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Basic Statistics
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Components

Components

In an unidirected network, there is typically a large component that
fills most of the network
Very often over 90%
Sometimes, it is 100%, e.g. the Internet
Sometimes it depends also on how we collect data
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Components

Components in a directed network

Weakly connected components correspond to components in an
undirected network, i.e. we simply ignore link directions
Otherwise, we have strongly connected components with
corresponding in- and out-components
Apart from the largest scc we have also a number of smaller ones
with their in- and out-components
Typically, all components form a so-called “bow-tie” model

Denis Helic (ISDS, TU Graz) NetSci November 29, 2020 5 / 67



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Components

Components in a directed network

Figure: Bow-tie model of the Web graph
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Shortest Paths and Small-World Effect

Small-worlds

In many networks the typical network distance between nodes is very
small
This phenomenon was first observed in the letter-passing experiment
by Milgram
It is called small-world effect
Typically, the average network distance ℓ scales as log𝑛
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Shortest Paths and Small-World Effect

Diameter

Sometimes we are also interested in the network diameter
The extreme of the distance distribution, i.e. the longest shortest
path in the network
In many networks, the core of the network is very dense with the
average network distance scaling as log log𝑛
Whereas at the periphery the diameter scales as log𝑛
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Shortest Paths and Small-World Effect

Effective diameter

Effective diameter, or 90-percentile effective diameter, i.e. 90% of
shortest paths is smaller than the effective diameter
Graphs over Time: Densification Laws, Shrinking Diameters and
Possible Explanations by Leskovec et al.
The empirical analysis has shown that when the networks grow the
diameter becomes smaller
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Shortest Paths and Small-World Effect

Effective diameter

in the affiliation network: two people are co-authors if there
is at least one paper joined by an edge to each of them.

We studied affiliation networks derived from the five largest
categories in the arXiv (ASTRO–PH, HEP–TH, HEP–PH,
COND–MAT and GR–QC). We place a time-stamp on each
node: the submission date of each paper, and for each per-
son, the date of their first submission to the arXiv. The
data for affiliation graphs covers the period from April 1992
to March 2002. The smallest of the graphs (category GR–
QC) had 19,309 nodes (5,855 authors, 13,454 papers) and
26,169 edges. ASTRO–PH is the largest graph, with 57,381
nodes (19,393 authors, 37,988 papers) and 133,170 edges. It
has 6.87 authors per paper; most of the other categories also
have similarly high numbers of authors per paper.

For all these affiliation graphs we observe similar phe-
nomena, and in particular we have densification exponents
between 1.08 and 1.15. Due to lack of space we present
the complete set of measurements only for ASTRO–PH, the
largest affiliation graph. Figures 1(d) and 2(d) show the
increasing average degree over time, and a densification ex-
ponent of a = 1.15.

3.2 Shrinking Diameters
We now discuss the behavior of the effective diameter over

time, for this collection of network datasets. Following the
conventional wisdom on this topic, we expected the under-
lying question to be whether we could detect the differences
among competing hypotheses concerning the growth rates
of the diameter — for example, the difference between loga-
rithmic and sub-logarithmic growth. Thus, it was with some
surprise that we found the effective diameters to be actually
decreasing over time (Figure 3).

Let us make the definitions underlying the observations
concrete. We say that two nodes in an undirected network
are connected if there is an path between them; for each nat-
ural number d, let g(d) denote the fraction of connected node
pairs whose shortest connecting path has length at most d.
The hop-plot for the network is the set of pairs (d, g(d)); it
thus gives the cumulative distribution of distances between
connected node pairs. We extend the hop-plot to a function
defined over all positive real numbers by linearly interpolat-
ing between the points (d, g(d)) and (d+1, g(d+1)) for each
d, and we define the effective diameter of the network to be
the value of d at which this function achieves the value 0.9.
(Note that this varies slightly from an alternate definition
of the effective diameter used in earlier work: the minimum
value d such that at least 90% of the connected node pairs
are at distance at most d. Our variation smooths this defi-
nition by allowing it to take non-integer values.) The effec-
tive diameter is a more robust quantity than the diameter
(defined as the maximum distance over all connected node
pairs), since the diameter is prone to the effects of degener-
ate structures in the graph (e.g. very long chains). However,
the effective diameter and diameter tend to exhibit qualita-
tively similar behavior.

For each time t (as in the previous subsection), we create
a graph consisting of nodes up to that time, and compute
the effective diameter of the undirected version of the graph.

Figure 3 shows the effective diameter over time; one ob-
serves a decreasing trend for all the graphs. We performed
a comparable analysis to what we describe here for all 9
graph datasets in our study, with very similar results. For
the citation networks in our study, the decreasing effective
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Figure 3: The effective diameter over time.

diameter has the following interpretation: Since all the links
out of a node are “frozen” at the moment it joins the graph,
the decreasing distance between pairs of nodes appears to be
the result of subsequent papers acting as “bridges” by cit-
ing earlier papers from disparate areas. Note that for other
graphs in our study, such as the AS dataset, it is possible for
an edge between two nodes to appear at an arbitrary time
after these two nodes join the graph.

We note that the effective diameter of a graph over time is
necessarily bounded from below, and the decreasing patterns
of the effective diameter in the plots of Figure 3 are consis-
tent with convergence to some asymptotic value. However,
understanding the full “limiting behavior” of the effective
diameter over time, to the extent that this is even a well-
defined notion, remains an open question.

3.2.1 Validating the shrinking diameter conclusion
Given the unexpected nature of this result, we wanted to

verify that the shrinking diameters were not attributable to
artifacts of our datasets or analyses. We explored this issue
in a number of ways, which we now summarize; the conclu-
sion is that the shrinking diameter appears to be a robust,
and intrinsic, phenomenon. Specifically, we performed ex-
periments to account for (a) possible sampling problems, (b)
the effect of disconnected components, (c) the effect of the
“missing past” (as in the previous subsection), and (d) the
dynamics of the emergence of the giant component.

Possible sampling problems: Computing shortest paths
among all node pairs is computationally prohibitive for graphs
of our scale. We used several different approximate meth-
ods, obtaining almost identical results from all of them.
In particular, we applied the Approximate Neighborhood
Function (ANF) approach [27] (in two different implementa-
tions), which can estimate effective diameters for very large
graphs, as well as a basic sampling approach in which we ran
exhaustive breadth-first search from a subset of the nodes
chosen uniformly at random. The results using all these
methods were essentially identical.

Disconnected components: One can also ask about the ef-
fect of small disconnected components. All of our graphs
have a single giant component – a connected component (or

Figure: Shrinking diameter
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Degree Distributions

Degree distributions

Frequency distribution of node degrees
One of the most fundamental properties of networks
𝑝𝑘 is the fraction of nodes in a network that has degree 𝑘
𝑝𝑘 is also a probability that a randomly chosen node has a degree 𝑘
Typically, we visualize a distribution with a histogram
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Degree Distributions

Degree distributions

Figure: Degree distributions of the Internet graph at the level of autonomous
systems
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Degree Distributions

Degree distributions

Most of the nodes have small degrees: one, two, or three
There is a tail to the distribution corresponding to the high-degree
nodes
The plot cuts off but the tail is much longer
The highest degree node is connected to about 12% of other nodes
Such well-connected nodes are called hubs
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Degree Distributions

Degree distributions

It turns out that most of the real-world networks have such
long-tailed distributions
Such distributions are called right-skewed
For directed networks we have two distributions
In-degree and out-degree distribution
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Degree Distributions

Degree distributions

Figure: Degree distributions on the Web, from Broder et al.
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Power Laws

Power laws and scale-free networks

Figure: Degree distributions of the Internet graph on logarithmic scales
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Power Laws

Power laws

The degree distribution on logarithmic scales follows roughly a
straight line

ln𝑝𝑘 = −𝛼ln𝑘 + 𝑐 (1)

𝛼 and 𝑐 are constants

𝑝𝑘 = 𝐶𝑘−𝛼 (2)

𝐶 = 𝑒𝑐 is another constant
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Power Laws

Power laws

Distributions of this form that vary as a power of 𝑘 are called power
laws
This is a common pattern seen in many different networks
The constant 𝛼 is called the exponent of the power law
Typical values are in the range: 2 ≤ 𝛼 ≤ 3
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Power Laws

Power-law (Zipf) random variable

Power-law distribution is a very commonly occurring distribution
Word occurences in natural language
Friendships in a social network
Links on the web
PageRank, etc.
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Power Laws

Power-law (Zipf) random variable

PMF

𝑝(𝑘) = 𝑘−𝛼

𝜁(𝛼)

𝑘 ∈ ℕ, 𝑘 ≥ 1, 𝛼 > 1
𝜁(𝛼) is the Riemann zeta function

𝜁(𝛼) =
∞
∑
𝑘=1

𝑘−𝛼
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Power Laws

Power-law (Zipf) random variable
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Power Laws

Power-law (Zipf) random variable
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Power Laws

Power-law (Pareto) random variable

Power-law distribution is a very commonly occurring distribution
80%-20% rule
Wealth distribution
The sizes of the human settlements
File size of internet traffic, etc.
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Power Laws

Power-law (Pareto) random variable

PDF

𝑓 (𝑥) =
⎧{
⎨{⎩

(𝛼 − 1)𝑥𝛼−1
𝑚𝑖𝑛
𝑥𝛼 , 𝑥 ≥ 𝑥𝑚𝑖𝑛

0, 𝑥 < 𝑥𝑚𝑖𝑛

𝛼 > 1 is the exponent of the power-law distribution

CDF

𝑓 (𝑥) =
⎧{
⎨{⎩

1 − (𝑥𝑚𝑖𝑛
𝑥 )𝛼−1, 𝑥 ≥ 𝑥𝑚𝑖𝑛

0, 𝑥 < 𝑥𝑚𝑖𝑛

Denis Helic (ISDS, TU Graz) NetSci November 29, 2020 24 / 67



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Power Laws

Power-law (Pareto) random variable
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Power Laws

Power-law (Pareto) random variable
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Power Laws

Power laws

Degree distributions do not follow power law equation over their
entire range
For example, for small 𝑘 we typically observe some deviation
Thus, power laws are typically observed in the tail for high degrees
Sometimes, there is also deviation in the tail because there is some
cut-off that limits the maximum degree of nodes
Network with power law degree distributions are called scale-free
networks
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Power Laws

Detecting power laws

Another common solution to visualizing power laws is to construct
cumulative distribution function

𝑃𝑘 =
∞
∑
𝑘′=𝑘

𝑝𝑘′ (3)

𝑃𝑘 is the fraction of nodes that have degree 𝑘 or higher
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Power Laws

Detecting power laws

Suppose the degree distribution 𝑝𝑘 follows power law in the tail
𝑝𝑘 = 𝐶𝑘−𝛼, for 𝑘 ≥ 𝑘𝑚𝑖𝑛, for some 𝑘𝑚𝑖𝑛. Then for 𝑘 ≥ 𝑘𝑚𝑖𝑛:

𝑃𝑘 =
∞
∑
𝑘′=𝑘

𝑘′−𝛼 ≃ 𝐶
∞
∫
𝑘

𝑘′−𝛼d𝑘′ = 𝐶
𝛼 − 1𝑘−(𝛼−1) (4)

Approximation of the sum by the integral is possible if we assume
𝛼 > 1 and is reasonable since the power law slowly varies for large 𝑘
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Power Laws

Detecting power laws

Thus, cumulative degree distribution is also a power law but with an
exponent 𝛼 − 1
We can visualize the cumulative degree distribution on log-log scales
and look for the straight line behavior
This has some advantages over visualizing 𝑝𝑘
E.g. we do not need to bin the histogram and throw away information
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Power Laws

Cumulative degree distributions
14 The structure and function of complex networks
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(a) collaborations
in mathematics (b) citations (c) World Wide Web

(d) Internet (e) power grid
(f) protein

interactions

FIG. 6 Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex degree k (or in-
degree for the citation and Web networks, which are directed) and the vertical axis is the cumulative probability distribution of
degrees, i.e., the fraction of vertices that have degree greater than or equal to k. The networks shown are: (a) the collaboration
network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific
Information [351]; (c) a 300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the level of
autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f) the interaction network of
proteins in the metabolism of the yeast S. Cerevisiae [212]. Of these networks, three of them, (c), (d) and (f), appear to have
power-law degree distributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales, and
one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential
degree distribution (note the log-linear scales used in this panel) and network (a) appears to have a truncated power-law degree
distribution of some type, or possibly two separate power-law regimes with different exponents.

within domains [338].

2. Maximum degree

The maximum degree kmax of a vertex in a network
will in general depend on the size of the network. For
some calculations on networks the value of this maxi-
mum degree matters (see, for example, Sec. VIII.C.2).
In work on scale-free networks, Aiello et al. [8] assumed
that the maximum degree was approximately the value
above which there is less than one vertex of that degree in
the graph on average, i.e., the point where npk = 1. This
means, for instance, that kmax ∼ n1/α for the power-law
degree distribution pk ∼ k−α. This assumption however
can give misleading results; in many cases there will be
vertices in the network with significantly higher degree
than this, as discussed by Adamic et al. [6].

Given a particular degree distribution (and assuming
all degrees to be sampled independently from it, which
may not be true for networks in the real world), the prob-
ability of there being exactly m vertices of degree k and
no vertices of higher degree is

(

n
m

)

pmk (1−Pk)
n−m, where

Pk is the cumulative probability distribution, Eq. (7).
Hence the probability hk that the highest degree on the
graph is k is

hk =

n
∑

m=1

(

n

m

)

pmk (1− Pk)
n−m

= (pk + 1− Pk)
n − (1− Pk)

n, (10)

and the expected value of the highest degree is kmax =
∑

k khk.
For both small and large values of k, hk tends to zero,

and the sum over k is dominated by the terms close to the
maximum. Thus, in most cases, a good approximation
to the expected value of the maximum degree is given
by the modal value. Differentiating and observing that
dPk/dk = pk, we find that the maximum of hk occurs
when
(

dpk
dk
− pk

)

(pk +1−Pk)
n−1 + pk(1−Pk)

n−1 = 0, (11)

or kmax is a solution of

dpk
dk
' −np2

k, (12)

Figure: Cumulative degree distributions on logarithmic scales
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Power Laws

Cumulative degree distributions

Cumulative degree distribution is easy to calculate
The number of nodes greater or equal to that of the 𝑟th-highest
degree is 𝑟
The fraction of nodes with degree greater or equal to that of the
𝑟th-highest degree is 𝑟/𝑛 and that is 𝑃𝑘
Thus, we calculate degrees, sort them in descending order and then
number them from 1 to 𝑛
These numbers are ranks 𝑟𝑖 and we plot 𝑟𝑖

𝑛 as a function of 𝑘𝑖
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Power Laws

Cumulative degree distributions

Degree 𝑘 Rank 𝑟 𝑃𝑘 = 𝑟
𝑛

4 1 0.1
3 2 0.2
3 3 0.3
2 4 0.4
2 5 0.5
2 6 0.6
2 7 0.7
1 8 0.8
1 9 0.9
1 10 1.0

Table: Example of cumulative degree distribution for degrees {0,1,1,2,2,2,2,3,3,4}
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Power Laws

Cumulative degree distributions

Cumulative distribution have some disadvantages
Successive points on a cumulative plot are not independent
It is not valid to extract the exponent by fitting the slope of the line
E.g. least squares method assumes independence of between the data
points
Also, which line to fit?
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Power Laws

Parameter estimation

It is better to calculate 𝛼 directly from the data

𝛼 = 1 + 𝑁 ⎡⎢
⎣
∑

𝑖
ln 𝑘𝑖

𝑘𝑚𝑖𝑛 − 1
2

⎤⎥
⎦

−1

(5)

where, 𝑘𝑚𝑖𝑛 is the minimum degree for which the power low holds and
𝑁 is the number of nodes with 𝑘 ≥ 𝑘𝑚𝑖𝑛
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Power Laws

Parameter estimation

Statistical error

𝜎 = 𝛼 − 1
√𝑁

(6)

The derivation is based on maximum likelihood techniques
Power law distributions in empirical data by Clauset et al.
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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Power Laws

Likelihood

We observe some data, e.g. number of heads in 𝑚 experiments with 𝑛
coin flips
We choose a probabilistic model to describe the dataset
E.g. a Binomial r.v. with parameters (𝑝, 𝑛)
𝑝 is the probability of heads on a single coin flip

PMF

𝑝(𝑥) = (𝑛
𝑥)(1 − 𝑝)𝑛−𝑥𝑝𝑥 (7)
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Power Laws

Likelihood

Let us denote with 𝑋1, … , 𝑋𝑚 r.v. associated with our 𝑚 experiments
Each of them is a Binomial r.v. with parameters (𝑝, 𝑛)
They are mutually independent
Independent and identically distributed (i.i.d.)
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Power Laws

Likelihood

We are interested in probability of observing the results of our 𝑚
experiments
For a single experiment:

Probability of a single experiment

𝑝(𝑥𝑖) = (𝑛
𝑥𝑖

)(1 − 𝑝)𝑛−𝑥𝑖𝑝𝑥𝑖 (8)
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Power Laws

Likelihood

For all 𝑚 experiments (since experiments are i.i.d. r.v.)

Probability of all experiments

𝑝(𝑥1, … , 𝑥𝑚|𝑝) =
𝑚

∏
𝑖=1

(𝑛
𝑥𝑖

)(1 − 𝑝)𝑛−𝑥𝑖𝑝𝑥𝑖 (9)

This probability is called likelihood
It is the probability of data given the parameter 𝑝
Another name is likelihood function (function of parameter 𝑝)

Denis Helic (ISDS, TU Graz) NetSci November 29, 2020 40 / 67



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Power Laws

Log-likelihood

Typically, we take a logarithm and work with logs since it simplifies
the analysis

Log-likelihood

ℒ(𝑝) = 𝑙𝑛(
𝑚

∏
𝑖=1

(𝑛
𝑥𝑖

)(1 − 𝑝)𝑛−𝑥𝑖𝑝𝑥𝑖) (10)

=
𝑚

∑
𝑖=1

(𝑙𝑛(𝑛
𝑥𝑖

) + (𝑛 − 𝑥𝑖)𝑙𝑛(1 − 𝑝) + 𝑥𝑖𝑙𝑛(𝑝)) (11)

=
𝑚

∑
𝑖=1

𝑙𝑛(𝑛
𝑥𝑖

) + 𝑙𝑛(𝑝)
𝑚

∑
𝑖=1

𝑥𝑖 + 𝑙𝑛(1 − 𝑝)(𝑚𝑛 −
𝑚

∑
𝑖=1

𝑥𝑖) (12)
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Power Laws

Maximum Likelihood Estimation (MLE)

Now, we are interested in 𝑝 that most likely generated the data
The data are most likely to have been generated by the model with 𝑝
that maximizes the log-likelihood function
Setting 𝑑ℒ

𝑑𝑝 = 0 and solving for 𝑝 we obtain the maximum likelihood
estimate

MLE

𝑑ℒ
𝑑𝑝 = 1

𝑝
𝑚

∑
𝑖=1

𝑥𝑖 − 1
1 − 𝑝(𝑚𝑛 −

𝑚
∑
𝑖=1

𝑥𝑖) = 0 (13)

𝑝 =
∑𝑚

𝑖=1 𝑥𝑖
𝑚𝑛 = 1

𝑚
𝑚

∑
𝑖=1

𝑥𝑖
𝑛 (14)
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Power Laws

Parameter estimation

We consider the continuous power law distribution

𝑝(𝑥) = 𝛼 − 1
𝑥𝑚𝑖𝑛

( 𝑥
𝑥𝑚𝑖𝑛

)
−𝛼

(15)

Given a data set with 𝑛 observations 𝑥𝑖 > 𝑥𝑚𝑖𝑛 we would like to know
the value of 𝛼 that is most likely to have generated the data
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Power Laws

Parameter estimation

The probability that the data are drawn from the model

𝑝(𝑥|𝛼) =
𝑛

∏
𝑖=1

𝛼 − 1
𝑥𝑚𝑖𝑛

( 𝑥𝑖
𝑥𝑚𝑖𝑛

)
−𝛼

(16)

This probability is called likelihood of the data given model
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Power Laws

Parameter estimation

The data are most likely to have been generated by the model with 𝛼
that maximizes this function
Commonly, we work with log-likelihood ℒ
ℒ has the maximum at the same place likelihood

ℒ = ln𝑝(𝑥|𝛼) = ln
𝑛

∏
𝑖=1

𝛼 − 1
𝑥𝑚𝑖𝑛

( 𝑥𝑖
𝑥𝑚𝑖𝑛

)
−𝛼

(17)
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Power Laws

Parameter estimation

ℒ = 𝑛ln(𝛼 − 1) − 𝑛ln𝑥𝑚𝑖𝑛 − 𝛼
𝑛

∑
𝑖=1

ln 𝑥
𝑥𝑚𝑖𝑛

(18)

Setting 𝜕ℒ
𝜕𝛼 = 0 and solving for 𝛼 we obtain the maximum likelihood

estimate

̂𝛼 = 1 + 𝑛 ⎡⎢
⎣

𝑛
∑
𝑖=1

ln 𝑥𝑖
𝑥𝑚𝑖𝑛

⎤⎥
⎦

−1

(19)
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Power Laws

Properties of power law distributions

Normalization
The constant 𝐶 that appears in the power law equation is determined
by the normalization requirement

∞
∑
𝑘=1

𝑝𝑘 = 1 (20)

𝑘−𝛼 = ∞, for 𝑘 = 0 and therefore we start at 𝑘 = 1
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Power Laws

Properties of power law distributions

𝐶
∞
∑
𝑘=1

𝑘−𝛼 = 1 (21)

𝐶 = 1
∑∞

𝑘=1 𝑘−𝛼 = 1
𝜁(𝛼) (22)

𝜁(𝛼) is the Riemann zeta function
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Properties of power law distributions

Correctly normalized power law distribution for 𝑘 > 0 and 𝑝0 = 0

𝑝𝑘 = 𝑘−𝛼

𝜁(𝛼) (23)

If the power law behavior holds only for 𝑘 > 𝑘𝑚𝑖𝑛 we obtain (with
𝜁(𝛼, 𝑘𝑚𝑖𝑛) being incomplete zeta function)

𝑝𝑘 = 𝑘−𝛼

∑∞
𝑘=𝑘𝑚𝑖𝑛

𝑘−𝛼 = 𝑘−𝛼

𝜁(𝛼, 𝑘𝑚𝑖𝑛) (24)
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Power Laws

Properties of power law distributions

Alternatively, we can approximate the sum with an integral

𝐶 ≃ 1
∫∞

𝑘𝑚𝑖𝑛
𝑘−𝛼d𝑘

= (𝛼 − 1)𝑘𝛼−1
𝑚𝑖𝑛 (25)

𝑝𝑘 ≃ 𝛼 − 1
𝑘𝑚𝑖𝑛

( 𝑘
𝑘𝑚𝑖𝑛

)
−𝛼

(26)
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Power Laws

Properties of power law distributions

Top-heavy distributions
Another interesting property is the fraction of links that connect to
the nodes with the highest degrees
For a pure power law 𝑊 is a fraction of links attached to a fraction 𝑃
of the highest degree nodes

𝑊 = 𝑃
𝛼−2
𝛼−1 (27)
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Power Laws

Properties of power law distributions

Figure: Lorenz curves for power law networks
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Properties of power law distributions

The curves have a very fast initial increase (especially if 𝛼 is slightly
over 2)
This means that a large fraction of links is connected to a small
fraction of the highest degree nodes
For example, in-degrees on the Web have 𝑘𝑚𝑖𝑛 = 20 and 𝛼 = 2.2
For 𝑃 = 0.5 we have 𝑊 = 0.89, for 𝑊 = 0.5 we have 𝑃 = 0.015
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Power Laws

Properties of power law distributions

These calculations assume perfect power law
We can still calculate 𝑊 and 𝑃 directly from the data
For example, on the Web for 𝑊 = 0.5 we have 𝑃 = 0.011
Similarly, in citation networks for 𝑊 = 0.5 we have 𝑃 = 0.083
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Centralities

Centralities

Eigenvector centralities have often a highly right-skewed distributions
Also, variants of the eigenvector centralities such as PageRank exhibit
often power law behavior
E.g. the Internet, WWW, or citation networks
Betweenness centrality also tends to have right-skewed distributions
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Figure: Cummulative distibutions of centralities on the Internet
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Centralities

Centralities

An exception to this pattern is closeness centrality
Values for closeness centralities are limited by 1 at the lower end and
log 𝑛 at the upper end
Therefore their distributions cannot have a long tail
Typically, closeness centrality distributions are multimodal, whit
multiple peaks and dips
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Figure: Histogram of closeness centralities on the Internet
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Clustering Coefficients

Global clustering coefficient

The clustering coefficient measures the average probability that two
neighbors of a node are themselves neighbors
It measures the density of triangles in the networks
In real networks the clustering coefficient takes values in the order of
tens of percent, e.g. 10% or even up to 60%
This is much larger than what we would expect if the links are
created by chance, e.g. 0.01%
E.g. in collaboration networks of physicists expectation is 0.23% but
the real value is 45%
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Clustering Coefficients

Global clustering coefficient

This large difference is indicative of social effects
For example, it might be that people introduce the pairs of their
collaborators to each other
In social networks this process is called triadic closure
An open triad of nodes is closed by the introduction of the last third
link
We can study the triadic closure processes directly if we have different
version of datasets in time
E.g. a study showed that it is much more likely (45 times) for people
to collaborate in future if they had common collaborators in the past
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Clustering Coefficients

Global clustering coefficient

In some networks we have the opposite phenomenon
The expected value of clustering exceeds the observed one
For example, on the Internet we measure 1.2% and the expected
value is 84%
Thus, on the Internet we have mechanisms that prevent forming of
triangles
On the Web the measured clustering coefficient is of the order of the
expected one
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Clustering Coefficients

Global clustering coefficient

It is not completely clear why different types of networks exhibit such
different behaviors in respect to the clustering coefficient
One theory connects these observations with the formation of
communities in networks
Social networks tend also to have positive degree correlations as
opposed to other types of networks
Thus, in social networks homophily and assortative mixing by degree
plays a more important role than in other networks
This tends to formation of communities and therefore the clustering
coefficient becomes greater
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Clustering Coefficients

Local clustering coefficient

Local clustering coefficient of a node 𝑖 is the fraction of neighbors of 𝑖
that are themselves neighbors
In many networks there is a phenomenon that high degree nodes tend
to have lower local clustering
One possible explanation for this behavior is that nodes tend to form
highly connected communities
Communities of low degree nodes are smaller that work as small
disconnected networks, i.e. cliques
Probability that higher degree nodes form such huge cliques is rather
small
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Clustering Coefficients

Local clustering coefficient

Figure: Local clustering as a function of degree on the Internet

Denis Helic (ISDS, TU Graz) NetSci November 29, 2020 64 / 67



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Assortative Mixing

Assortative mixing by degree

Assortative mixing by degree can be quantified by the correlation
coefficient 𝑟
Typically, 𝑟 is not of a large magnitude in real world networks
There is clear tendency of social networks to have positive 𝑟
(homophily)
Technological, information, biological networks tend to have negative
𝑟
Simple graphs bias: the number of links between high-degree nodes is
limited because they connect to low degree nodes
Social networks: communities
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Assortative Mixing

Network analysis project

Software
C++: SNAP http://snap.stanford.edu/
Python: NetworkX http://networkx.github.io/
Python wrapper for Boost: Graph-Tool
http://graph-tool.skewed.de/
Python, R, C: IGraph https://igraph.org/
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Assortative Mixing

Network analysis project

SNAP: http://snap.stanford.edu/
KONECT: http://konect.uni-koblenz.de/
Dataset of choice
From SNAP or KONECT Web site
Your own dataset
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