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Dynamical Systems

Definition of dynamical systems

@ We now first focus now on dynamical systems in a non-network
context

@ We also concentrate on the deterministic systems of continous
real-valued variables evolving in continous time ¢

A simple example is a system described by a single variable x(t)

The variable evolves according to a first-order differential equation:

dx
F =X=f)

Henceforth, we will denote the time derivative of x with X
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Dynamical Systems

Definition of dynamical systems

@ f(x) is some specified function that describes the behavior of x
e Typically we also have initial conditions (for an initial value problem)
@ The value x(ty) at some initial time ¢,

@ For example, the RC circuit from the electrical engineering
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Dynamical Systems

Example: RC Circuit

i

o
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Dynamical Systems

Example: RC Circuit

@ Let us write the equations (Kirchhoff's voltage law)

@ As we go around the circuit the sum of voltage equals zero:

Q
_Vin+RI+E:0
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Dynamical Systems

Example: RC Circuit

@ The change of electrical charge in time is the electrical current:
Q=1

N _Vin Q
Q=fQ=-2-=

@ And we might have an initial condition: Q(0) = 0 (capacitor is empty
in the beginning)
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Dynamical Systems

Definition of dynamical systems

@ We can have dynamical systems with two variables:
X1 = fi(x,x2)

Xy = fo(xq,%)

@ We can extend this approach to even more variables
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Dynamical Systems

General framework

@ A dynamical system with n variables:

5(1 = fl(xl,...

5Cn = fn(xl,...
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Dynamical Systems

General framework

@ We might have also the right side dependence on t, e.g:

X1 =f1(xq,1)

@ However, we can easily rewrite this equation in one without
dependence on t, but with one extra variable
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Dynamical Systems

General framework

X2:t =x2=1

@ And we also have: x,(0) =0

X1 = fi(xg, %)
X falxy,xp) =1
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Dynamical Systems

General framework

@ Another extension would be to consider systems governed by higher
derivatives

@ It turns out that these can always be reduced to simpler cases
@ However, we need to introduce extra variables

@ For example, damped harmonic oscillator
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Dynamical Systems

Example: Damped harmonic oscillator

Spring
force
~—  Equilibrium
osition
bod
X + Linear
e -, damping
v force
viscous
damping

* Velocity
v
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Dynamical Systems

Example: Damped harmonic oscillator

@ Let us write the equations (Newton's second law of motion)

>

o F =mi
. d%x
[+ ] = = —
a X e
e U =X

mix = —cx — kx

mi+cx+kx=0
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Dynamical Systems

Example: Damped harmonic oscillator

@ Now let us define: x; = x and x, = %

@ This implies X1 = x»

MmXy + cxy + kxqy =0

X1 = X
) k c
X = ——X1— —X
2 m 1 m 2
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Dynamical Systems

General framework

@ The examples were all examples of linear systems because all of the
x; on the right hand side are to the first power only

@ Otherwise the systems are nonlinear
@ Nonlinear terms are products, powers, e.g. X1X5, x%, and so on

@ Further nonlinear terms are (nonlinear) functions of x;, e.g. sinx;, or
logx;, and so on

@ With nonlinearity the study of even such simple dynamical systems
covers a broad range of interesting scientific situations
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Dynamical Systems

Exponential growth/decay equation

@ Linear systems with a single variable exhibit exponential growth /decay
behavior

@ For example exponential growth equation

x =kx

@ Where k > 0 is the growth rate
@ We might have the following initial condition: x(0) = x,
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Dynamical Systems

Exponential growth/decay equation

@ Such simple systems can be solved analytically by separating variables
and integrating

dx
rr
d
2 ki
X

& -
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Dynamical Systems

Exponential growth/decay equation

@ Solving integrals:

Inx kt +c¢
x = efet = Cekt
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Dynamical Systems

Exponential growth/decay equation

@ The constant C is calculated from the initial conditions

@ For t = 0 we have x(0) = x

@ The final solution

x = xgekt
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Dynamical Systems

Exponential growth/decay equation

20

Exponential Growth, k=1.1

2
t
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Dynamical Systems

Exponential growth/decay equation

@ Similarly exponential decay equation

X = —Ax

@ Where A > 0 is the decay rate

o We might have the following initial condition: x(0) = x
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Dynamical Systems

Exponential growth/decay equation

@ Again, by separating variables, integrating and calculating integration
constants from the initial conditions

@ The final solution:

x = xgeM

Denis Helic (ISDS, TU Graz) NetSci January 11, 2019 23 /104



Dynamical Systems

Exponential growth/decay equation

20 Exponential Decay, A\=—1.2

1.5

x 1.0f
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0
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Dynamical Systems

Problems with analytical solutions

@ In principle, we can always solve the equation from above by
separating the variables and integrating:

dx
dt

x dx' oy
fxoﬂx') -

Il
)
\a
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Dynamical Systems

Problems with analytical solutions

@ In practice, the integral may not exist in the closed form

@ For cases with two or more variables it is not even in principle possible
to find solution in a general case

@ We will see later that for the network cases we typically have n
variables: one variable per node

@ Thus, except in some special cases a full analytical solution is
typically not possible

@ We can of course always integrate equations numerically or simulate

@ But, combining these methods with some geometric and analytical
techniques provides us with more qualitative insight
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Fixed Points

Fixed points

A fixed point is a steady state of the system
Any value of the variable(s) for which the system is stationary

The system does not change over time

Equilibrium
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Fixed Points

Fixed points

@ For example in a system with one variable x a fixed point x* is any
point for which the function f (x) does not change:

f&x*) =0

dx
dt

@ Thus, if in the evolution of the system we reach a fixed point the
system stays there forever

@ This makes =0, and x does not move
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Geometry of fixed points

Vector field

o We plot X vs x, e.g. X = sinx

Vector Field

o S S S S R
-10-9-8-7-6-5-4-3-2-1 12 3 456 7 8 910

0
xT
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Geometry of fixed points

Vector field

The arrows are the vector field
Imagine that an object (e.g.) a car is moving along the x-axis
X is its position in time

X is then its velocity

The velocity varies from place to place according to X = sinx
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Geometry of fixed points

Vector field

5 Vector Field

-2 S R T R R
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@ Where is the object moving when % > 0
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Geometry of fixed points

Vector field

@ Where is the object moving when x > 0
@ To the right

@ Where is the object moving when x < 0
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Geometry of fixed points

Vector field
@ Where is the object moving when x > 0
@ To the right
@ Where is the object moving when x < 0
o To the left
@ Where is the object moving when x =0
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Geometry of fixed points

Vector field

Where is the object moving when X > 0
To the right

Where is the object moving when x < 0
To the left

Where is the object moving when x = 0

Nowhere: it stays in the same place

These are the fixed points
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Geometry of fixed points

Vector field

5 Vector Field

-2 S R T R R
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Geometry of fixed points

Vector field

Two kinds of the fixed points

What will happen if we are at a fixed point, e.g. x = 77 and move
slightly left or right

@ We are attracted back to those fixed points: these are the stable
fixed points

What will happen if we are at a fixed point, e.g. x = 271 and move
slightly left or right

@ We are repelled away from those fixed points: these are the unstable
fixed points
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Geometry of fixed points

Time series: trajectories

Time series: Runge-Kutta method

x(t)

0.0 L L L L I
0
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Geometry of fixed points

Time series: trajectories

Time series: Runge-Kutta method

x(t)

0.5} |
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Time series: trajectories

Time series: Runge-Kutta method
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Geometry of fixed points

Time series: trajectories

Time series: Runge-Kutta method

X(t)

21 i
1l J
0 L L L L L
0 1 2 3 4 5 6
t
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Geometry of fixed points

Vector field: examples

o Find all fixed points and classify their stability:
Q@ i=x2-1
Q@ i=x—-x°
@ RC circuit: Q = ‘;é” - %
Q x =x—cosx
@ X =e*—cosx

Denis Helic (ISDS, TU Graz) NetSci January 11, 2019 39 /104



Logistic Growth

Logistic growth equation

@ The simplest population growth model is the exponential growth

model: N = rN, with r > 0 being the growth rate

@ This model predicts the exponential growth: N = Nye't, where N, is
the population at time t =0

@ Of course, such exponential growth can not go forever

e For population larger then some (positive) carrying capacity K the
growth rate becomes actually negative

@ The death rate is higher than the birth rate
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Logistic Growth

Logistic growth equation

@ To model the effects of overcrowding and limited resources we will
assume that per capita growth rate 37 N decreases when N is
sufficiently large

o A mathematically convenient solution is to assume that per capita
growth rate 3 N decreases linearly with N

N_ N
N=0
N =rN(1 N)
=rNa-x

o This is the logistic growth equation

Denis Helic (ISDS, TU Graz) NetSci January 11, 2019

41/104



Logistic Growth

Vector field: logistic equation

Vector Field: Logistic Equation, r=1.1,K =2

-1 0 1 2 3
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Logistic Growth

Vector field: logistic equation

Vector Field: Logistic Equation, r=3.1,K =2

-1
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Logistic Growth

Time series: logistic equation

Time series: Runge-Kutta method

x(t)
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Logistic Growth

Logistic growth equation

o Logistic growth equation can be solved analytically by separating

variables

dN

—— = rdt

1- NN
dN

f —— = frdt
(1- NN
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Logistic Growth

Logistic growth equation

@ For the integral on the left side we use partial fractions expansion:

1 A B

— = — 4
N N
1-%N N 1-%

N
A—AK+BN =1

ANBA = 1
+(_f)_
1
= B-=- =0
B_l
T K
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Logistic Growth

Logistic growth equation

@ For the integral on the left side we use partial fractions expansion:

1 1 1
T Ny o —
(1- )N N K-N

dN dN ¢ dN
fatgﬁ; | ¥+ =g =N -In&-N)
N

= Ing—x
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Logistic Growth

Logistic growth equation

@ For the right side we have:

jrdt:rt+c

@ Thus, we obtain (with C = ¢):

rt+c

= e'teC = Ce't

Denis Helic (ISDS, TU Graz) NetSci January 11, 2019

48 /104



Logistic Growth

Logistic growth equation

@ Now we solve for N

N
— rt
TN Ce
N = CKe'"t — CNe't
N1+ Ce'ty = CKe'
CKe't

N = —
1+ Ce't
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Logistic Growth

Logistic growth equation

@ The constant C is calculated from the initial conditions

@ For t = 0 we have the initial population N

= C0=C-1
K—Ng
c = Mo
K — Np
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Logistic Growth

Logistic growth equation

@ By substituting C = Klj_lgfo and simplifying:

_ KNoert
B K- NO + Noeﬂ

X

e By dividing with e, rearranging, and dividing with K:
v KN
~ Np+e (K —Np)
Ny

N N
2 et (1-30)

X =

e This is logistic growth curve
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Logistic Growth

Logistic growth curve

2.0

Logistic growth curve; differing N, and r values

= =
=) wn

Fraction of infected individuals =

o
o

Ny =0.01,r=1.1,K =2
Ny =0.01,r =3.1,K =2
Ny =0.10,r =1.1,K =2
Ny =0.10,r =3.1,K =2

0.0
0
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Logistic Growth

Python Notebook

o Check logistic growth examples from python notebook

@ http://kti.tugraz.at/staff/denis/courses/netsci/
dynamics.ipynb
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Linear Stability Analysis

Fixed points

@ Recollect: In a system with one variable x a fixed point x* is any
point for which the function f (x) does not change:

f(x*)=0

dx
dt

@ Thus, if in the evolution of the system we reach a fixed point the
system stays there forever

@ This makes =0, and x does not move
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Linear Stability Analysis

Fixed points

@ In a two variable system, a fixed point is a pair of values such that:

fery =0
gy = 0
@ This makes % = % =0, and x and y do not move
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Linear Stability Analysis

Fixed points: example

@ The logistic model: N = f(N) = rN(1 — %)

N(1 Ny -
7’(—?)—
N =0

N =
@ N = 0 there is no one in the population and no reproduction is

possible

@ N = K the population size reached its limit
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Linear Stability Analysis

Linearization

@ It is easy to find fixed points

o It is straightforward to analyze the dynamics of the system in the
vicinity of the fixed points

@ Let us take a look at one-variable system

@ We represent the value of x close to x* by: x = x* + €, for some
small e:

dx_de_ 4 )
dt_dt_fx €
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Linear Stability Analysis

Linearization

@ Taylor expansion of the right-hand side about the point x = x*:

d
d—i =f(x*) +¢ef' (x*) + O(€?)

@ f' is the derivative of f with respect to its arguments
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Linear Stability Analysis

Linearization

o Neglecting terms of order O(e?) (because € is small)
@ Also, f(x*) =0

de -
E=ef(x>
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Linear Stability Analysis

Linearization

o Linear first-order differential equation which can be solved by
separating variables:

et) = e(0)eM
A= fr)

@ A is just a number, which we calculate by evaluating f’ at fixed point
x>(-
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Linear Stability Analysis

Linearization

@ Depending on the sign of A we may have attracting fixed and
repelling fixed points

e E.g. if A <0 points close to the fixed point are attracted to it

e If A > 0 points close to the fixed point are repelled away

o If A = 0 points close to the fixed point are neither attracted nor
repelled

@ This kind of analysis is called linear stability analysis
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Linear Stability Analysis

Fixed points: Logistic model

_ N _ " \2
f(N) = VN(l—E)—VN—KN
fN) = r=2¢N
N 0
f(NG) r
N3 K
[N = —r

e N* =0, repelling fixed point (exponential growth in the beginning)
e N* =1, attracting fixed point (saturation in the end)
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Linear systems with two variables

Two-dimensional linear system

@ A two-dimensional linear system is of the form:
X1 = ax;+bx,
X, = cxq+dx,

@ a,b,c,d are parameters
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Linear systems with two variables

Two-dimensional linear system

@ In matrix form:

x = Ax

Denis Helic (ISDS, TU Graz) NetSci January 11, 2019

64 /104



Linear systems with two variables

Two-dimensional linear system

@ The system is linear also in another sense
e If x; and x, are solutions so is any linear combination: c1x; + ¢;X»
e x=0whenx =0

o x* =0 is always a fixed point for any choice of A
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Linear systems with two variables

Solutions for two-dimensional linear systems

@ Generalizing from the one-dimensional linear system, the solutions for
a two-dimensional linear systems will be of the form:

x(t) = eMv

@ This corresponds to an exponential growth/decay alongside the line
spanned by the vector v
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Linear systems with two variables

Solutions for two-dimensional linear systems

@ Let us find the solutions

o We substitute x(#) = eMv into x = Ax

AeMy = AeMv = eMAv

e Canceling eM we get:
Av =Av
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Linear systems with two variables

Solutions for two-dimensional linear systems

@ The straight line solutions are eigenvectors of A
@ The growth rate/decay is given by the eigenvalues of A

@ If the corresponding eigenvalue is smaller than zero we have an
exponential decay alongside that eigenvector

o If the corresponding eigenvalue is greater than zero we have an
exponential growth alongside that eigenvector

o Larger eigenvalue is a fast eigendirection, smaller eigenvalue is a slow
eigendirection

@ These are eigensolutions
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Linear systems with two variables

Solutions for two-dimensional linear systems

o If A; # A, the corresponding eigenvectors v and v, are linearly
independent

@ Then any initial condition x; can be written as linear combination of
eigenvectors:

Xg = C1Vq + CrVo
@ The general solution for x(t):

x(t) = cieMtvy + cpet2tv,

@ It is a linear combination of solutions to x = Ax, i.e. it is itself a
solution

o It satisfies the initial conditions: it is the only solution
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Flows in two-dimensional linear systems
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Linear systems with two variables

Flows in two-dimensional linear systems

If A is not symmetric eigenvectors are not orthogonal

This transforms the axes, but the behavior is similar

A new interesting behavior might emerge if the eigenvalues are
complex

This gives an oscillation around a fixed point, which either grows or
decays

It spirals inwards or outwards around the fixed point

In certain cases there is a stable oscillatory behavior: limit cycle
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Linear systems with two variables

Example: Romeo and Juliet

@ Romeo and Juliet are in a love affair (Strogatz 1998)

@ Let us define:

R(t)
J(t)

Romeo's love/hate for Juliet in time t

Juliet’s love/hate for Romeo in time ¢

@ Positive values of R and | signify love, negative hate.
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Linear systems with two variables

Example 1: Romeo and Juliet

@ Romeo and Juliet love only themselves:

@ a and b are positive

@ The initial conditions: x(0) = (RO)
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Linear systems with two variables

Example 1: Romeo and Juliet

@ The eigenvalues of a diagonal matrix are on the diagonal: A{ =a,
Az = b
@ The eigenvectors of a diagonal matrix form the basis of the Euclidean

1 0
space: vi = <0> vy = (1>

@ The solution is of the form:

x(t) = cqe™ ((1)) + cyebt (?)
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Linear systems with two variables

Example 1: Romeo and Juliet

@ From initial conditions:

(2ol
x(0) =Ry (é) +Jo (2)
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Linear systems with two variables

Example 1: Romeo and Juliet

@ The final solution:

= ()1 ()

R(t) = Rye™
J(t) = Joe

@ They evolve independently (Romeo and Juliet are decoupled)
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Linear systems with two variables

Example 1: Romeo and Juliet

10 Time series: Romeo (R, =1.0,a=1.1), Juliet (J, =1.0,b=1.2)

— Romeo
— Juliet

x(t)
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Linear systems with two variables

Example 1: Romeo and Juliet

Time series: Romeo (R, =—1.0,a=1.1), Juliet (J, =1.0,b=1.2)

— Romeo
— Juliet

x(t)
o
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Linear systems with two variables

Example 1: Romeo and Juliet

10, Time series: Romeo (R, =—1.0,a=1.1), Juliet (J, =-1.0,b=1.2)
— Romeo
— Juliet
5L 4
5 O
_st 1
~10 H I I
0.0 0.5 1.0 15 2.0
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Linear systems with two variables

Example 2: Romeo and Juliet

@ Romeo and Juliet react only to each other, but not to themselves:

@ a and b are positive

@ The initial conditions: x(0) = (RO)
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Linear systems with two variables

Example 2: Romeo and Juliet

@ The eigenvalues: A; = \/E, Ay = —\/E

a a
@ The eigenvectors: v = (\/1;) vy = (@)
@ The solution is of the form:

x(t) = cle(m” ( %) + cze(m” <\/7)

1

(SRS

—_
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Linear systems with two variables

Example 2: Romeo and Juliet

@ From initial conditions:

<0 =(it) = () == (%)

S

1 |[b a 1 |b
x(0) = E(J;RO +Jo) (‘/1;) + E(\I;Ro —Jo) (_
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Linear systems with two variables

Example 2: Romeo and Juliet

@ The final solution:

x(t) = —(\I7R0 +Jo e(‘/_>t( 15) + %(\ERO —]0)e<—\/E)t(

Denis Helic (ISDS, TU Graz)
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Linear systems with two variables

Example 2: Romeo and Juliet

@ Possibilities:

Q@ Ry, >0, Jp > 0 then the dynamics evolves into a love fest
@ R, <0, Jy <0 then the dynamics evolves into a war

© Ry+ \/%]0 > 0 then the dynamics evolves into a love fest
Q Ry+ \/EJO < 0 then the dynamics evolves into a war
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Linear systems with two variables

Example 2: Romeo and Juliet

10 Time series: Romeo (R, =1.0,a=1.1), Juliet (J, =1.0,b=1.2)

— Romeo
— Juliet

x(t)
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Linear systems with two variables

Example 2: Romeo and Juliet

10, Time series: Romeo (R, =—1.0,a=1.1), Juliet (J, =-1.0,b=1.2)
— Romeo
— Juliet
5L 4
5 O
_st 1
~10 H I I
0.0 0.5 1.0 15 2.0
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Linear systems with two variables

Example 2: Romeo and Juliet

Time series: Romeo (R, =1.0,a=1.1), Juliet (J; =—1.0,b=1.2)
. : . . —

— Romeo
— Juliet

x(t)
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Linear systems with two variables

Example 2: Romeo and Juliet

Time series: Romeo (R, =1.0,a=1.1), Juliet (J, =—1.5,b=1.2)

— Romeo
— Juliet

x(t)
|
&

0.0 0.5
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Linear systems with two variables

Example 3: Romeo and Juliet

@ The more Romeo loves Juliet, the more Juliet wants to run away and

hide:

= g]
J = -IR

=5 4)

@ The initial conditions: x(0) = (1;0)
0

@ a and b are positive
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Linear systems with two variables

Example 3: Romeo and Juliet

@ The eigenvalues: A; = ivab, Ay = —ivab

. la . |a
@ The eigenvectors: v; = (l 5) vy = (l\/;)

-1 1
@ The solution is of the form:

x(t) = Cle(i‘/%)t (i\/g) + Cze<_im” (i %)
-1 1
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Linear systems with two variables

Example 3: Romeo and Juliet

@ The final solution can be obtained by using Euler formula
(e = cosx + isinx):

R(t) = ROCOS((\/%)f) +10\E5i”<<\@)f>
b
Jit) = ]Ocos((\/%)t) — Ro\Esin((\/%)t)

@ Never-ending cycle of love and hate
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Linear systems with two variables

Example 3: Romeo and Juliet

20 Time series: Romeo (R, =1.0,a=1.1), Juliet (J, =1.0,b=-1.2)

— Romeo
1.5- — Juliet |

1.0¢ .|

0.5} ; ; : 4

0.0

x(t)

—0.5F i L i 1

—-1.0+ 4
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Linear systems with two variables

Python Notebook

@ Check Romeo and Juliet examples from python notebook

@ http://kti.tugraz.at/staff/denis/courses/netsci/
dynamics.ipynb

Denis Helic (ISDS, TU Graz) NetSci January 11, 2019 93 /104


http://kti.tugraz.at/staff/denis/courses/netsci/dynamics.ipynb
http://kti.tugraz.at/staff/denis/courses/netsci/dynamics.ipynb

Linear stability analysis for multi-variable systems

Linearization with two variables

@ For a fixed point x* and y*:

fx*y*) = 0
gx*,y*) = 0

@ We represent points close to the fixed point as x = x* + €, and
y=y"+ey

Denis Helic (ISDS, TU Graz) NetSci January 11, 2019

94 /104



Linear stability analysis for multi-variable systems

Linearization with two variables

@ As before we expand about the fixed point, performing a double
Taylor expansion

dx de, . .
E = W —f(x + €Y + €y)
of

f(x*'y*) + €x (a_x>

4 0(ed) + 0ed)
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Linear stability analysis for multi-variable systems

Linearization with two variables

@ Ignoring all higher-order terms in the expnasion:

de, of
T\

x:x: x:xz
y=y y=y
d& = € a_g + e _g
dt T\ ox Jx=x Y\ Oy Ja=x
y=y y=y
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Linear stability analysis for multi-variable systems

Linearization with two variables

@ In the matrix form:
de ]
— = Je
dt
. . € . . .
@ € is the vector with ( x) and J is the Jacobian matrix evaluated at

€y
the fixed point:

o of
ox 9y
Jdg  dg
ox  dy
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Linear stability analysis for multi-variable systems

Linearization with two variables

@ Now we have a linear system and solve it in the usual way

@ However, with the Linearization we are able only to analyze the
system nearby fixed points

@ Further away the behavior may change

@ For systems with three and more variables we apply the same
approach

@ The rank of vectors and matrices increases with the increasing
number of variables
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Linear stability analysis for multi-variable systems

Linearization: example

@ Find all the fixed points of the system:

—x + x3
y = -2y

@ Use linearization to classify their stability
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Numerical Solutions

Solving equations on the computer

@ We start with the definition of derivative:

o Ax
X = A0 A

o Now if At is sufficiently small we can approximate x with %
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Numerical Solutions

Solving equations on the computer

@ We iterate over time:

Ax
E = f(xn)
Xn+l — Xp
— = f{x)
At
Xpp1 = X, +f(x,)At

@ This is Euler method with local error O(Atz) and global error O(At)
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Numerical Solutions

Solving equations on the computer

Because of the error you want to choose small At
Also: danger of numerical instability if At is not small enough
But you don’t want to choose too small At

Numerical imprecision

Too many iterations
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Numerical Solutions

Solving equations on the computer

Better solution: alternate time stepping schemes

Averaging derivative over At

o With Euler method we approximate with the derivative at the
beginning of the interval

o E.g. improved Euler method:

.72'”_’_1 = X, +f(xn)At

1
Xyl = Xyt E[f(xn) +f(3?n+1)]At

Global error: O(Atz) but more calculations

Denis Helic (ISDS, TU Graz) NetSci January 11, 2019 103 /104



Numerical Solutions

Solving equations on the computer

@ Runge-Kutta method:

»
e
Il

fx,)At
1
ky = f(x,+ Ekl)At

1
k3 = f(xn + Ekz)At
k4 = f(xn + k3)At

1
xn+1 = xn+g(k1+2k2+2k3+k4)
@ Global error: O(At4) but even more calculations
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