Network Science (VU) (706.703)
Empirical Analysis of Networks

Denis Helic
ISDS, TU Graz

November 22, 2019
Outline

1. Introduction
2. Components
3. Shortest Paths and Small-World Effect
4. Degree Distributions
5. Power Laws
6. Centralities
7. Clustering Coefficients
8. Assortative Mixing
<table>
<thead>
<tr>
<th>Network Type</th>
<th>Network</th>
<th>Degree Centrality</th>
<th>Betweenness Centrality</th>
<th>Closeness Centrality</th>
<th>Eigenvector Centrality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td>Directed</td>
<td>2.35</td>
<td>0.67</td>
<td>0.39</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Undirected</td>
<td>3.97</td>
<td>0</td>
<td>0.76</td>
<td>0.50</td>
</tr>
<tr>
<td>Technological</td>
<td>Directed</td>
<td>1.24</td>
<td>0.46</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Undirected</td>
<td>2.25</td>
<td>0.24</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>Information</td>
<td>Directed</td>
<td>1.14</td>
<td>0</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Undirected</td>
<td>2.14</td>
<td>0</td>
<td>0.38</td>
<td>0.15</td>
</tr>
<tr>
<td>Social</td>
<td>Directed</td>
<td>1.24</td>
<td>0.46</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Undirected</td>
<td>2.25</td>
<td>0.24</td>
<td>0.21</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table 8.1: Basic statistics for a number of networks. The properties measured are type of network, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality.
Components

- In an undirected network, there is typically a large component that fills most of the network
- Very often over 90%
- Sometimes, it is 100%, e.g. the Internet
- Sometimes it depends also on how we collect data
Components in a directed network

- Weakly connected components correspond to components in an undirected network, i.e. we simply ignore link directions.
- Otherwise, we have strongly connected components with corresponding in- and out-components.
- Apart from the largest SCC we have also a number of smaller ones with their in- and out-components.
- Typically, all components form a so-called “bow-tie” model.
Components in a directed network

Figure: Bow-tie model of the Web graph
Small-worlds

- In many networks the typical network distance between nodes is very small
- This phenomenon was first observed in the letter-passing experiment by Milgram
- It is called *small-world effect*
- Typically, the average network distance ℓ scales as $\log n$
Diameter

- Sometimes we are also interested in the network diameter.
- The extreme of the distance distribution, i.e. the longest shortest path in the network.
- In many networks, the core of the network is very dense with the average network distance scaling as \(\log \log n \).
- Whereas at the periphery the diameter scales as \(\log n \).
Effective diameter

- Effective diameter, or 90-percentile effective diameter, i.e. 90% of shortest paths is smaller than the effective diameter
- Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations by Leskovec et al.
- The empirical analysis has shown that when the networks grow the diameter becomes smaller
Effective diameter

Figure: Shrinking diameter
Degree distributions

- Frequency distribution of node degrees
- One of the most fundamental properties of networks
- p_k is the fraction of nodes in a network that has degree k
- p_k is also a probability that a randomly chosen node has a degree k
- Typically, we visualize a distribution with a histogram
Degree distributions

Figure: Degree distributions of the Internet graph at the level of autonomous systems
Degree distributions

- Most of the nodes have small degrees: one, two, or three
- There is a *tail* to the distribution corresponding to the high-degree nodes
- The plot cuts off but the tail is much longer
- The highest degree node is connected to about 12% of other nodes
- Such well-connected nodes are called *hubs*
It turns out that most of the real-world networks have such long-tailed distributions.

Such distributions are called *right-skewed*.

For directed networks we have two distributions.

In-degree and out-degree distribution.
Degree distributions

Figure: Degree distributions on the Web, from Broder et al.
Power laws and scale-free networks

Figure: Degree distributions of the Internet graph on logarithmic scales
The degree distribution on logarithmic scales follows roughly a straight line

\[\ln p_k = -\alpha \ln k + c \] (1)

\[p_k = C k^{-\alpha} \] (2)

\(\alpha \) and \(c \) are constants

\(C = e^c \) is another constant
• Distributions of this form that vary as a power of k are called power laws.
• This is a common pattern seen in many different networks.
• The constant α is called the exponent of the power law.
• Typical values are in the range: $2 \leq \alpha \leq 3$.
Power-law (Zipf) random variable

- Power-law distribution is a very commonly occurring distribution
- Word occurrences in natural language
- Friendships in a social network
- Links on the web
- PageRank, etc.
Power-law (Zipf) random variable

PMF

\[p(k) = \frac{k^{-\alpha}}{\zeta(\alpha)} \]

- \(k \in \mathbb{N}, k \geq 1, \alpha > 1 \)
- \(\zeta(\alpha) \) is the Riemann zeta function

\[\zeta(\alpha) = \sum_{k=1}^{\infty} k^{-\alpha} \]
Power Law

Power-law (Zipf) random variable

Denis Helic (ISDS, TU Graz)
Power-law (Zipf) random variable

Probability mass function of a Zipf random variable; differing α values

$\alpha = 2.0$

$\alpha = 3.0$
Power-law (Pareto) random variable

- Power-law distribution is a very commonly occurring distribution
- 80%-20% rule
- Wealth distribution
- The sizes of the human settlements
- File size of internet traffic, etc.
Power-law (Pareto) random variable

PDF

\[
f(x) = \begin{cases}
(\alpha - 1) \frac{x^{\alpha-1}}{x^{\alpha}} , & x \geq x_{\text{min}} \\
0, & x < x_{\text{min}}
\end{cases}
\]

- \(\alpha > 1\) is the exponent of the power-law distribution

CDF

\[
f(x) = \begin{cases}
1 - \left(\frac{x_{\text{min}}}{x}\right)^{\alpha-1} , & x \geq x_{\text{min}} \\
0, & x < x_{\text{min}}
\end{cases}
\]
Power-law (Pareto) random variable

PDF of a Pareto random variable; differing α values

- $\alpha = 2.0$
- $\alpha = 3.0$
Power-law (Pareto) random variable

PDF of a Pareto random variable; differing α values

- $\alpha = 2.0$
- $\alpha = 3.0$
Power laws

- Degree distributions do not follow power law equation over their entire range
- For example, for small k we typically observe some deviation
- Thus, power laws are typically observed in the tail for high degrees
- Sometimes, there is also deviation in the tail because there is some cut-off that limits the maximum degree of nodes
- Network with power law degree distributions are called *scale-free* networks
Detecting power laws

- Another common solution to visualizing power laws is to construct the cumulative distribution function

\[P_k = \sum_{k' = k}^{\infty} p_{k'} \]

- \(P_k \) is the fraction of nodes that have degree \(k \) or higher.
Detecting power laws

- Suppose the degree distribution p_k follows power law in the tail
- $p_k = Ck^{-\alpha}$, for $k \geq k_{\text{min}}$, for some k_{min}. Then for $k \geq k_{\text{min}}$:

$$P_k = \sum_{k'=k}^{\infty} k'^{-\alpha} \approx C \int_{k}^{\infty} k'^{-\alpha} dk' = \frac{C}{\alpha - 1} k^{-(\alpha-1)}$$

- Approximation of the sum by the integral is possible if we assume $\alpha > 1$ and is reasonable since the power law slowly varies for large k
Detecting power laws

- Thus, cumulative degree distribution is also a power law but with an exponent $\alpha - 1$
- We can visualize the cumulative degree distribution on log-log scales and look for the straight line behavior
- This has some advantages over visualizing p_k
- E.g. we do not need to bin the histogram and throw away information
Cumulative degree distributions

Figure: Cumulative degree distributions on logarithmic scales
Cumulative degree distributions

- Cumulative degree distribution is easy to calculate
- The number of nodes greater or equal to that of the rth-highest degree is r
- The fraction of nodes with degree greater or equal to that of the rth-highest degree is r/n and that is P_k
- Thus, we calculate degrees, sort them in descending order and then number them from 1 to n
- These numbers are *ranks* r_i and we plot $\frac{r_i}{n}$ as a function of k_i
Cumulative degree distributions

<table>
<thead>
<tr>
<th>Degree k</th>
<th>Rank r</th>
<th>$P_k = \frac{r}{n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>0.7</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>0.9</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table: Example of cumulative degree distribution for degrees $\{0,1,1,2,2,2,3,3,4\}$
Cumulative degree distributions

- Cumulative distribution have some disadvantages
- Successive points on a cumulative plot are not independent
- It is not valid to extract the exponent by fitting the slope of the line
- E.g. least squares method assumes independence of between the data points
- Also, which line to fit?
It is better to calculate α directly from the data

$$\alpha = 1 + N \left[\sum_i \ln \frac{k_i}{k_{min} - \frac{1}{2}} \right]^{-1}$$

where, k_{min} is the minimum degree for which the power low holds and N is the number of nodes with $k \geq k_{min}$
Parameter estimation

- Statistical error

\[\sigma = \frac{\alpha - 1}{\sqrt{N}} \]

(6)

- The derivation is based on *maximum likelihood* techniques
- Power law distributions in empirical data by Clauset et al.
- http://tuvalu.santafe.edu/~aaronc/powerlaws/
We observe some data, e.g. number of heads in \(m \) experiments with \(n \) coin flips.

We **choose** a probabilistic model to describe the dataset.

E.g. a Binomial r.v. with parameters \((p, n)\).

\(p \) is the probability of heads on a single coin flip.

PMF

\[
p(x) = \binom{n}{x}(1 - p)^{n-x}p^x
\]
(7)
Let us denote with X_1, \ldots, X_m r.v. associated with our m experiments.

Each of them is a Binomial r.v. with parameters (p,n).

They are mutually independent.

Independent and identically distributed (i.i.d.)
Likelihood

- We are interested in probability of observing the results of our m experiments
- For a single experiment:

\[
p(x_i) = \binom{n}{x_i} (1 - p)^{n-x_i} p^{x_i}
\]

(8)
Likelihood

For all m experiments (since experiments are i.i.d. r.v.)

Probability of all experiments

$$p(x_1, \ldots, x_m|p) = \prod_{i=1}^{m} \binom{n}{x_i} (1 - p)^{n-x_i} p^{x_i}$$

This probability is called **likelihood**

It is the probability of data given the parameter p

Another name is likelihood function (function of parameter p)
Typically, we take a logarithm and work with logs since it simplifies the analysis.

Log-likelihood

\[
\mathcal{L}(p) = \ln\left(\prod_{i=1}^{m} \binom{n}{x_i} (1 - p)^{n-x_i} p^{x_i}\right)
\]

\[
= \sum_{i=1}^{m} \left(\ln\left(\binom{n}{x_i}\right) + (n - x_i) \ln(1 - p) + x_i \ln(p) \right)
\]

\[
= \sum_{i=1}^{m} \ln\left(\binom{n}{x_i}\right) + \ln(p) \sum_{i=1}^{m} x_i + \ln(1 - p) (mn - \sum_{i=1}^{m} x_i)
\]
Now, we are interested in p that most likely generated the data.

The data are most likely to have been generated by the model with p that maximizes the log-likelihood function.

Setting $\frac{d\mathcal{L}}{dp} = 0$ and solving for p we obtain the maximum likelihood estimate.

\begin{align*}
\frac{d\mathcal{L}}{dp} &= \frac{1}{p} \sum_{i=1}^{m} x_i - \frac{1}{1 - p} (mn - \sum_{i=1}^{m} x_i) = 0 \\
p &= \frac{\sum_{i=1}^{m} x_i}{mn} = \frac{1}{m} \sum_{i=1}^{m} \frac{x_i}{n}
\end{align*}
Parameter estimation

- We consider the continuous power law distribution

\[p(x) = \frac{\alpha - 1}{x_{\text{min}}} \left(\frac{x}{x_{\text{min}}} \right)^{-\alpha} \]

(15)

- Given a data set with \(n \) observations \(x_i > x_{\text{min}} \) we would like to know the value of \(\alpha \) that is most likely to have generated the data
Parameter estimation

- The probability that the data are drawn from the model

\[p(x|\alpha) = \prod_{i=1}^{n} \frac{\alpha - 1}{x_{\text{min}}} \left(\frac{x_i}{x_{\text{min}}} \right)^{-\alpha} \]

(16)

- This probability is called *likelihood* of the data given model
Parameter estimation

- The data are most likely to have been generated by the model with α that maximizes this function.
- Commonly, we work with log-likelihood \mathcal{L}.
- \mathcal{L} has the maximum at the same place likelihood

$$\mathcal{L} = \ln p(x|\alpha) = \ln \prod_{i=1}^{n} \frac{\alpha - 1}{x_{\text{min}}} \left(\frac{x_i}{x_{\text{min}}} \right)^{-\alpha}$$ (17)
Parameter estimation

\begin{equation}
\mathcal{L} = n \ln(\alpha - 1) - n \ln x_{\text{min}} - \alpha \sum_{i=1}^{n} \ln \frac{x_i}{x_{\text{min}}}
\end{equation}

Setting \(\frac{\partial \mathcal{L}}{\partial \alpha} = 0 \) and solving for \(\alpha \) we obtain the maximum likelihood estimate

\begin{equation}
\hat{\alpha} = 1 + n \left[\sum_{i=1}^{n} \ln \frac{x_i}{x_{\text{min}}} \right]^{-1}
\end{equation}
Properties of power law distributions

- Normalization
- The constant C that appears in the power law equation is determined by the normalization requirement

$$\sum_{k=1}^{\infty} p_k = 1$$

- $k^{-\alpha} = \infty$, for $k = 0$ and therefore we start at $k = 1$
Power Laws

Properties of power law distributions

\[
C \sum_{k=1}^{\infty} k^{-\alpha} = 1 \tag{21}
\]

\[
C = \frac{1}{\sum_{k=1}^{\infty} k^{-\alpha}} = \frac{1}{\zeta(\alpha)} \tag{22}
\]

- \(\zeta(\alpha)\) is the Riemann zeta function
Properties of power law distributions

- Correctly normalized power law distribution for $k > 0$ and $p_0 = 0$

\[p_k = \frac{k^{-\alpha}}{\zeta(\alpha)} \quad (23) \]

- If the power law behavior holds only for $k > k_{min}$ we obtain (with $\zeta(\alpha, k_{min})$ being incomplete zeta function)

\[p_k = \frac{k^{-\alpha}}{\sum_{k=k_{min}}^{\infty} k^{-\alpha}} = \frac{k^{-\alpha}}{\zeta(\alpha, k_{min})} \quad (24) \]
Properties of power law distributions

- Alternatively, we can approximate the sum with an integral

\[
C \simeq \frac{1}{\int_{k_{\text{min}}}^{\infty} k^{-\alpha} \, dk} = (\alpha - 1)k_{\text{min}}^{\alpha - 1}
\]

(25)

\[
p_k \simeq \frac{\alpha - 1}{k_{\text{min}}} \left(\frac{k}{k_{\text{min}}} \right)^{-\alpha}
\]

(26)
Properties of power law distributions

- Top-heavy distributions
- Another interesting property is the fraction of links that connect to the nodes with the highest degrees
- For a pure power law W is a fraction of links attached to a fraction P of the highest degree nodes

$$W = P^{\frac{\alpha-2}{\alpha-1}}$$ \hfill (27)
Properties of power law distributions

Figure: Lorenz curves for power law networks
Properties of power law distributions

- The curves have a very fast initial increase (especially if α is slightly over 2)
- This means that a large fraction of links is connected to a small fraction of the highest degree nodes
- For example, in-degrees on the Web have $k_{\text{min}} = 20$ and $\alpha = 2.2$
- For $P = 0.5$ we have $W = 0.89$, for $W = 0.5$ we have $P = 0.015$
Properties of power law distributions

- These calculations assume perfect power law
- We can still calculate \(W \) and \(P \) directly from the data
- For example, on the Web for \(W = 0.5 \) we have \(P = 0.011 \)
- Similarly, in citation networks for \(W = 0.5 \) we have \(P = 0.083 \)
Eigenvector centralities have often a highly right-skewed distributions.

Also, variants of the eigenvector centralities such as PageRank exhibit often power law behavior.

E.g. the Internet, WWW, or citation networks.

Betweenness centrality also tends to have right-skewed distributions.
Centralities

Figure 8.10: Cumulative distribution functions for centralities of vertices on the Internet

Figure: Cumulative distributions of centralities on the Internet
Centralities

- An exception to this pattern is closeness centrality
- Values for closeness centralities are limited by 1 at the lower end and \(\log n \) at the upper end
- Therefore their distributions cannot have a long tail
- Typically, closeness centrality distributions are multimodal, with multiple peaks and dips
Figure: Histogram of closeness centralities on the Internet
The clustering coefficient measures the average probability that two neighbors of a node are themselves neighbors.

- It measures the density of triangles in the networks.
- In real networks the clustering coefficient takes values in the order of tens of percent, e.g. 10% or even up to 60%.
- This is much larger than what we would expect if the links are created by chance, e.g. 0.01%.
- E.g. in collaboration networks of physicists expectation is 0.23% but the real value is 45%.
Global clustering coefficient

- This large difference is indicative of social effects
- For example, it might be that people introduce the pairs of their collaborators to each other
- In social networks this process is called *triadic closure*
- An open triad of nodes is closed by the introduction of the last third link
- We can study the triadic closure processes directly if we have different version of datasets in time
- E.g. a study showed that it is much more likely (45 times) for people to collaborate in future if they had common collaborators in the past
Global clustering coefficient

- In some networks we have the opposite phenomenon
- The expected value of clustering exceeds the observed one
- For example, on the Internet we measure 1.2% and the expected value is 84%
- Thus, on the Internet we have mechanisms that prevent forming of triangles
- On the Web the measured clustering coefficient is of the order of the expected one
Global clustering coefficient

- It is not completely clear why different types of networks exhibit such different behaviors in respect to the clustering coefficient.
- One theory connects these observations with the formation of communities in networks.
- Social networks tend also to have positive degree correlations as opposed to other types of networks.
- Thus, in social networks homophily and assortative mixing by degree plays a more important role than in other networks.
- This tends to formation of communities and therefore the clustering coefficient becomes greater.
Local clustering coefficient

- Local clustering coefficient of a node i is the fraction of neighbors of i that are themselves neighbors.
- In many networks there is a phenomenon that high degree nodes tend to have lower local clustering.
- One possible explanation for this behavior is that nodes tend to form highly connected communities.
- Communities of low degree nodes are smaller that work as small disconnected networks, i.e. cliques.
- Probability that higher degree nodes form such huge cliques is rather small.
Local clustering coefficient

Figure: Local clustering as a function of degree on the Internet
Assortative mixing by degree can be quantified by the correlation coefficient r.

Typically, r is not of a large magnitude in real-world networks.

There is a clear tendency of social networks to have positive r (homophily).

Technological, information, and biological networks tend to have negative r.

Simple graphs bias: the number of links between high-degree nodes is limited because they connect to low-degree nodes.

Social networks: communities.
Network analysis project

- Software
- Python wrapper for Boost: Graph-Tool http://graph-tool.skewed.de/
- Python, R, C: IGraph https://igraph.org/
Network analysis project

- SNAP: http://snap.stanford.edu/
- KONECT: http://konect.uni-koblenz.de/
- Dataset of choice
- From SNAP or KONECT Web site
- Your own dataset