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Basic Statistics

Introduction

Network Type n m < S 7 x C
Film actors Undirected 449913 25516482 113.43 0980 3.48 23 020
Company directors  Undirected 7673 55302 1444 0876 460 - 059
Math coauthorship  Undirected 253330 96489 392 082 757 - o1
Physics coauthorship ~ Undirected. 52900 245300 927 0838 619 - 045

 Biologycoauthorship  Undirected 1520251 11803064 1553 0918 492 - 0088

S Telephonecall graph ~ Undirected ~ 47000000 80000000 316 21
Email messages Directed 59812 86300 144 0952 495 15/20
Email addressbooks  Directed 16851 57029 338 0590 522 - a7
Student dating Undirected 573 477 166 0503 1601 - 0005
Sexual contacts Undirected 2810 32

5 WWW nd.edu Directed 269504 T7185 555 1000 1127 21/24 0al

2 WWW AlaVista Directed 203549046 1466000000 720 0914 1618 21/27

£  Citation network Directed 783339 6716198 857 3.0/~

& RogetsThesaurus  Directed 1022 5103 499 0977 487 - o

S Word co-occurrence _ Undirected 460902 16100000 6696 1000 27
Internet Undirected 10697 3993 568 1000 331 25 0035

T Powergrid Undirected 1941 6504 267 1000 1899 - 00

& Train routes Undirected 587 19603 6679 1000 216 -

S Software packages  Directed 1439 1723 120 0998 242 16/14 0070

2 software classes Directed 1376 2213 161 1000 540 - 003

£ Electronic circuits Undirected 24097 53248 434 1000 1105 30 0010
Peer-to-peer network _ Undirected 880 129 147 0805 428 21 0012

" Metabolicnetwork  Undirected 765 3686 964 099% 256 22 0.0%

3 Proteininteractions  Undirected 2115 2240 212 0689 680 24 0072

®  Marine food web Directed 134 598 446 1000 205 - o016

£ Freshwater food web  Directed 92 997 1084 1000 190 - 020
Neural network Directed 307 2359 768 0967 397 - a1

Table 8.1: Basic statistics for a number of

indicate unavailable data.
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0.208
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0.157

—0.189

—0.226

Ref(s).
16,323
88,253
89,146
234,236
234,236

323,328

The properties

NetSci

are: type of network, directed or undirected; total
number of vertices 7; total number of edges m; mean degree c; fraction of vertices in the largest component S (or the largest weakly
connected component in the case of a directed network); mean geodesic distance between connected vertex pairs £; exponent «
of the degree distribution if the distribution follows a power law (or
graphs); clustering coefficient C from Eq. (7.41); clustering coefficient Cyys from the alternative definition of Eq. (7.44); and the degree
correlation coefficient 7 from Eq. (7.82). The last column gives the citation(s) for each network in the bibliography. Blank entries

if not; in/out-degree exponents are given for directed
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Components

Components

@ In an unidirected network, there is typically a large component that
fills most of the network

o Very often over 90%
@ Sometimes, it is 100%, e.g. the Internet

@ Sometimes it depends also on how we collect data
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Components

Components in a directed network

@ Weakly connected components correspond to components in an
undirected network, i.e. we simply ignore link directions

@ Otherwise, we have strongly connected components with
corresponding in- and out-components

@ Apart from the largest scc we have also a number of smaller ones
with their in- and out-components

@ Typically, all components form a so-called “bow-tie” model
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Components

Components in a directed network
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Figure: Bow-tie model of the Web graph

Denis Helic (ISDS, TU Graz) NetSci November 29, 2020 6/67



Shortest Paths and Small-World Effect

Small-worlds

@ In many networks the typical network distance between nodes is very
small

@ This phenomenon was first observed in the letter-passing experiment

by Milgram

It is called small-world effect

Typically, the average network distance { scales as logn
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Shortest Paths and Small-World Effect

Diameter

@ Sometimes we are also interested in the network diameter

@ The extreme of the distance distribution, i.e. the longest shortest
path in the network

@ In many networks, the core of the network is very dense with the
average network distance scaling as log logn

@ Whereas at the periphery the diameter scales as logn
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Shortest Paths and Small-World Effect

Effective diameter

o Effective diameter, or 90-percentile effective diameter, i.e. 90% of
shortest paths is smaller than the effective diameter

@ Graphs over Time: Densification Laws, Shrinking Diameters and
Possible Explanations by Leskovec et al.

@ The empirical analysis has shown that when the networks grow the
diameter becomes smaller
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Shortest Paths and Small-World Effect

Effective diameter

Effective diameter

Effective dlameter
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Degree Distributions

Degree distributions

@ Frequency distribution of node degrees

@ One of the most fundamental properties of networks

® py is the fraction of nodes in a network that has degree k

@ py is also a probability that a randomly chosen node has a degree k

@ Typically, we visualize a distribution with a histogram
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Degree Distributions

Degree distributions
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Figure: Degree distributions of the Internet graph at the level of autonomous

systems
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Degree Distributions

Degree distributions

Most of the nodes have small degrees: one, two, or three

@ There is a tail to the distribution corresponding to the high-degree
nodes

The plot cuts off but the tail is much longer

The highest degree node is connected to about 12% of other nodes

Such well-connected nodes are called hubs
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Degree Distributions

Degree distributions

@ It turns out that most of the real-world networks have such
long-tailed distributions

Such distributions are called right-skewed

For directed networks we have two distributions

In-degree and out-degree distribution
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Degree Distributions

Degree distributions
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Figure: Degree distributions on the Web, from Broder et al.
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Power Laws

Power laws and scale-free networks
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Figure: Degree distributions of the Internet graph on logarithmic scales
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Power Laws

Power laws

@ The degree distribution on logarithmic scales follows roughly a
straight line

Inpr = —alnk + ¢ (1)

@ « and c are constants

pr = Ck™* (2)

@ C = ¢¢ is another constant
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Power Laws

Power laws

@ Distributions of this form that vary as a power of k are called power
laws

This is a common pattern seen in many different networks

The constant « is called the exponent of the power law

Typical values are in the range: 2 <a <3
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Power Laws

Power-law (Zipf) random variable

Power-law distribution is a very commonly occurring distribution
Word occurences in natural language
Friendships in a social network

Links on the web

PageRank, etc.
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N,
Power-law (Zipf) random variable

ekeN k>1 a>1

@ ((a) is the Riemann zeta function

J(a) = ik‘“
k=1



Power Laws

Power-law (Zipf) random variable

Psogbability mass function of a Zipf random variable; differing o values
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Power Laws

Power-law (Zipf) random variable

%Qbability mass function of a Zipf random variable; differing o values
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Power Laws

Power-law (Pareto) random variable

Power-law distribution is a very commonly occurring distribution
80%-20% rule

Wealth distribution

The sizes of the human settlements

File size of internet traffic, etc.
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N,
Power-law (Pareto) random variable

f(x)={

=
(lx - 1)%/;t > Xmin
0,x < X

a—1

@ « > 1 is the exponent of the power-law distribution

«AO> A« F>r «=)r « =) = o>



Power Laws

Power-law (Pareto) random variable

2.0 PDF of a Pareto random variable; differing a values
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Power Laws

Power-law (Pareto) random variable

10! PDF of a Pareto random variable; differing a values
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Power Laws

Power laws

@ Degree distributions do not follow power law equation over their
entire range

@ For example, for small k we typically observe some deviation
@ Thus, power laws are typically observed in the tail for high degrees

@ Sometimes, there is also deviation in the tail because there is some
cut-off that limits the maximum degree of nodes

o Network with power law degree distributions are called scale-free
networks
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Power Laws

Detecting power laws

@ Another common solution to visualizing power laws is to construct
cumulative distribution function

Pe=) p (3)
K=k

@ Py is the fraction of nodes that have degree k or higher
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Power Laws

Detecting power laws

@ Suppose the degree distribution pj follows power law in the tail

e pp = Ck™*, for k > ky,;,,, for some k,,;,,. Then for k > k,,;,,:

N r— r I— ! C —_ —_
pkzkzkkucjk “dk' = —— k=D (4)
= k

@ Approximation of the sum by the integral is possible if we assume
a« > 1 and is reasonable since the power law slowly varies for large k
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Power Laws

Detecting power laws

@ Thus, cumulative degree distribution is also a power law but with an
exponent & — 1

@ We can visualize the cumulative degree distribution on log-log scales
and look for the straight line behavior

@ This has some advantages over visualizing py

@ E.g. we do not need to bin the histogram and throw away information
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Power Laws

Cumulative degree distributions
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Figure: Cumulative degree distributions on logarithmic scales
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Power Laws

Cumulative degree distributions

o Cumulative degree distribution is easy to calculate

@ The number of nodes greater or equal to that of the rth-highest
degree is r

@ The fraction of nodes with degree greater or equal to that of the
rth-highest degree is r/n and that is Py

@ Thus, we calculate degrees, sort them in descending order and then
number them from 1 to n

r; .
@ These numbers are ranks r; and we plot 7+ as a function of k;
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Power Laws

Cumulative degree distributions
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Table: Example of cumulative degree distribution for degrees {0,1,1,2,2,2,2,3,3,4}
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Power Laws

Cumulative degree distributions

Cumulative distribution have some disadvantages
Successive points on a cumulative plot are not independent
It is not valid to extract the exponent by fitting the slope of the line

E.g. least squares method assumes independence of between the data
points

Also, which line to fit?
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Power Laws

Parameter estimation

@ |t is better to calculate a directly from the data

a=1+N

-1
> In—ki_ J (5)
2

i min

e where, k,,;,, is the minimum degree for which the power low holds and
N is the number of nodes with k > k,,,;,,
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Power Laws

Parameter estimation

@ Statistical error

a—1
N

@ The derivation is based on maximum likelihood techniques

g =

@ Power law distributions in empirical data by Clauset et al.

@ http://tuvalu.santafe.edu/~aaronc/powerlaws/
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Power Laws

Likelihood

@ We observe some data, e.g. number of heads in m experiments with n
coin flips

@ We choose a probabilistic model to describe the dataset
e E.g. a Binomial r.v. with parameters (p,n)

@ p is the probability of heads on a single coin flip

PMF
p(x) = (Z)(l —-p)"p* (7)
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Power Laws

Likelihood

Let us denote with Xy, ..., X,, r.v. associated with our m experiments
Each of them is a Binomial r.v. with parameters (p, n)

They are mutually independent

Independent and identically distributed (i.i.d.)
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o RaerLans
Likelihood

experiments

@ We are interested in probability of observing the results of our m
@ For a single experiment:

p(x;) = (:1)(1 — pyn=Xip¥i

«AO> A« F>r «=)r « =) o>



Power Laws

Likelihood

@ For all m experiments (since experiments are i.i.d. r.v.)

Probability of all experiments

p(xll lxm|p> = 1_[ (:)(1 — p)n_xipxi (9)
i=1 1

@ This probability is called likelihood
@ It is the probability of data given the parameter p

@ Another name is likelihood function (function of parameter p)
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Power Laws

Log-likelihood

@ Typically, we take a logarithm and work with logs since it simplifies

the analysis
Log-likelihood
Lp) = ln(f1 ()@ =P (10)
= i(ln(:) + (n—x)In(1 —p) + x;In(p)) (11)
- iln(i) +ln(p)ixi+ln(l —P)(mn_i:ixi) (12)

v
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Power Laws

Maximum Likelihood Estimation (MLE)

@ Now, we are interested in p that most likely generated the data

@ The data are most likely to have been generated by the model with p
that maximizes the log-likelihood function

@ Setting ”;—’C = 0 and solving for p we obtain the maximum likelihood

estimate
MLE
d.L il & 1 S
dp Pi; fol-p z:ZI Z
_ Zzl X 13y
o= mn El;; (14)
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Power Laws

Parameter estimation

@ We consider the continuous power law distribution

p(x) = 1ol ( - )_a (15)

Xmin Xmin

@ Given a data set with n observations x; > x,,,;,, we would like to know
the value of a that is most likely to have generated the data

Denis Helic (ISDS, TU Graz) NetSci November 29, 2020 43 /67



Power Laws

Parameter estimation

@ The probability that the data are drawn from the model

n

peia) = [ [ 2= ( i )_“ (16)

i=1 Xmin \ Xmin

@ This probability is called likelihood of the data given model
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Power Laws

Parameter estimation

@ The data are most likely to have been generated by the model with «
that maximizes this function

@ Commonly, we work with log-likelihood L

@ L has the maximum at the same place likelihood

L = Inp(xja) = In H a1 ( al ) (17)

i=1 “min Xmin
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Power Laws

Parameter estimation

n
L =nin(a — 1) — ninx,,;,, — (xz In
i=1 Xmin

(18)

@ Setting %%5 = 0 and solving for & we obtain the maximum likelihood
estimate

-1
Y in } (19)
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Power Laws

Properties of power law distributions

@ Normalization

@ The constant C that appears in the power law equation is determined
by the normalization requirement

Y =1 (20)
k=1

@ k™% = oo, for k = 0 and therefore we start at k =1
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Power Laws

Properties of power law distributions

C = =
Yoo kv Ca)

@ ((a) is the Riemann zeta function
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Power Laws

Properties of power law distributions

e Correctly normalized power law distribution for k > 0 and py =0

Pk= T

(23)

@ If the power law behavior holds only for k > k,,;, we obtain (with
{(a,k,,i,) being incomplete zeta function)

k=« k=«
B Zliozk k—ﬂé B g(“/kmin)

min

(24)

Pk
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Power Laws

Properties of power law distributions

@ Alternatively, we can approximate the sum with an integral

1
Co——— = (a— k%! (25)
[ kedk
a—1/ k \ "
pk a kmin (kmin) (26)
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Power Laws

Properties of power law distributions

@ Top-heavy distributions

@ Another interesting property is the fraction of links that connect to
the nodes with the highest degrees

@ For a pure power law W is a fraction of links attached to a fraction P
of the highest degree nodes

W = pa-t (27)
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Power Laws

Properties of power law distributions
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Figure: Lorenz curves for power law networks
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Power Laws

Properties of power law distributions

@ The curves have a very fast initial increase (especially if « is slightly
over 2)

@ This means that a large fraction of links is connected to a small
fraction of the highest degree nodes

@ For example, in-degrees on the Web have k,,;,, =20 and & = 2.2
@ For P = 0.5 we have W = 0.89, for W = 0.5 we have P = 0.015
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Power Laws

Properties of power law distributions

@ These calculations assume perfect power law

@ We can still calculate W and P directly from the data

@ For example, on the Web for W = 0.5 we have P = 0.011

@ Similarly, in citation networks for W = 0.5 we have P = 0.083
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Centralities

Centralities

Eigenvector centralities have often a highly right-skewed distributions

@ Also, variants of the eigenvector centralities such as PageRank exhibit
often power law behavior

E.g. the Internet, WWW, or citation networks
Betweenness centrality also tends to have right-skewed distributions
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Centralities

Centralities
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Centralities

Centralities

@ An exception to this pattern is closeness centrality

@ Values for closeness centralities are limited by 1 at the lower end and
log n at the upper end

@ Therefore their distributions cannot have a long tail

o Typically, closeness centrality distributions are multimodal, whit
multiple peaks and dips
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Clustering Coefficients

Global clustering coefficient

@ The clustering coefficient measures the average probability that two
neighbors of a node are themselves neighbors

@ It measures the density of triangles in the networks

@ In real networks the clustering coefficient takes values in the order of
tens of percent, e.g. 10% or even up to 60%

@ This is much larger than what we would expect if the links are
created by chance, e.g. 0.01%

e E.g. in collaboration networks of physicists expectation is 0.23% but
the real value is 45%

Denis Helic (ISDS, TU Graz) NetSci November 29, 2020 59 /67



Clustering Coefficients

Global clustering coefficient

@ This large difference is indicative of social effects

@ For example, it might be that people introduce the pairs of their
collaborators to each other

@ In social networks this process is called triadic closure

@ An open triad of nodes is closed by the introduction of the last third
link

@ We can study the triadic closure processes directly if we have different
version of datasets in time

e E.g. a study showed that it is much more likely (45 times) for people
to collaborate in future if they had common collaborators in the past
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Clustering Coefficients

Global clustering coefficient

@ In some networks we have the opposite phenomenon
@ The expected value of clustering exceeds the observed one

@ For example, on the Internet we measure 1.2% and the expected
value is 84%

@ Thus, on the Internet we have mechanisms that prevent forming of
triangles

@ On the Web the measured clustering coefficient is of the order of the
expected one
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Clustering Coefficients

Global clustering coefficient

@ It is not completely clear why different types of networks exhibit such
different behaviors in respect to the clustering coefficient

@ One theory connects these observations with the formation of
communities in networks

@ Social networks tend also to have positive degree correlations as
opposed to other types of networks

@ Thus, in social networks homophily and assortative mixing by degree
plays a more important role than in other networks

@ This tends to formation of communities and therefore the clustering
coefficient becomes greater
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Clustering Coefficients

Local clustering coefficient

@ Local clustering coefficient of a node i is the fraction of neighbors of i
that are themselves neighbors

@ In many networks there is a phenomenon that high degree nodes tend
to have lower local clustering

@ One possible explanation for this behavior is that nodes tend to form
highly connected communities

o Communities of low degree nodes are smaller that work as small
disconnected networks, i.e. cliques

@ Probability that higher degree nodes form such huge cliques is rather
small
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Clustering Coefficients

Local clustering coefficient
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Figure: Local clustering as a function of degree on the Internet
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Assortative Mixing

Assortative mixing by degree

@ Assortative mixing by degree can be quantified by the correlation
coefficient r

@ Typically, 7 is not of a large magnitude in real world networks

@ There is clear tendency of social networks to have positive r
(homophily)

e Technological, information, biological networks tend to have negative
r

@ Simple graphs bias: the number of links between high-degree nodes is
limited because they connect to low degree nodes

Social networks: communities
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Assortative Mixing

Network analysis project

Software
C++: SNAP http://snap.stanford.edu/
Python: NetworkX http://networkx.github.io/

Python wrapper for Boost: Graph-Tool
http://graph-tool.skewed.de/

Python, R, C: IGraph https://igraph.org/
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Assortative Mixing

Network analysis project

SNAP: http://snap.stanford.edu/
KONECT: http://konect.uni-koblenz.de/
Dataset of choice

From SNAP or KONECT Web site

Your own dataset
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