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Introduction

Models of the spread of disease

Mathematical representation of epidemics predates network science
In a typical model we classify individuals into one of the categories

1 Susceptible (S): someone who does not have disease but can catch it
if they come in contact with an infected person

2 Infected (I): someone who has the disease and can pass it on if they
come in contact with a susceptible person

3 Recovered (R): someone who was infected and has cured the disease
and is now immune to it
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Introduction

Models of the spread of disease

These states abstract all the biological details of catching a disease
However, they capture some of the gross diseases dynamics
Numbers of S, I, R persons in time
The time component
The models also abstract the individual tendency to catch the disease
by assuming that each individual catches the disease if it comes into
contact with an infected person
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Introduction

Models of the spread of disease

Models are probabilistic, i.e. there is a chance that an individual
comes in contact with another individual
All the numbers are therefore random, and if the disease spreads more
than once the numbers will be a bit different each time
Thus, we are interested in expected or average numbers of S, I, R
persons in time
Additional simplification for the beginning: complete networks
Everyone is connected to everyone and has the equal chance of
getting in contact to every other person per unit times
Fully mixed, mass-action approximation, or mean-field theory
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SI Model

SI model

We have only susceptible (S) and infected (I) individuals
Let 𝑆(𝑡) be the number of susceptible individuals at time 𝑡
Let 𝑋(𝑡) be the number of infected individuals at time 𝑡
Because of randomness we are interested in expectations and denote
them with 𝑆 and 𝑋
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SI Model

SI model

The number of infected individuals goes up when susceptible
individuals contract the disease from the infected ones
Suppose that in a fully mixed model people meet with other people at
random with a rate 𝛽
This means that each individual has, on average, 𝛽 contacts per unit
time with randomly chosen other individuals
The diseases is transmitted only when a susceptible person has a
contact with an infected person
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SI Model

SI model

The total population consists of 𝑛 people
The average probability of meeting a susceptible person: 𝑆

𝑛

An infected person meets therefore 𝛽𝑆
𝑛 susceptible people per unit

time
We have on average 𝑋 infected persons
Thus, the overall average rate of new infections per unit time is given
by 𝛽𝑆𝑋

𝑛
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SI Model

SI model

The rate of change of 𝑋 in time is then given by the following
differential equation:

�̇� = 𝛽𝑆𝑋
𝑛

At the same time the number of susceptible individuals goes down at
the same rate:

̇𝑆 = −𝛽𝑆𝑋
𝑛
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SI Model

SI model

Let us define the variables representing the fractions of S and I
individuals: 𝑠 = 𝑆

𝑛 and 𝑥 = 𝑋
𝑛

We can then rewrite the previous equations:

̇𝑥 = 𝛽𝑠𝑥
̇𝑠 = −𝛽𝑠𝑥
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SI Model

SI model

We have 𝑆 + 𝑋 = 𝑛 or 𝑠 + 𝑥 = 1
Thus, 𝑠 = 1 − 𝑥, and after eliminating 𝑠 we obtain:

̇𝑥 = 𝛽(1 − 𝑥)𝑥

This is logistic growth equation

Denis Helic (ISDS, TU Graz) NetSci January 18, 2019 11 / 59



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

SI Model

SI model

�̇� = 𝑟𝑁(1 − 𝑁
𝐾 )

̇𝑥 = 𝛽(1 − 𝑥)𝑥

𝐾 carrying capacity now equals 1 (all individuals are infected)
𝑟 growth rate is now 𝛽
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SI Model

Logistic growth curve
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SI Model

SI model: numerical solution
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SIR Model

SIR model

Now we have susceptible (S), infected (I), and recovered (R)
individuals
Recovered individuals retain their immunity and can not get infected
anymore
As before, let 𝑆(𝑡) be the number of susceptible individuals at time 𝑡
Let 𝑋(𝑡) be the number of infected individuals at time 𝑡
Let 𝑅(𝑡) be the number of recovered individuals at time 𝑡
Because of randomness we are interested in expectations and denote
them with 𝑆, 𝑋, and 𝑅 respectively
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SIR Model

SIR model

The dynamics of the fully mixed SIR model has two stages
In the first stage S individuals become I individuals when they have
contact with I individuals
Contacts between individuals happen at average rate 𝛽 per person as
before
In the second stage infected individuals recover at some constant
average rate 𝛾
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SIR Model

SIR model

When do I individuals recover?
Probability to recover in any time interval Δ𝑡: 𝛾Δ𝑡
Probability of not recovering in any time interval Δ𝑡: 1 − 𝛾Δ𝑡
Probability that an individual is still infected after a total time 𝑡:

lim
∆𝑡→0

(1 − 𝛾Δ𝑡)
𝑡

∆𝑡 = 𝑒−𝛾𝑡
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SIR Model

SIR model

The probability that an individual remains infected for time 𝑡 and then
recovers in an interval between 𝑡 and 𝑡 + 𝑑𝑡

𝑝(𝑡)𝑑𝑡 = 𝛾𝑒−𝛾𝑡𝑑𝑡

This is a standard exponential distribution: an individual is most likely
to recover just after becoming infected, but might in theory remain
infected for a long times
Not really realistic: typically you would expect a normal distribution
of recovery times with the average time depending on the disease
It makes the math simpler ;)
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SIR Model

SIR model

In terms of the fractions 𝑠, 𝑥, and 𝑟 we can write our equations:

̇𝑠 = −𝛽𝑠𝑥
̇𝑟 = 𝛾𝑥
̇𝑥 = 𝛽𝑠𝑥 − 𝛾𝑥

𝑠, 𝑥, and 𝑟 satisfy:

𝑠 + 𝑥 + 𝑟 = 1
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SIR Model

SIR model

We eliminate 𝑥 between the first two equations:

1
𝑠 ̇𝑠 = −𝛽

𝛾 ̇𝑟

We integrate both sides with respect to 𝑡 to get (with 𝑠0 being the
number of individuals in 𝑆 state at time 𝑡 = 0 and we have chosen
that there are no individuals in 𝑅 state at time 𝑡 = 0):

𝑠 = 𝑠0𝑒− 𝛽
𝛾 𝑟
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SIR Model

SIR model

Now we put 𝑥 = 1 − 𝑠 − 𝑟 in the second differential equation and
obtain:

̇𝑟 = 𝛾(1 − 𝑟 − 𝑠0𝑒− 𝛽
𝛾 𝑟)

The solution is then:

𝑡 = 1
𝛾 ∫

𝑟

0

𝑑𝑢

1 − 𝑢 − 𝑠0𝑒− 𝛽
𝛾 𝑢

The last integral can not be solved analytically: numerical evaluation
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SIR Model

Time evolution of the SIR model
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SIR Model

Time evolution of the SIR model

The fraction of S individuals decreases monotonically
S individuals become infected
I individuals recover at constant rate
The number of R individuals increases monotonically
The fraction of I individuals goes up at first, and then down as people
recover
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SIR Model

Time evolution of the SIR model

The number of S individuals does not go to zero
When 𝑥 → 0 there are no infected people to pass the disease
Any individuals who do not get the disease until late will most
probably never get the disease at all
Similarly, the fraction of R individuals does not quite reach 1
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SIR Model

Outbreak size

The asymptotic value of 𝑟 has important practical interpretation
It is the total number of persons who ever catch the disease
It can be calculated as the value for which ̇𝑟 = 0 from:

̇𝑟 = 𝛾(1 − 𝑟 − 𝑠0𝑒− 𝛽
𝛾 𝑟)

This gives: 𝑟 = 1 − 𝑠0𝑒− 𝛽
𝛾 𝑟, which can be solved numerically or

graphically
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Outbreak size
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SIR Model

Outbreak size

The size of the epidemics is the function of 𝛽 (contact rate) and 𝛾
(recovery rate)
The size goes continuously to zero as 𝛽/𝛾 approaches 1 from above
Also, for 𝛽/𝛾 ≤ 1 there is no epidemic at all
The simple explanation is that if 𝛽 ≤ 𝛾 then infected individuals
recover faster than they meet with susceptible individuals
The number of infected persons starts small and goes down, and the
disease dies out instead of spreading out
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SIR Model

Python Notebook

Check SIR examples from python notebook
http://kti.tugraz.at/staff/denis/courses/netsci/
dynamics.ipynb
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SIR Model

SIR model: numerical solution
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Time series: SIR Model (Fully Mixed) x0 =0.01,β=0.9,γ=0.3
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SIR Model

Further extensions of the SI model

A different extension would be to allow for reinfection
E.g. after recovering the individuals go into susceptible S state
SIS model (with some consant rate 𝛾 the people become susceptible
again (e.g. bacteria)
Another possibility the individuals recover only temporary
SIRS model (with some sonstant rate 𝛿 the people move from
recovered to susceptible)
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SIR Model

Python Notebook

Check SIS and SIRS examples from python notebook
http://kti.tugraz.at/staff/denis/courses/netsci/
dynamics.ipynb
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SIS model: numerical solution
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Time series: SIS Model (Fully Mixed) x0 =0.01,β=1.0,γ=0.3
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SIR Model

SIRS model: numerical solution
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SIR Model

Summary: Epicemic models

Fully mixed models: no network involved
Everybody can meet anybody else
Depending on the model various behaviors
E.g. SIR model: large outbreak possible depending on the ratios of
parameters
Some people do not get infected at all
E.g. SIRS model: damped waves of small outbreaks, endemic states
Behavior dependent only on the parameters of the dynamics
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Epidemics on Networks

Epidemic models on networks

In the real world, the networks have strong effect on the way a disease
spreads through the population
E.g. through regular acquaintances, friends, neighbors, etc.
Network models of epidemics take into account the underlying
network
But in principle they work in the same way as fully mixed models
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Epidemics on Networks

Epidemic models on networks

We will define transmission rate or infection rate to be the probability
per unit time that the infection will be transmitted from an infected
to a susceptible individual, who are connected by a link in the network
The transmission rate is the property of disease
But it is also a property of the social and behavioral parameters of the
population
Given a value of transmission rate 𝛽 and the initial number of infected
individuals 𝑥0 we can generalize all the models to the network case
However, it is difficult to solve these models for a general network
Typically, we simulate the spread on a computer
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Epidemics on Networks

Late-time properties of epidemics on networks

There is one respect in which the model is straightforward
In the case 𝑡 → ∞ (late-time properties)
For example, SI model on networks
Since nobody recovers, in the end (regardless how small is 𝛽),
everyone connected to the initially infected nodes will get infected
Everyone in the component to which the initial carriers belong
Most networks have one large component that typically contains a
significant fraction of nodes
Thus, if we start with a single infected individual and that node
belongs to the large component we will have a large outbreak
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Epidemics on Networks

Late-time properties of epidemics on networks

That is the difference between fully mixed and network models of
epidemics
Fully mixed: the size of the outbreak determined by the model
parameters
Network: disease behavior determined by

1 Model parameters
2 Network structure and the position of the initial carrier
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Time-Dependent Properties

Time-dependent properties of epidemics on networks

We are interested in the average (expected) probabilities 𝑠𝑖(𝑡), 𝑥𝑖(𝑡),
or 𝑟𝑖(𝑡) of a node 𝑖 being in a given state
Given the adjacency matrix we can write down the equations for these
quantities
An SI outbreak starting on a randomly chosen node will eventually
spread to all members of the component
We are now interested only in the case of giant component
All other outbreaks have non-significant effects and die out
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Time-Dependent Properties

Time-dependent properties of the SI model

Suppose 𝑖 is in the giant component
What is the probability that 𝑖 gets infected between times 𝑡 and 𝑡 + 𝑑𝑡
To become infected 𝑖 has to catch the disease from an infected
neighbor 𝑗
Probability that 𝑗 is already infected: 𝑥𝑗 = 1 − 𝑠𝑗
Probability that the disease is transmitted: 𝛽𝑑𝑡
Additionally we require that 𝑖 is in S state beforehand (the probability
of this: 𝑠𝑖)
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Time-Dependent Properties

Time-dependent properties of the SI model

Multiplying these probabilities and summing over all neighbors of 𝑖
The total probability of becoming infected is given by:

𝑑𝑠𝑖 = −𝑠𝑖 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗𝛽𝑑𝑡 = −𝛽𝑠𝑖 ∑
𝑗

𝐴𝑖𝑗(1 − 𝑠𝑗)𝑑𝑡

𝑑𝑠𝑖
𝑑𝑡 = ̇𝑠𝑖 = −𝛽𝑠𝑖 ∑

𝑗
𝐴𝑖𝑗(1 − 𝑠𝑗)

Minus: the probability of being susceptible goes down when nodes
become infected
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Time-Dependent Properties

Time-dependent properties of the SI model

Similarly:

̇𝑥𝑖 = 𝛽𝑠𝑖 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗 = 𝛽(1 − 𝑥𝑖) ∑
𝑗

𝐴𝑖𝑗𝑥𝑗

Those two equations are really same equations since 𝑠𝑖 + 𝑥𝑖 = 1
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Time-Dependent Properties

Time-dependent properties of the SI model

We use the same initial conditions as before
We start with a single infected node chosen uniformly at random, or a
small fraction of nodes
In the limit of large network size the initial conditions are: 𝑥𝑖 = 0, and
𝑠𝑖 = 1
The equations are coupled set of 𝑛 non-linear differential equations
Can not be solved in closed form for general 𝐴𝑖𝑗
Let us therefore consider suitable limits
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Time-Dependent Properties

Time-dependent properties of the SI model

̇𝑥𝑖 = 𝛽(1 − 𝑥𝑖) ∑
𝑗

𝐴𝑖𝑗𝑥𝑗 = 𝛽 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗 − 𝑥𝑖 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗

For large 𝑛 and assuming initial conditions as above 𝑥𝑖 will be small
We can ignore terms of quadratic order in small quantities

̇𝑥𝑖 = 𝛽 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗
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Time-Dependent Properties

Time-dependent properties of the SI model

ẋ = 𝛽Ax

Linear system, which we know how to solve!
We write x as the linear combination of the eigenvectors, where v𝑟 is
the eigenvector with eigenvalue 𝜅𝑟

x(𝑡) =
𝑛

∑
𝑟=1

𝑎𝑟(𝑡)v𝑟
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Time-Dependent Properties

Time-dependent properties of the SI model

ẋ =
𝑛

∑
𝑖=1

𝑑𝑎𝑟
𝑑𝑡 v𝑟 = 𝛽A

𝑛
∑
𝑖=1

𝑎𝑟(𝑡)v𝑟 = 𝛽
𝑛

∑
𝑖=1

𝜅𝑟𝑎𝑟(𝑡)v𝑟

Then comparing terms in v𝑟:

̇𝑎𝑟 = 𝛽𝜅𝑟𝑎𝑟
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Time-Dependent Properties

Time-dependent properties of the SI model

Substituting in the previous equation:

x(𝑡) =
𝑛

∑
𝑖=1

𝑎𝑟(0)𝑒𝛽𝜅𝑟𝑡v𝑟

The fastest growing term corresponds to 𝜅1 and assuming that it
dominates over the others:

x(𝑡) ∼ 𝑒𝛽𝜅1𝑡v1
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Time-Dependent Properties

Time-dependent properties of the SI model

We expect the number of I individuals to grow exponentially
Similarly to the fully mixed model
Now, the exponential constant depends not just on 𝛽
It also depends on the leading eigenvalue of the adjacency matrix
(structure of the network)
Moreover, the probability infection in this early period varies from
node to node roughly as the corresponding element of the leading
eigenvector
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Time-Dependent Properties

Time-dependent properties of the SI model

What are the corresponding elements of the leading eigenvector?
Eigenvector centrality!
Thus, eigenvector centrality is an approximate measure of the
probability of the early infection of a node
At late times this probability tends to 1
At early times the nodes with higher eigenvector centralities become
infected faster
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Time-Dependent Properties

Python Notebook

Check SI network examples from python notebook
http://kti.tugraz.at/staff/denis/courses/netsci/
dynamics.ipynb
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Time-Dependent Properties

SI network model: numerical solution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.0

0.2

0.4

0.6

0.8

1.0
x
(t

)
Time series: SI Model (Network) x0 [0] =0.10,β=1.1

S
I
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Time-Dependent Properties

Time-dependent properties of the SIR model

We can extend these techniques to the SIR model
Again, we concentrate on outbreaks taking place in the giant
component
We define 𝑠𝑖, 𝑥𝑖, and 𝑟𝑖 to be the probabilities that node 𝑖 is in S, I, or
R state
The evolution of 𝑠𝑖 is (approximately) governed by the same equation
as before:

̇𝑠𝑖 = −𝛽𝑠𝑖 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗
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Time-Dependent Properties

Time-dependent properties of the SIR model

𝑥𝑖 (𝛾 is the recovery rate):

̇𝑥𝑖 = 𝛽𝑠𝑖 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗 − 𝛾𝑥𝑖

𝑟𝑖:

̇𝑟𝑖 = 𝛾𝑥𝑖
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Time-Dependent Properties

Time-dependent properties of the SIR model

We use the same initial conditions as before
We start with a single infected node chosen uniformly at random, or a
small fraction of nodes
In the limit of large network size the initial conditions are: 𝑥𝑖 = 0, and
𝑠𝑖 = 1
This simplifies the equation for 𝑥𝑖:

̇𝑥𝑖 = 𝛽 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗 − 𝛾𝑥𝑖 = ∑
𝑗

(𝛽𝐴𝑖𝑗 − 𝛾𝛿𝑖𝑗)𝑥𝑗
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Time-Dependent Properties

Time-dependent properties of the SIR model

ẋ = 𝛽Mx

Linear system, which we know how to solve!
M is a symmetric 𝑛 × 𝑛 matrix:

M = A − 𝛾
𝛽I
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Time-Dependent Properties

Time-dependent properties of the SIR model

We write x as the linear combination of the eigenvectors of M, where
v𝑟 is the eigenvector with eigenvalue 𝜅𝑟
Since M differs from A only in a multiple of I it has the same
eigenvectors as A

Mv𝑟 = Av𝑟 − 𝛾
𝛽Iv𝑟 = (𝜅 − 𝛾

𝛽)v𝑟

The eigenvalue has shifted by 𝛾
𝛽
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Time-Dependent Properties

Time-dependent properties of the SIR model

We can solve as previously:

x(𝑡) =
𝑛

∑
𝑖=1

𝑎𝑟(0)𝑒(𝛽𝜅𝑟−𝛾)𝑡v𝑟

The exponential constant depends on 𝛽 (infection rate), 𝛾 (recovery
rate), and 𝜅 (network structure)
The faster people recover the less chance they have to pass the
disease on the others
Again, the fastest growing term corresponds to 𝜅1 and assuming that
it dominates over the others:

x(𝑡) ∼ 𝑒(𝛽𝜅1−𝛾)𝑡v1

Denis Helic (ISDS, TU Graz) NetSci January 18, 2019 57 / 59



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Time-Dependent Properties

Time-dependent properties of the SIR model

Again, eigenvector centrality is an approximate measure of the
probability of the early infection of a node
However, it is possible now for 𝛾 to be sufficiently large that the
exponential constant in the leading term is negative
Then, the term decays exponentially rather than grows
The total number of infected individuals will decay over times
The disease dies out
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Time-Dependent Properties

Time-dependent properties of the SIR model

The point at which this happens:

𝛽𝜅1 − 𝛾 = 0
𝛽
𝛾 = 1

𝜅1

The position of epidemic threshold depends on the leading eigenvalue
of the adjacency matrix
If the leading eigenvalue is small then 𝛽 must be large, or 𝛾 must be
small for an outbreak
In other words: small value of 𝜅1 makes it harder for disease to spread
Sparse networks have smaller 𝜅1, dense networks have larger 𝜅1
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