Network Science (VU) (706.703)
Mathematics of Networks

Denis Helic

ISDS, TU Graz

October 5, 2017
Outline

1. Introduction
2. Representation of Networks
3. Directed Networks
4. Bipartite Networks
5. Degree
6. Paths
7. Components
8. The Graph Laplacian
Mathematics of networks: graph theory

Graph theory is a huge field with many results

We focus on results that are important for study of real-world networks

The slides and course structure is based on Networks: An Introduction by Mark Newman

More on graph theory in e.g. Graph Theory by Harary or Introduction to Graph Theory by West
Networks

- A *network* is a collection of nodes connected by links
- Internet: nodes are computers and links are cables
- WWW: nodes are Web pages and links are hyperlinks
- Citation network: nodes are articles and links are citations
- Social networks: nodes are people and links are friendships
- Food web: nodes are species and links are predations
Networks

- The number of nodes in a network is denoted by n and the number of links by m.
- In most cases there is at most a single link between two nodes.
- In rare cases there might be multiple links (*multilinks*) between two nodes.
- Links that connect a node to itself are called *self-links*.
- A network that has neither multilinks nor self-links is called *simple network*.
- A network with multilinks is called *multinetwork*.
Simple networks

Figure: A simple graph
Multinetworks with self-links

Figure: A simple graph with multilinks and self-links
Link lists

- There are number of ways to represent networks mathematically
- Consider a network with n nodes and let us label the nodes with integers $1...n$
- We denote a link between nodes i and j by (i,j)
- The complete network can be specified by n and list of links
The link list

(1, 2), (1, 5), (2, 3), (2, 4), (3, 4), (3, 5)
Link lists

- Link lists are typically used to store the network structure on computers.
- SNAP library that we use in this course stores networks using link lists.
- For mathematical purposes this representation is cumbersome.
- We use the *adjacency matrix*.
The adjacency matrix

Definition

The adjacency matrix A of a simple graph is the matrix with elements A_{ij} such that

$$A_{ij} = \begin{cases} 1 & \text{if there is a link between nodes } i \text{ and } j, \\ 0 & \text{otherwise.} \end{cases}$$ } (1)
The adjacency matrix

\[A = \begin{pmatrix}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{pmatrix} \] (2)
The adjacency matrix

- For a network with no self-links the diagonal elements are all equal to zero.
- The matrix is symmetric because if there is a link between \(i \) and \(j \) then there is also a link between \(j \) and \(i \).
- This holds for undirected links only.
- We can use the adjacency matrix also for multinetworks and also for self-links.
- E.g. for a triple link between \(i \) and \(j \) we set \(A_{ij} = 3 \).
- For a self-link we set \(A_{ii} = 2 \) since each link has two ends.
The adjacency matrix

\[A = \begin{pmatrix}
0 & 1 & 0 & 0 & 3 \\
1 & 2 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 & 0
\end{pmatrix} \]
Weighted networks

- Sometimes it is useful to represent links as having a strength or weight
- Internet: link weights might represent the data flow
- Social network: link value might represent the frequency of contact
- Information network: link value might represent the number of clicks on that link
- Weighted networks are also represented by the adjacency matrix
Weighted networks

\[
A = \begin{pmatrix}
0 & 4 & 0 & 0 & 1.5 \\
4 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & 8 & 0.5 \\
0 & 2 & 8 & 0 & 0 \\
1.5 & 0 & 0.5 & 0 & 0 \\
\end{pmatrix}
\] (4)
Weighted networks

\[\mathbf{A} = \begin{pmatrix}
0 & 4 & 0 & 0 & 1.5 \\
4 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & 8 & 0.5 \\
0 & 2 & 8 & 0 & 0 \\
1.5 & 0 & 0.5 & 0 & 0
\end{pmatrix} \]
Weighted networks

\[A = \begin{pmatrix}
0 & 4 & 0 & 0 & 1.5 \\
4 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & 8 & 0.5 \\
0 & 2 & 8 & 0 & 0 \\
1.5 & 0 & 0.5 & 0 & 0
\end{pmatrix} \] (6)
Directed networks

- In a *directed network* each link has a direction
- Each link points *from* one node *to* another
- Web: hyperlinks point from one page to another
- Citation networks: citations point from one article to another
- Directed networks are also represented by the adjacency matrix
Directed networks

Figure: A directed network
Directed networks

Definition

The adjacency matrix A of a directed networks is the matrix with elements A_{ij} such that

$$A_{ij} = \begin{cases}
1 & \text{if there is a link from } j \text{ to } i, \\
0 & \text{otherwise.}
\end{cases}$$

(7)
Directed networks

\[A = \begin{pmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix} \] (8)
Directed networks

- For the purpose of analysis it is sometimes useful to turn a directed network into a undirected one
- Some analytic techniques exist only for undirected networks
- One possibility is to ignore link directions completely
- We lose important information
- Better: cocitation and bibliographic coupling
Cocitation

- The *cocitation* of two nodes i and j in a directed network is the number of nodes that point to both i and j.
- The number of papers that cite both i and j papers.
- $A_{ik}A_{jk} = 1$ if i and j are both cited by k and zero otherwise.
Cocitation

Figure: Cocitation: Nodes i and j are cited by three common papers, so their cocitation is 3.
Cocitation

Definition

The cocitation C_{ij} of i and j is

$$C_{ij} = \sum_{k=1}^{n} A_{ik}A_{jk} = \sum_{k=1}^{n} A_{ik}A_{kj}^{T}$$

(9)

$$C = AA^{T}$$

(10)
Cocitation

- \mathbf{C} is a $n \times n$ matrix
- It is symmetric since $\mathbf{C}^T = (\mathbf{AA}^T)^T = \mathbf{AA}^T = \mathbf{C}$
- We define *cocitation network* in which there is a link if $C_{ij} > 0$ for $i \neq j$
Cocitation

- We can also make the cocitation network a weighted network with weights corresponding to C_{ij}.
- Node pairs cited by more common papers have a stronger connection than those cited by fewer.
- Higher cocitation is an indication that they deal with a similar topic.
- The cocitation matrix is symmetric thus the cocitation network is undirected.
Cocitation

The diagonal elements: total number of papers citing i

$$C_{ii} = \sum_{k=1}^{n} A_{ik}^2 = \sum_{k=1}^{n} A_{ik}$$ \hspace{1cm} (11)
Cocitation

\[
A = \begin{pmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
\end{pmatrix} \quad (12)
\]

\[
C = \begin{pmatrix}
2 & 0 & 1 & 0 & 2 \\
0 & 2 & 1 & 0 & 0 \\
1 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 2 \\
\end{pmatrix} \quad (13)
\]
Cocitation

\[C = \begin{pmatrix}
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 \\
\end{pmatrix} \] \quad (14)
Bibliographic coupling

- The *bibliographic coupling* of two nodes i and j in a directed network is the number of other nodes to which both i and j point.
- The number of other papers that are cited by both i and j.
- $A_{ki}A_{kj} = 1$ if i and j both cite k and zero otherwise.
Figure: Bibliographic coupling: Nodes i and j cite three of the same papers, so their bibliographic coupling is 3.
Directed Networks

Bibliographic coupling

Definition

The bibliographic coupling B_{ij} of i and j is

\[B_{ij} = \sum_{k=1}^{n} A_{ki}A_{kj} = \sum_{k=1}^{n} A_{ik}^T A_{kj} \]
(15)

\[\mathbf{B} = \mathbf{A}^T \mathbf{A} \]
(16)
Bibliographic coupling

- B is a $n \times n$ matrix
- It is symmetric since $B^T = (A^T A)^T = A^T A = B$
- We define bibliographic coupling network in which there is a link if $B_{ij} > 0$ for $i \neq j$
Bibliographic coupling

- Again, we can make the bibliographic coupling network a weighted network with weights corresponding to B_{ij}.
- Node pairs that cite both more common papers have a stronger connection than those citing fewer common papers.
- Higher bibliographic coupling is an indication that they deal with a similar subject matter.
- The bibliographic coupling matrix is symmetric thus the bibliographic coupling network is undirected.
Bibliographic coupling

The diagonal elements: the number of papers i cites

$$B_{ii} = \sum_{k=1}^{n} A_{ki}^2 = \sum_{k=1}^{n} A_{ki}$$ \hspace{1cm} (17)
Bibliographic coupling

\[
A = \begin{pmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
\] \hspace{1cm} (18)

\[
B = \begin{pmatrix}
1 & 1 & 0 & 0 & 1 \\
1 & 3 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 2 & 0 \\
1 & 1 & 1 & 0 & 2 \\
\end{pmatrix}
\] \hspace{1cm} (19)
Bibliographic coupling

\[
\mathbf{B} = \begin{pmatrix}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{pmatrix}
\] (20)
Directed Networks

Cocitation/Bibliographic coupling

(a) A directed network

(b) Cocitation network

(c) Bibl. coupling network
Directed Networks

Cocitation vs. bibliographic coupling

- Mathematically similar measures but give different results
- Strong cocitation: both nodes are pointed to by many of the same nodes
- Both nodes have to have a lot of incoming links in the first place
- Both papers have to be well cited: influential papers such as surveys, review articles, and so on
Cocitation vs. bibliographic coupling

- Strong bibliographic coupling: both papers cite many other papers
- They have large bibliographies
- The sizes of bibliographies vary less than the number of citations
- Bibliographic coupling is a more uniform indicator of paper similarity
Directed Networks

Cocitation vs. bibliographic coupling

- Bibliographic coupling can be computed as soon as the paper is published.
- Citation can be computed only after the paper has been cited.
- Cocitation changes over the time.
- That is the reason why bibliographic coupling is typically used as a similarity metric for papers in digital libraries.
- This discussion points out the differences between incoming and outgoing links in a directed network (cf. PageRank, HITS, ...).
Bipartite networks

- Another way to represent group memberships is by means of a bipartite network
- Two-mode networks in sociology
- In such networks we have two types of nodes
- One type represents the original nodes
- The other type represents the groups to which the original nodes belong (actors-movies, authors-papers, ...)
- The links can connect only nodes of different types
Bipartite networks

Figure: A bipartite network
The incidence matrix

Definition

If n is the number of nodes and g is the number of groups, then the incidence matrix B is a $g \times n$ matrix with elements B_{ij} such that

$$B_{ij} = \begin{cases}
1 & \text{if node } j \text{ belongs to group } i, \\
0 & \text{otherwise.}
\end{cases} \quad (21)$$
The incidence matrix

\[B = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{pmatrix} \]
Sometimes we want to work with direct connections between nodes of the same type.
We infer such connections from the bipartite network by creating a *one-mode projection*.
E.g. for the actor-movie network we create a one-mode projection onto actors.
Two actors are connected if they appeared in a movie together.
In the projection on the movies, two movies are connected if they share a common actor.
One-mode projections

Figure: One-mode projections of a bipartite network
One-mode projections

- One-mode projections constructed in this way are useful but a lot of information is lost.
- E.g. if actors are connected that means that they acted together in a movie but we do not know in how many movies.
- We can capture this information by making the one-mode projections weighted.
- Mathematically, we can write the projection in the terms of the incidence matrix.
- $B_{ki}B_{kj} = 1$ iff i and j belong to the same group k.
Projection on nodes

Definition

The total number P_{ij} of groups to which both i and j belong is

$$P_{ij} = \sum_{k=1}^{g} B_{ki}B_{kj} = \sum_{k=1}^{g} B_{ik}^T B_{kj}$$

(23)

$$P = B^T B$$

(24)
Projection on nodes

The diagonal elements: the number of groups to which \(i \) belongs

\[
P_{ii} = \sum_{k=1}^{g} B_{ki}^2 = \sum_{k=1}^{g} B_{ki} \tag{25}
\]

- \(P \) is similar to the bibliographic coupling matrix. We can turn it into the adjacency matrix of a weighted network by setting the diagonal elements to zero
Projection on nodes

\[P = \begin{pmatrix} 2 & 2 & 0 & 1 & 1 & 0 \\ 2 & 3 & 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 2 & 0 & 1 \\ 1 & 2 & 2 & 4 & 2 & 2 \\ 1 & 1 & 0 & 2 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 2 \end{pmatrix} \] (26)
Projection on groups

Definition

The number P'_{ij} of common members of groups i and j is

$$P'_{ij} = \sum_{k=1}^{n} B_{ik}B_{jk} = \sum_{k=1}^{n} B_{ik}B_{kj}$$ \hspace{1cm} (27)

$$P' = BB^T$$ \hspace{1cm} (28)
The diagonal elements: the number of members in group i

$$P'_{ii} = \sum_{k=1}^{n} B_{ik}^2 = \sum_{k=1}^{n} B_{ik}$$ (29)

- P' is similar to the cocitation matrix. We can turn it into the adjacency matrix of a weighted network by setting the diagonal elements to zero.
Projection on groups

\[
P' = \begin{pmatrix} 2 & 1 & 0 & 2 & 0 \\ 1 & 3 & 2 & 2 & 1 \\ 0 & 2 & 3 & 1 & 2 \\ 2 & 2 & 1 & 4 & 2 \\ 0 & 1 & 2 & 2 & 3 \end{pmatrix}
\] (30)
• The *degree* of a node is the number of links connected to it
• We denote the degree of node *i* by *k*_{*i*}

The degree in terms of the adjacency matrix (undirected networks)

\[k_i = \sum_{j=1}^{n} A_{ij} \]

(31)
Every link has two ends, hence there are $2m$ link ends in an undirected network.

The number of link ends is equal to the sum of the degrees of all the nodes.

The degrees and the number of links:

1. $2m = \sum_{i=1}^{n} k_i$ (32)
2. $m = \frac{1}{2} \sum_{i=1}^{n} k_i = \frac{1}{2} \sum_{ij} A_{ij}$ (33)
The mean degree c in an undirected graph

\[c = \frac{1}{n} \sum_{i=1}^{n} k_i \quad (34) \]

\[c = \frac{2m}{n} \quad (35) \]
Network density

- The maximum number of links in a simple network is equal to the number of possible combinations of node pairs: \(\binom{n}{2} = \frac{1}{2}n(n-1) \)

Density is the fraction of links that actually exist

\[
\rho = \frac{m}{\binom{n}{2}} = \frac{2m}{n(n-1)} = \frac{c}{n-1}
\] (36)
Network density

- The density lies in the range $0 \leq \rho \leq 1$
- What is the behavior of ρ as $n \to \infty$
- If ρ tends to a constant as $n \to \infty$ the network is said to be dense. The fraction of non-zero elements in the adjacency matrix remains constant as the network gets larger.
Network density

- If $\rho \to 0$ as $n \to \infty$ the network is said to be \textit{sparse}. The fraction of non-zero elements in the adjacency matrix also tends to zero.
- In particular, a network is \textit{sparse} if the mean degree c tends to constant as n becomes larger.
- Almost all empirical networks we are interested in are sparse: the Web, Wikipedia, social networks, ...
- This has some important consequences when we design network algorithms
In directed networks we have *in-degree* and *out-degree*

- In-degree is the number of ingoing links and out-degree is the number of outgoing links

The degree in directed networks

\[
k_i^{in} = \sum_{j=1}^{n} A_{ij}
\]

(37)

\[
k_j^{out} = \sum_{i=1}^{n} A_{ij}
\]

(38)
Mean degree

The mean degree c in a directed graph

$$m = \sum_{i=1}^{n} k^\text{in}_i = \sum_{j=1}^{n} k^\text{out}_j = \sum_{ij} A_{ij}$$ \hspace{1cm} (39)$$

$$c^\text{in}_i = \frac{1}{n} \sum_{i=1}^{n} k^\text{in}_i = \frac{1}{n} \sum_{j=1}^{n} k^\text{out}_j = c^\text{out}$$ \hspace{1cm} (40)$$

$$c = \frac{m}{n}$$ \hspace{1cm} (41)$$
A path in a network is a sequence of nodes such that each consecutive pair of nodes is connected by a link.

A path is a route between two nodes across a network.

In directed networks each link is traversed in the link direction.

A path can intersect itself, e.g. a node can be visited more than once, or a link can be traversed more than once.

If the path does not intersect itself it is called a self-avoiding path.

The length of a path is the number of links traversed along that path.
Figure: A path of length three in a network
Number of paths

- A_{ij} is 1 if there is a link from j to i, and 0 otherwise
- $A_{ik}A_{kj}$ is 1 if there is a path of length 2 from j to i via k

The total number $N_{ij}^{(2)}$ of paths of length 2 from j to i

$$N_{ij}^{(2)} = \sum_{k=1}^{n} A_{ik}A_{kj} = [A^2]_{ij} \quad (42)$$

- $[...]_{ij}$ denotes the ijth element of the matrix
Number of paths

- $A_{ik}A_{kl}A_{lj}$ is 1 if there is a path of length 3 from j to i via l and k

The total number $N_{ij}^{(3)}$ of paths of length 3 from j to i

$$N_{ij}^{(3)} = \sum_{k,l=1}^{n} A_{ik}A_{kl}A_{lj} = [A^3]_{ij}$$ (43)
WE can generalize to the paths of arbitrary length r

The total number $N_{ij}^{(r)}$ of paths of length r from j to i

$$N_{ij}^{(r)} = [A^r]_{ij}$$ (44)
Number of cycles

- Paths that start and end at i are cycles in a network.
- The number of cycles of length r is $[A^r]_{ii}$.

The total number L_r of cycles of length r in a network

$$L_r = \sum_{i=1}^{n} [A^r]_{ii} = \text{Tr}A^r$$ (45)

- Tr is a trace of a matrix, i.e. the sum of elements on the main diagonal.
Number of cycles

- We can express the last equation in terms of the eigenvalues of the adjacency matrix.
- For undirected graphs the adjacency matrix is symmetric.
- The adjacency matrix has n real eigenvalues.
- The eigenvectors have real elements.
- The adjacency matrix can be written in form $\mathbf{A} = \mathbf{U} \mathbf{K} \mathbf{U}^T$.
- \mathbf{U} is the orthogonal matrix of eigenvectors and \mathbf{K} is the diagonal matrix of eigenvalues.
Number of cycles

Then \(A^r = (UKU^T)^r = UK^rU^T \)

Since \(UU^T = I \) because \(U^T = U^{-1} \)

The total number \(L_r \) of cycles of length \(r \) in a network

\[
L_r = \text{Tr}(UK^rU^T) = \text{Tr}(UU^TK^r) = \text{Tr}K^r = \sum_i \kappa_i^r \tag{46}
\]
Number of cycles

- The last follows since trace of a matrix is invariant under cyclic permutations
- κ_i is the ith eigenvalue of the adjacency matrix
- Same equation holds for directed networks, although the proof is a bit more complicated
- Although some eigenvalues might be complex they always come in complex-conjugate pairs: $\det(\kappa I - A)$
- Each term is complemented by another that is its complex conjugate and thus the sum is always real
Geodesic paths

- A **geodesic path** or a **shortest path** is a path between two nodes such that no shorter path exists.
- It is possible that there is no shortest path between two nodes if they are not connected.
- By convention we say that the distance between those two nodes is infinite.
Geodesic paths

Figure: A geodesic (shortest) path of length two between two nodes
Geodesic paths

- Geodesic paths are self-avoiding paths
- There may be more than one geodesic path in a network
- The *diameter* of a network is a length of the longest shortest path in that network
Components

- Sometimes there is no path between two nodes
- A network might be divided into two or more node subgroups with no connection between the groups
- If there exist a node pair with no path between them the network is *disconnected*
- If there is a path from every node to every other node then the network is *connected*
- The subgroups in a network are called *components*
- A single node with no links is also a component of size 1 and a connected network has a single component
Figure: A network with two components
With a proper labeling we can write the adjacency matrix in the following form

\[A = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \]

(47)
Components in directed networks

- Now we take into account the direction of links
- E.g. each hyperlink on the Web is a directed link
- If we ignore directions we have the undirected case and speak about weakly connected components
- Sometimes, we have a directed path from A to B, but no such path from B to A
Components in directed networks

Figure: Components in a directed network
Components in directed networks

- If both paths exist then A and B are *strongly connected*
- Subsets of nodes that are strongly connected are called *strongly connected components*
- A single node with constitutes a strongly connected component of size 1
- Every node in a strongly connected component must belong to at least one cycle
- Every strongly connected component in a directed acyclic networks has only a single node
Components in directed networks

- Sometimes we are interested in other kinds of components (e.g. which Web pages can I reach from a given Web page)
- Out-component is the set of nodes that reachable via directed paths from a specified node A, and including A itself
- Links from external nodes (such that are not in an out-component) only point inward towards the members of the component
Components in directed networks

- Out-component is a property of the network structure and a starting node
- Out-components of all members of a strongly connected component are identical (since all members of a strongly connected component are mutually reachable)
- Thus, out-components belong to strongly connected components
Components in directed networks

- Similarly, *in-component* is the set of nodes (including A) from which via directed paths a specified node A can be reached.
- Links to external nodes (such that are not in an in-component) only point outward from the members of the component.
- In-component is a property of the network structure and a starting node.
Components in directed networks

- In-components of all members of a strongly connected component are identical (since all members of a strongly connected component are mutually reachable)
- Therefore, in-components belong to strongly connected components
- A strongly connected component is the intersection of its in- and out-components
Components in directed networks

Figure: In- and out-components in a directed network
The Graph Laplacian

- The adjacency matrix captures the whole structure of a network
- There is another matrix, closely related to the adjacency matrix
- However, it differs in some important aspects which can provide some additional information about the network structure
- This is the graph Laplacian
The graph Laplacian

Definition

The degree matrix \(D \) of a simple undirected graph is the diagonal matrix with the node degrees along its diagonal:

\[
D =
\begin{pmatrix}
 k_1 & 0 & 0 & \ldots \\
 0 & k_2 & 0 & \ldots \\
 0 & 0 & k_3 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

(48)
The graph Laplacian

Definition

The graph Laplacian L of a simple undirected graph is defined as:

$$ L = D - A $$

(49)
The Graph Laplacian

Definition

The graph Laplacian \mathbf{L} of a simple undirected graph is the matrix with elements L_{ij} such that

$$L_{ij} = \begin{cases}
 k_i & \text{if } i = j \\
 -1 & \text{if there is a link between nodes } i \text{ and } j \text{ and } i \neq j \\
 0 & \text{otherwise.}
\end{cases} \quad (50)$$
Alternatively, we can write

\(\delta_{ij} \) is the Kronecker delta, which is 1 for \(i = j \) and 0 otherwise

\[
L_{ij} = \delta_{ij}k_i - A_{ij}
\] (51)
The graph Laplacian

\[\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix} \] (52)
The graph Laplacian

Figure: $D = diag(sum(A))$

$$D = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$ (53)
The graph Laplacian

\[L = D - A \]

Figure: \(L = D - A \)

\[
L = \begin{pmatrix}
2 & -1 & 0 & 0 & -1 \\
-1 & 3 & -1 & -1 & 0 \\
0 & -1 & 3 & -1 & -1 \\
0 & -1 & -1 & 2 & 0 \\
-1 & 0 & -1 & 0 & 2 \\
\end{pmatrix}
\] (54)
Eigenvalues of the graph Laplacian

- The eigenvalues of the graph Laplacian are its most interesting property
- The Laplacian is a symmetric matrix → it has real eigenvalues
- We can even show that all of its eigenvalues are non-negative
- Also, we can show that its smallest eigenvalue $\lambda_1 = 0$
The link incidence matrix

Definition

The link incidence matrix \mathbf{B} of a simple undirected graph with n nodes and m links is an $m \times n$ matrix with elements B_{ij} such that

$$B_{ij} = \begin{cases}
1 & \text{if end 1 of link } i \text{ is attached to node } j \\
-1 & \text{if end 2 of link } i \text{ is attached to node } j \\
0 & \text{otherwise.}
\end{cases}$$

(55)

- We designate for each link one end as end 1 and other as end 2
- Each row of the link incidence matrix has exactly one 1 and one -1
The link incidence matrix

- What is the value of $B_{ki}B_{kj}$ for $i \neq j$
The link incidence matrix

- What is the value of $B_{ki}B_{kj}$ for $i \neq j$?
- If link k connects i and j then the product has value -1, otherwise it is 0.
- What is the value of $\sum_k B_{ki}B_{kj}$ for $i \neq j$?
The link incidence matrix

- What is the value of $B_{ki}B_{kj}$ for $i \neq j$?
- If link k connects i and j then the product has value -1, otherwise it is 0.
- What is the value of $\sum_k B_{ki}B_{kj}$ for $i \neq j$?
- In a simple graph there is at most one link connecting i and j.
- If there is a link between i and j the sum is -1, otherwise it is 0.
The link incidence matrix

- What is the value of B_{ki}^2 for $i = j$
The link incidence matrix

- What is the value of B_{ki}^2 for $i = j$
- If link k connects to i the product has value 1, otherwise it is 0
- What is the value of $\sum_k B_{ki}^2$ for $i = j$
The link incidence matrix

- What is the value of B_{ki}^2 for $i = j$?
- If link k connects to i the product has value 1, otherwise it is 0.
- What is the value of $\sum_k B_{ki}^2$ for $i = j$?
- It is equal to the degree k_i of node i.

Denis Helic (ISDS, TU Graz)
The link incidence matrix

- Thus, $\sum_k B_{ki}B_{kj} = L_{ij}$
- The diagonal elements L_{ii} are equal to the degrees k_i
- The off-diagonal elements are -1 if there is a link between i and j

$L = B^TB$ (56)
The Graph Laplacian

Eigenvalues of the graph Laplacian

- Let v_i be an eigenvector of L with eigenvalue λ_i, then $Lv_i = \lambda_i v_i$

$$v_i^T B^T B v_i = v_i^T L v_i = \lambda_i v_i^T v_i = \lambda_i$$ (57)

- We assume that v_i is normalized, so that its scalar product with itself is 1
Any eigenvalue λ_i is equal to the scalar product of (Bv_i) with itself $(v_i^T B)(Bv_i)$

(Bv_i) is a vector with real elements

The product is the sum of the squares of real elements

$\lambda_i \geq 0$, for all i

In fact, the Laplacian always has at least one zero eigenvalue
Eigenvalues of the graph Laplacian

\[L \left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array} \right) = \left(\begin{array}{c}
\sum_j (\delta_{1j}k_{1j} - A_{1j}) \\
\sum_i (\delta_{ij}k_{ij} - A_{ij}) \\
\vdots \\
\sum_j (\delta_{1j}k_{1j} - A_{1j})
\end{array} \right) = \left(\begin{array}{c}
k_1 - \sum_j A_{1j} \\
k_i - \sum_j A_{ij} \\
\vdots \\
k_1 - \sum_j A_{1j}
\end{array} \right) = \left(\begin{array}{c}
k_1 - k_1 \\
k_i - k_i \\
\vdots \\
k_1 - k_1
\end{array} \right) = \left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array} \right) = 0 \left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array} \right) \] (58)
The vector 1 is always an eigenvector of L with eigenvalue 0
There are no negative eigenvalues, thus this is the lowest eigenvalue
Convention: $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$
We always have $\lambda_1 = 0$
Components and the algebraic connectivity

- Suppose we have a network with \(c \) different components
- The components have sizes \(n_1, n_2, \ldots, n_c \)

\[
L = \begin{pmatrix}
0 & \cdots \\
\vdots & \ddots & 0 \\
\vdots & \ddots & \ddots
\end{pmatrix}
\] (59)
Components and the algebraic connectivity

\[v = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 0 \\ 0 \\ \vdots \end{pmatrix} \] \hspace{1cm} (60)

- We have \(n_1 \) ones and this is an eigenvector with eigenvalue 0
- We have \(c \) such eigenvectors
Components and the algebraic connectivity

- In a network with \(c \) components \(c \) eigenvalues are equal to 0
- The second eigenvalue \(\lambda_2 \) of the graph Laplacian is non-zero iff the network is connected
- The second eigenvalue of the Laplacian is called *algebraic connectivity*
- It is a measure of how connected is a network, i.e. how difficult is to divide that network