC methods originate from Metropolis procedure
Originally, efficient simulation of a collection of atoms in equilibrium
at a specific temperature
In each step of the algorithm you give a small displacement to an
atom
This results in the change of the energy: Δ𝐸
If Δ𝐸 ≤ 0 then we accept the movement
Otherwise we accept it with the probability 𝑃(Δ𝐸) = 𝑒

−∆𝐸
𝑘𝑇
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Probabilistic Models

MCMC: Simulated annealing

𝑘 Boltzmann constant and 𝑇 is the temperature
By repeating the step many times we simulate the thermal motion of
atoms
The system evolves into the state of the minimal energy (Boltzmann
distribution)
Using the cost function instead of energy we generate a population of
configurations for a given optimization problem
E.g. the cost function in our case would be −𝑄 or −ℒ
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Probabilistic Models

MCMC: Simulated annealing

𝑇 is a control parameter
At high temperatures you observe gross features of the system
At lower temperatures we develop fine details
Simulated annealing does exactly this: it iterates over the
temperatures
Starts with a higher temperature, and after reaching a steady state
lowers the temperature and repeats the process

Denis Helic (ISDS, TU Graz) NetSci December 5, 2018 118 / 134



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Probabilistic Models

MCMC: Simulated annealing

Atom movements in case of community detection are movements of
nodes from one group into other
Thus, you start with a random division and calculate −𝑄 or −ℒ
You move at random a single node from one group into another
Calculate the difference in the objective function and accept if the
difference is negative
Otherwise accept with the probability from above
Then lower the temperature and repeat: http://www.nature.com/
nature/journal/v433/n7028/full/nature03288.html
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Probabilistic Models

Simple example
Network Analysis and Modeling, CSCI 5352
Lecture 17

Prof. Aaron Clauset
7 November 2013

Lgood = 0.001875 . . . Lbad = 0.000244 . . .

Mgood red blue

red 3/3 1/9
blue 1/9 3/3

Mbad red blue

red 4/6 2/8
blue 2/8 1/1

1.4 Choosing the number of groups k

Recall that we fixed k the number of groups. In many applications, we would like to allow k to
vary and thus decide whether some choice k′ > k is better.

Because k determines the “size” of the model, allowing k to vary presents a difficulty: the larger
a value of k we choose, the more parameters we have in M , which may lead to over fitting. In
the limit of k = n, every vertex is in a group by itself, the matrix M becomes identical to the
adjacency matrix A and the likelihood is maximized at L = 1. That is, the model has memorized
the data exactly. Thus, as we increase k, the SBM distribution over networks becomes increasingly
concentrated around the empirically observed network G.

Thus, the SBM has a downside relative to modularity maximization, which had no free parameter
controlling its model complexity.2 There are, however, statistically principled ways of choosing k,
but these require additional steps as increasing k directly increases the number of parameters in the
model, which increases the risk of over fitting the data. A method for regularization or complexity
control is thus necessary in order to penalize larger models for their additional flexibility. That is,
we would only want to use a larger model (larger k) if the additional flexibility was statistically
warranted. Popular choices for regularization include Bayesian marginalization, Bayes factors,
various information criteria (BIC, AIC, etc.), minimum description length (MDL) approaches, and
likelihood ratio tests. We will not cover any of these techniques here.

2The downside is not as great as you may imagine, however, as the modularity function has a built in preference
for modules with certain characteristics, which the SBM lacks.

4

Figure: “Good” likelihood
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Probabilistic Models

Simple exampleNetwork Analysis and Modeling, CSCI 5352
Lecture 17

Prof. Aaron Clauset
7 November 2013

Lgood = 0.001875 . . . Lbad = 0.000244 . . .

Mgood red blue

red 3/3 1/9
blue 1/9 3/3

Mbad red blue

red 4/6 2/8
blue 2/8 1/1

1.4 Choosing the number of groups k

Recall that we fixed k the number of groups. In many applications, we would like to allow k to
vary and thus decide whether some choice k′ > k is better.

Because k determines the “size” of the model, allowing k to vary presents a difficulty: the larger
a value of k we choose, the more parameters we have in M , which may lead to over fitting. In
the limit of k = n, every vertex is in a group by itself, the matrix M becomes identical to the
adjacency matrix A and the likelihood is maximized at L = 1. That is, the model has memorized
the data exactly. Thus, as we increase k, the SBM distribution over networks becomes increasingly
concentrated around the empirically observed network G.

Thus, the SBM has a downside relative to modularity maximization, which had no free parameter
controlling its model complexity.2 There are, however, statistically principled ways of choosing k,
but these require additional steps as increasing k directly increases the number of parameters in the
model, which increases the risk of over fitting the data. A method for regularization or complexity
control is thus necessary in order to penalize larger models for their additional flexibility. That is,
we would only want to use a larger model (larger k) if the additional flexibility was statistically
warranted. Popular choices for regularization include Bayesian marginalization, Bayes factors,
various information criteria (BIC, AIC, etc.), minimum description length (MDL) approaches, and
likelihood ratio tests. We will not cover any of these techniques here.

2The downside is not as great as you may imagine, however, as the modularity function has a built in preference
for modules with certain characteristics, which the SBM lacks.

4

Figure: “Bad” likelihood
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Probabilistic Models

How many groups?

What happens if we do not fix the number of groups 𝑘?
How does likelihood behave if we increase or decrease 𝑘?
The larger 𝑘 we take the more parameters we have in M

More parameters mean a better likelihood and a better fit
However, there exists a danger of overfitting
I.e. we fit very well to a given instance of network but are not able to
generalize to other instances
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Probabilistic Models

How many groups?

In extreme case if 𝑘 = 𝑛, every node is in group for itself
The number of potential links to any other group is always 1
Now, MLE of a binomial for each block equals 𝑚𝑢𝑣

𝑛𝑢𝑣

We have 𝑛𝑢𝑣 = 1, ∀𝑢 ≠ 𝑣
We also have 𝑚𝑢𝑣 = 0 if there is no link between the groups and
𝑚𝑢𝑣 = 1 if there is a link
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Probabilistic Models

How many groups?

MLE for 𝑀𝑢𝑣 is either 0 (no link) or 1 (link)
In fact we obtain the adjacency matrix → the model has memorized
the data exactly and can not generalize
The likelihood is in this case maximal and equals 1
In such situations we typically penalize the increased number of
parameters
Regularization, complexity control, penalized likelihood, etc.
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Probabilistic Models

An alternative SBM

We model the number of links between any pair of nodes as a Poisson
r.v. with parameter 𝜆 = 𝑀𝑢𝑣, where 𝑢 and 𝑣 are types of two nodes
in question
This approximation works quite well if 𝑀𝑢𝑣 are small, which they are
for sparse networks
This approximation simplifies the calculation of likelihood

Likelihood for a Poisson SBM

ℒ(𝐺|s) = ∑
𝑢,𝑣

𝑚𝑢𝑣𝑙𝑛𝑚𝑢𝑣
𝑛𝑢𝑣

(50)

Denis Helic (ISDS, TU Graz) NetSci December 5, 2018 125 / 134



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Probabilistic Models

Poisson SBM

By adding and dividing with a number of nodes and links and by
dropping irrelevant constants we get the following equation:

Likelihood for a Poisson SBM

ℒ(𝐺|s) = ∑
𝑢,𝑣

𝑚𝑢𝑣
2𝑚 𝑙𝑛𝑚𝑢𝑣/2𝑚

𝑛𝑢𝑣/𝑛2 (51)
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Probabilistic Models

Poisson SBM

Now imagine that we choose a link uniformly at random from the
network
What is the probability that one end of the link will be of type 𝑢 and
another of type 𝑣?
𝑃(𝑟, 𝑠) = 𝑚𝑢𝑣

2𝑚
Now imagine that we select two nodes uniformly at random from the
network (and create a link between them)
What is the probability that node will be of type 𝑢 and another of
type 𝑣?
𝑄(𝑟, 𝑠) = 𝑛𝑢𝑣

𝑛2
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Probabilistic Models

Poisson SBM

Now we can write the likelihood as:

Likelihood for a Poisson SBM

ℒ(𝐺|s) = ∑
𝑢,𝑣

𝑃(𝑢, 𝑣)𝑙𝑛 𝑃(𝑢, 𝑣)
𝑄(𝑢, 𝑣) (52)
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Probabilistic Models

Information-theoretic perspective on SBM

This is the Kullback-Leibler divergence between 𝑃(𝑢, 𝑣) and 𝑄(𝑢, 𝑣)
It measures the expected number of extra bits required to encode 𝑢
and 𝑣 if we use 𝑄 (null-model) instead of a true model 𝑃
Intuitively, it measures how far is 𝑃 from 𝑄
The most likely assignments under the Poisson SBM are those
assignments that require the most information to describe the
network starting from a model that does not have group structure
In this case random graph model, or Erdös-Renyi model
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Probabilistic Models

Difference between observation and expectation

We already have had this before!
We constructed an objective function which measures the difference
between the observed quantity and the expected value of the same
quantity under an appropriate null model
Modularity!

𝑄 = 1
2𝑚 ∑

𝑖𝑗
(𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚 )𝛿(𝑐𝑖, 𝑐𝑗) (53)
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Probabilistic Models

Difference between observation and expectation

However, modularity incorporated degree sequence into the null model
A random graph has Poisson distribution of degrees
We typically observe power-law distributions
This leads to Degree-Corrected Stochastic Block Model
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Probabilistic Models

Degree-corrected SBM

We model the number of links between any pair of nodes as a Poisson
r.v. with parameter 𝜆 = 𝜃𝑖𝜃𝑗𝑀𝑢𝑣, where 𝑢 and 𝑣 are types of two
nodes in question, and 𝜃𝑖 is the probability that a link to a particular
group lands on node 𝑖
Likelihood is then given by:

Likelihood for a Poisson SBM

ℒ(𝐺|s) = ∑
𝑢,𝑣

𝑚𝑢𝑣𝑙𝑛 𝑚𝑢𝑣
𝜅𝑢𝜅𝑣

(54)

𝜅𝑢 is the sum of degrees in the group 𝑢
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Probabilistic Models

Degree-corrected SBM

Again, by adding and dividing with a number of nodes and links and
by dropping irrelevant constants we get the following equation:

Likelihood for a degree-corrected SBM

ℒ(𝐺|s) = ∑
𝑢,𝑣

𝑚𝑢𝑣
2𝑚 𝑙𝑛 𝑚𝑢𝑣/2𝑚

(𝜅𝑢/2𝑚)(𝜅𝑣/2𝑚) (55)
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Probabilistic Models

Information-theoretic perspective on degree-corrected SBM

Again, this is the Kullback-Leibler divergence between the observed
model and the null-model
However, in this case the null-model is a random graph but with
correct degree sequence
The most likely assignments under the degree-corrected SBM are
those assignments that require the most information to describe the
network starting from a model that does not have group structure but
have the same degree sequence
This is exactly the modularity
Thus, there is a strong analogy between fitting degree-corrected SBM
and maximizing modularity
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