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Introduction

Introduction

Mathematics of networks: graph theory
Graph theory is a huge field with many results
We focus on results that are important for study of real-world
networks
The slides and course structure is based on Networks: An
Introduction by Mark Newman
More on graph theory in e.g. Graph Theory by Harary or Introduction
to Graph Theory by West
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Introduction

Networks

A network is a collection of nodes connected by links
Internet: nodes are computers and links are cables
WWW: nodes are Web pages and links are hyperlinks
Citation network: nodes are articles and links are citations
Social networks: nodes are people and links are friendships
Food web: nodes are species and links are predations
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Introduction

Networks

The number of nodes in a network is denoted by 𝑛 and the number
od links by 𝑚
In most cases there is at most a single link between two nodes
In rare cases there might be multiple links (multilinks) between two
nodes
Links that connect a node to itself are called self-links
A network that has neither multilinks nor self-links is called simple
network
A network with multilinks is called multinetwork
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Introduction

Simple networks

1

2

3 4

5

Link

Node

Figure: A simple graph
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Introduction

Multinetworks with self-links

1

2

3 4

5

Multilink

Self-link

Figure: A simple graph with multilinks and self-links
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Representation of Networks

Link lists

There are number of ways to represent networks mathematically
Consider a network with 𝑛 nodes and let us label the nodes with
integers 1...𝑛
We denote a link between nodes 𝑖 and 𝑗 by (𝑖, 𝑗)
The complete network can be specified by 𝑛 and list of links
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Representation of Networks

The link list

1

2

3 4

5

(1, 2), (1, 5), (2, 3), (2, 4), (3, 4), (3, 5)
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Representation of Networks

Link lists

Link lists are typically used to store the network structure on
computers
SNAP library that we use in this course stores networks using link lists
For mathematical purposes this representation is cumbersome
We use the adjacency matrix
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Representation of Networks

The adjacency matrix

Definition
The adjacency matrix 𝐀 of a simple graph is the matrix with elements 𝐴𝑖𝑗
such that

𝐴𝑖𝑗 =
⎧{
⎨{⎩

1 if there is a link between nodes 𝑖 and 𝑗,
0 otherwise.

(1)
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Representation of Networks

The adjacency matrix

1

2

3 4

5

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 1
1 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2)
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Representation of Networks

The adjacency matrix

For a network with no self-links the diagonal elements are all equal to
zero
The matrix is symmetric because if there is a link between 𝑖 and 𝑗
then there is also a link between 𝑗 and 𝑖
This holds for undirected links only
We can use the adjacency matrix also for multinetworks and also for
self-links
E.g. for a triple link between 𝑖 and 𝑗 we set 𝐴𝑖𝑗 = 3
For a self-link we set 𝐴𝑖𝑖 = 2 since each link has two ends
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Representation of Networks

The adjacency matrix

1

2

3 4

5

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 3
1 2 1 1 0
0 1 0 1 1
0 1 1 0 0
3 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3)
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Representation of Networks

Weighted networks

Sometimes it is useful to represent links as having a strength or weight
Internet: link weights might represent the data flow
Social network: link value might represent the frequency of contact
Information network: link value might represent the number of clicks
on that link
Weighted networks are also represented by the adjacency matrix
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Representation of Networks

Weighted networks

1

2

3 4

5

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 4 0 0 1.5
4 0 1 2 0
0 1 0 8 0.5
0 2 8 0 0

1.5 0 0.5 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4)
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Representation of Networks

Weighted networks

1

2

3 4

5

4 2

8
1

0.5
1.5

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 4 0 0 1.5
4 0 1 2 0
0 1 0 8 0.5
0 2 8 0 0

1.5 0 0.5 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5)
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Representation of Networks

Weighted networks

1

2

3 4

5

4 2

8
1

0.5
1.5

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 4 0 0 1.5
4 0 1 2 0
0 1 0 8 0.5
0 2 8 0 0

1.5 0 0.5 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6)
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Directed Networks

Directed networks

In a directed network each link has a direction
Each links points from one node to another
Web: hyperlinks point from one page to another
Citation networks: citations point from one article to another
Directed networks are also represented by the adjacency matrix
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Directed Networks

Directed networks

1

2
3 4

5
Figure: A directed network
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Directed Networks

Directed networks

Definition
The adjacency matrix 𝐀 of a directed networks is the matrix with elements
𝐴𝑖𝑗 such that

𝐴𝑖𝑗 =
⎧{
⎨{⎩

1 if there is a link from 𝑗 to 𝑖,
0 otherwise.

(7)
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Directed Networks

Directed networks

1

2
3 4

5

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 0
0 0 1 0 1
1 1 0 0 1
0 0 0 0 0
0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(8)
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Directed Networks

Directed networks

For the purpose of analysis it is sometimes useful to turn a directed
network into a undirected one
Some analytic techniques exist only for undirected networks
One possibility is to ignore link directions completely
We lose important information
Better: cocitation and bibliographic coupling
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Directed Networks

Cocitation

The cocitation of two nodes 𝑖 and 𝑗 in a directed network is the
number of nodes that point to both 𝑖 and 𝑗
The number of papers that cite both 𝑖 and 𝑗 papers
𝐴𝑖𝑘𝐴𝑗𝑘 = 1 if 𝑖 and 𝑗 are both cited by 𝑘 and zero otherwise
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Directed Networks

Cocitation

ji

Figure: Cocitation: Nodes 𝑖 and 𝑗 are cited by three common papers, so their
cocitation is 3.
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Directed Networks

Cocitation

Definition
The cocitation 𝐶𝑖𝑗 of 𝑖 and 𝑗 is

𝐶𝑖𝑗 =
𝑛

∑
𝑘=1

𝐴𝑖𝑘𝐴𝑗𝑘 =
𝑛

∑
𝑘=1

𝐴𝑖𝑘𝐴𝑇
𝑘𝑗 (9)

𝐂 = 𝐀𝐀𝑇 (10)
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Directed Networks

Cocitation

𝐂 is a 𝑛 × 𝑛 matrix
It is symmetric since 𝐂𝑇 = (𝐀𝐀𝑇)

𝑇
= 𝐀𝐀𝑇 = 𝐶

We define cocitation network in which there is a link if 𝐶𝑖𝑗 > 0 for
𝑖 ≠ 𝑗
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Directed Networks

Cocitation

We can also make the cocitation network a weighted network with
weights corresponding to 𝐶𝑖𝑗
Node pairs cited by more common papers have a stronger connection
than those cited by fewer
Higher cocitaiton is an indication that they deal with a similar topic
The cocitation matrix is symmetric thus the cocitation network is
undirected
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Directed Networks

Cocitation

The diagonal elements: total number of papers citing 𝑖

𝐶𝑖𝑖 =
𝑛

∑
𝑘=1

𝐴2
𝑖𝑘 =

𝑛
∑
𝑘=1

𝐴𝑖𝑘 (11)
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Directed Networks

Cocitation

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 0
0 0 1 0 1
1 1 0 0 1
0 0 0 0 0
0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(12) 𝐂 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 1 0 2
0 2 1 0 0
1 1 3 0 1
0 0 0 0 0
2 0 1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(13)
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Directed Networks

Cocitation

1

2

3 4

5

1

2

1

1

𝐂 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 2
0 0 1 0 0
1 1 0 0 1
0 0 0 0 0
2 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(14)
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Directed Networks

Bibiliographic coupling

The bibliographic coupling of two nodes 𝑖 and 𝑗 in a directed network
is the number of other nodes to which both 𝑖 and 𝑗 point
The number of other papers that are cited by both 𝑖 and 𝑗
𝐴𝑘𝑖𝐴𝑘𝑗 = 1 if 𝑖 and 𝑗 both cite 𝑘 and zero otherwise
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Directed Networks

Bibliographic coupling

ji

Figure: Bibliographic coupling: Nodes 𝑖 and 𝑗 cite three of the same papers, so
their bibliographic coupling is 3.
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Directed Networks

Bibliographic coupling

Definition
The bibliographic coupling 𝐵𝑖𝑗 of 𝑖 and 𝑗 is

𝐵𝑖𝑗 =
𝑛

∑
𝑘=1

𝐴𝑘𝑖𝐴𝑘𝑗 =
𝑛

∑
𝑘=1

𝐴𝑇
𝑖𝑘𝐴𝑘𝑗 (15)

𝐁 = 𝐀𝑇𝐀 (16)
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Directed Networks

Bibliographic coupling

𝐁 is a 𝑛 × 𝑛 matrix
It is symmetric since 𝐁𝑇 = (𝐀𝑇𝐀)𝑇 = 𝐀𝑇𝐀 = 𝐵
We define bibliographic coupling network in which there is a link if
𝐵𝑖𝑗 > 0 for 𝑖 ≠ 𝑗
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Directed Networks

Bibliographic coupling

Again, we can make the bibliographic coupling network a weighted
network with weights corresponding to 𝐵𝑖𝑗
Node pairs that cite both more common papers have a stronger
connection than those citing fewer common papers
Higher bibliographic coupling is an indication that they deal with a
similar subject matter
The bibliographic coupling matrix is symmetric thus the bibliographic
coupling network is undirected
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Directed Networks

Bibliographic coupling

The diagonal elements: the number of papers 𝑖 cites

𝐵𝑖𝑖 =
𝑛

∑
𝑘=1

𝐴2
𝑘𝑖 =

𝑛
∑
𝑘=1

𝐴𝑘𝑖 (17)
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Directed Networks

Bibliographic coupling

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 0
0 0 1 0 1
1 1 0 0 1
0 0 0 0 0
0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(18) 𝐁 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0 1
1 3 0 2 1
0 0 1 0 1
0 2 0 2 0
1 1 1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(19)
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Directed Networks

Bibliographic coupling

1

2

3 4

5

1 2

1

1

1

𝐁 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 1
1 0 0 2 1
0 0 0 0 1
0 2 0 0 0
1 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(20)
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Directed Networks

Cocitation/Bibliographic coupling

1

2
3 4

5

(a) A directed
network

1

2

3 4

5

1

2

1

1

(b) Cocitation
network

1

2

3 4

5

1 2

1

1

1

(c) Bibl. coupling
network
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Directed Networks

Cocitation vs. bibliographic coupling

Mathematically similar measures but give different results
Strong cocitation: both nodes are pointed to by many of the same
nodes
Both nodes have to have a lot of incoming links in the first place
Both papers have to be well cited: influential papers such as surveys,
review articles, and so on
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Directed Networks

Cocitation vs. bibliographic coupling

Strong bibliographic coupling: both papers cite many other papers
They have large bibliographies
The sizes of bibliographies vary less than the number of citations
Bibliographic coupling is a more uniform indicator of paper similarity
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Directed Networks

Cocitation vs. bibliographic coupling

Bibliographic coupling can be computed as soon as the paper is
published
Citation can be computed only after the paper has been cited
Cocitation changes over the time
That is the reason why bibliographic coupling is typically used as a
similarity metric for papers in digital libraries
This discussion points out the differences between incoming and
outgoing links in a directed network (cf. PageRank, HITS, ...)
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Bipartite Networks

Bipartite networks

Another way to represent group memberships is by means of a
bipartite network
Two-mode networks in sociology
In such networks we have two types of nodes
One type represents the original nodes
The other type represents the groups to which the original nodes
belong (actors-movies, authors-papers, ...)
The links can connect only nodes of different types
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Bipartite Networks

Bipartite networks

1 2 3 4 5 6
Figure: A bipartite network
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Bipartite Networks

The incidence matrix

Definition
If 𝑛 is the number of nodes and 𝑔 is the number of groups, then the
incidence matrix 𝐁 is a 𝑔 × 𝑛 matrix with elements 𝐵𝑖𝑗 such that

𝐵𝑖𝑗 =
⎧{
⎨{⎩

1 if node 𝑗 belongs to group 𝑖,
0 otherwise.

(21)
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Bipartite Networks

The incidence matrix

1 2 3 4 5 6

𝐁 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0 0 0
0 1 1 1 0 0
0 0 1 1 0 1
1 1 0 1 1 0
0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(22)
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Bipartite Networks

One-mode projections

Sometimes we want to work with direct connections between nodes of
the same type
We infer such connections from the bipartite network by creating a
one-mode projection
E.g. for the actor-movie network we create a one-mode projection
onto actors
Two actors are connected if they appeared in a movie together
In the projection on the movies, two movies are connected if they
share a common actor
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Bipartite Networks

One-mode projections

1 2 3 4 5 6

A
B C D EA

B C

D E

1 2 3

4 5

6

Figure: One-mode projections of a bipartite network
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Bipartite Networks

One-mode projections

One-mode projections constructed in this way are useful but a lot of
information is lost
E.g. if actors are connected that means that they acted together in a
movie but we do not know in how many movies
We can capture this information by making the one-mode projections
weighted
Mathematically, we can write the projection in the terms of the
incidence matrix
𝐵𝑘𝑖𝐵𝑘𝑗 = 1 iff 𝑖 and 𝑗 belong to the same group 𝑘
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Bipartite Networks

Projection on nodes

Definition
The total number 𝑃𝑖𝑗 of groups to which both 𝑖 and 𝑗 belong is

𝑃𝑖𝑗 =
𝑔

∑
𝑘=1

𝐵𝑘𝑖𝐵𝑘𝑗 =
𝑔

∑
𝑘=1

𝐵𝑇
𝑖𝑘𝐵𝑘𝑗 (23)

𝐏 = 𝐁𝑇𝐁 (24)
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Bipartite Networks

Projection on nodes

The diagonal elements: the number of groups to which 𝑖 belongs

𝑃𝑖𝑖 =
𝑔

∑
𝑘=1

𝐵2
𝑘𝑖 =

𝑔
∑
𝑘=1

𝐵𝑘𝑖 (25)

𝐏 is similar to the bibliographic coupling matrix. We can turn it into
the adjacency matrix of a weighted network by setting the diagonal
elements to zero
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Bipartite Networks

Projection on nodes

1 2 3

4 5

6 𝐏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 2 0 1 1 0
2 3 1 2 1 0
0 1 2 2 0 1
1 2 2 4 2 2
1 1 0 2 2 1
0 0 1 2 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(26)
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Bipartite Networks

Projection on groups

Definition
The number 𝑃′

𝑖𝑗 of common members of groups 𝑖 and 𝑗 is

𝑃′
𝑖𝑗 =

𝑛
∑
𝑘=1

𝐵𝑖𝑘𝐵𝑗𝑘 =
𝑛

∑
𝑘=1

𝐵𝑖𝑘𝐵𝑇
𝑘𝑗 (27)

𝐏′ = 𝐁𝐁𝑇 (28)
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Bipartite Networks

Projection on groups

The diagonal elements: the number of members in group 𝑖

𝑃′
𝑖𝑖 =

𝑛
∑
𝑘=1

𝐵2
𝑖𝑘 =

𝑛
∑
𝑘=1

𝐵𝑖𝑘 (29)

𝐏 is similar to the cocitation matrix. We can turn it into the
adjacency matrix of a weighted network by setting the diagonal
elements to zero
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Bipartite Networks

Projection on groups

A B C

D E

𝐏′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 2 0
1 3 2 2 1
0 2 3 1 2
2 2 1 4 2
0 1 2 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(30)
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Degree

Degree

The degree of a node is the number of links connected to it
We denote the degree of node 𝑖 by 𝑘𝑖

The degree in terms of the adjacency matrix (undirected networks)

𝑘𝑖 =
𝑛

∑
𝑗=1

𝐴𝑖𝑗 (31)
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Degree

Degree

Every link has two ends, hence there are 2𝑚 link ends in an
undirected network
The number of link ends is equal to the sum of the degrees of all the
nodes

The degrees and the number of links

2𝑚 =
𝑛

∑
𝑖=1

𝑘𝑖 (32)

𝑚 = 1
2

𝑛
∑
𝑖=1

𝑘𝑖 = 1
2 ∑

𝑖𝑗
𝐴𝑖𝑗 (33)
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Degree

Mean degree

The mean degree 𝑐 in an undirected graph

𝑐 = 1
𝑛

𝑛
∑
𝑖=1

𝑘𝑖 (34)

𝑐 = 2𝑚
𝑛 (35)

Denis Helic (ISDS, TU Graz) NetSci October 5, 2017 59 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Degree

Network density

The maximum number of links in a simple network is equal to the
number of possible combinations of node pairs: (𝑛

2) = 1
2𝑛(𝑛 − 1)

Density is the fraction of links that actually exist

𝜌 = 𝑚
(𝑛

2)
= 2𝑚

𝑛(𝑛 − 1) = 𝑐
𝑛 − 1 (36)

Denis Helic (ISDS, TU Graz) NetSci October 5, 2017 60 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Degree

Network density

The density lies in the range 0 ≤ 𝜌 ≤ 1
What is the behavior of 𝜌 as 𝑛 → ∞
If 𝜌 tends to a constant as 𝑛 → ∞ the network is said to be dense.
The fraction of non-zero elements in the adjacency matrix remains
constant as the network gets larger.
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Degree

Network density

If 𝜌 → 0 as 𝑛 → ∞ the network is said to be sparse. The fraction of
non-zero elements in the adjacency matrix also tends to zero.
In particular, a network is sparse if the mean degree 𝑐 tends to
constant as 𝑛 becomes larger.
Almost all empirical networks we are interested in are sparse: the
Web, Wikipedia, social networks, ...
This has some important consequences when we design network
algorithms
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Degree

Degree

In directed networks we have in-degree and out-degree
In-degree is the number of ingoing links and out-degree is the number
of outgoing links

The degree in directed networks

𝑘𝑖𝑛
𝑖 =

𝑛
∑
𝑗=1

𝐴𝑖𝑗 (37)

𝑘𝑜𝑢𝑡
𝑗 =

𝑛
∑
𝑖=1

𝐴𝑖𝑗 (38)
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Degree

Mean degree

The mean degree 𝑐 in a directed graph

𝑚 =
𝑛

∑
𝑖=1

𝑘𝑖𝑛
𝑖 =

𝑛
∑
𝑗=1

𝑘𝑜𝑢𝑡
𝑗 = ∑

𝑖𝑗
𝐴𝑖𝑗 (39)

𝑐𝑖𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑘𝑖
𝑖𝑛 = 1

𝑛
𝑛

∑
𝑗=1

𝑘𝑗
𝑜𝑢𝑡 = 𝑐𝑜𝑢𝑡 (40)

𝑐 = 𝑚
𝑛 (41)
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Paths

Paths

A path in a network is a sequence of nodes such that that each
consecutive pair of nodes is connected by a link
A path is a route between two nodes across a network
In directed networks each link is traversed in the link direction
A path can intersect itself, e.g. a node can be visited more than once,
or a link can be traversed more than once
If the path does not intersect itself it is called a self-avoiding path
The length of a path is the number of links traversed along that path
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Paths

Paths

1

2
3 4

5
Figure: A path of length three in a network
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Paths

Number of paths

𝐴𝑖𝑗 is 1 if there is a link from 𝑗 to 𝑖, and 0 otherwise
𝐴𝑖𝑘𝐴𝑘𝑗 is 1 if there is a path of length 2 from 𝑗 to 𝑖 via 𝑘

The total number 𝑁(2)
𝑖𝑗 of paths of length 2 from 𝑗 to 𝑖

𝑁(2)
𝑖𝑗 =

𝑛
∑
𝑘=1

𝐴𝑖𝑘𝐴𝑘𝑗 = [𝐀2]𝑖𝑗 (42)

[...]𝑖𝑗 denotes the 𝑖𝑗th element of the matrix

Denis Helic (ISDS, TU Graz) NetSci October 5, 2017 67 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Paths

Number of paths

𝐴𝑖𝑘𝐴𝑘𝑙𝐴𝑙𝑗 is 1 if there is a path of length 3 from 𝑗 to 𝑖 via 𝑙 and 𝑘

The total number 𝑁(3)
𝑖𝑗 of paths of length 3 from 𝑗 to 𝑖

𝑁(3)
𝑖𝑗 =

𝑛
∑

𝑘,𝑙=1
𝐴𝑖𝑘𝐴𝑘𝑙𝐴𝑙𝑗 = [𝐀3]𝑖𝑗 (43)
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Paths

Number of paths

WE can generalize to the paths of arbitrary length 𝑟

The total number 𝑁(𝑟)
𝑖𝑗 of paths of length 𝑟 from 𝑗 to 𝑖

𝑁(𝑟)
𝑖𝑗 = [𝐀𝑟]𝑖𝑗 (44)
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Paths

Number of cycles

Paths that start and end at 𝑖 are cycles in a network
The number of cycles of length 𝑟 is [𝐀𝑟]𝑖𝑖

The total number 𝐿𝑟 of cycles of length 𝑟 in a network

𝐿𝑟 =
𝑛

∑
𝑖=1

[𝐀𝑟]𝑖𝑖 = Tr𝐀𝑟 (45)

Tr is a trace of a matrix, i.e. the sum of elements on the main
diagonal
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Paths

Number of cycles

We can express the last equation in terms of the eigenvalues of the
adjacency matrix
For undirected graphs the adjacency matrix is symmetric
The adjacency matrix has 𝑛 real eigenvalues
The eigenvectors have real elements
The adjacency matrix can be written in form 𝐀 = 𝐔𝐊𝐔𝑇

𝐔 is the orthogonal matrix of eigenvectors and 𝐊 is the diagonal
matrix of eigenvalues
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Paths

Number of cycles

Then 𝐀𝑟 = (𝐔𝐊𝐔𝑇)
𝑟

= 𝐔𝐊𝑟𝐔𝑇

Since 𝐔𝐔𝑇 = 𝐈 because 𝐔𝑇 = 𝐔−1

The total number 𝐿𝑟 of cycles of length 𝑟 in a network

𝐿𝑟 = Tr (𝐔𝐊𝑟𝐔𝑇) = Tr (𝐔𝐔𝑇𝐊𝑟) = Tr𝐊𝑟 = ∑
𝑖

𝜅𝑟
𝑖 (46)
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Paths

Number of cycles

The last follows since trace of a matrix is invariant under cyclic
permutations
𝜅𝑖 is the 𝑖th eigenvalue of the adjacency matrix
Same equation holds for directed networks, although the proof is a bit
more complicated
Although some eigenvalues might be complex they always come in
complex-conjugate pairs: 𝑑𝑒𝑡(𝜅𝐈 − 𝐀)
Each term is complemented by another that is its complex conjugate
and thus the sum is always real
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Paths

Geodesic paths

A geodesic path or a shortest path is a path between two nodes such
that no shorter path exists
It is possible that there is no shortest path between two nodes if they
are not connected
By convention we say that the distance between those two nodes is
infinite
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Geodesic paths

1

2
3 4

5
Figure: A geodesic (shortest) path of length two between two nodes
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Paths

Geodesic paths

Geodesic paths are self-avoiding paths
There may be more than one geodesic path in a network
Teh diameter of a network is a length of the longest shortest path in
that network
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Components

Components

Sometimes there is no path between two nodes
A network might be divided into two or more node subgroups with no
connection between the groups
If there exist a node pair with no path between them the network is
disconnected
If there is a path from every node to every other node then the
network is connected
The subgroups in a network are called components
A single node with no links is also a component of size 1 and a
connected network has a single component
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Components

1

2

Figure: A network with two components

Denis Helic (ISDS, TU Graz) NetSci October 5, 2017 78 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Components

Components

With a proper labeling we can write the adjacency matrix in the
following form

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 …

0 …

⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(47)
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Components

Components in directed networks

Now we take into account the direction of links
E.g. each hyperlink on the Web is a directed link
If we ignore directions we have the undirected case and speak about
weakly connected components
Sometimes, we have a directed path from A to B, but no such path
from B to A
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Components in directed networks

Figure: Components in a directed network
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Components

Components in directed networks

If both paths exist then A and B are strongly connected
Subsets of nodes that are strongly connected are called strongly
connected components
A single node with constitutes a strongly connected component of
size 1
Every node in a strongly connected component must belong to at
least one cycle
Every strongly connected component in a directed acyclic networks
has only a single node
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Components

Components in directed networks

Sometimes we are interested in other kinds of components (e.g.
which Web pages can I reach from a given Web page)
Out-component is the set of nodes that reachable via directed paths
from a specified node A, and including A itself
Links from external nodes (such that are not in an out-component)
only point inward towards the members of the component
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Components

Components in directed networks

Out-component is a property of the network structure and a starting
node
Out-components of all members of a strongly connected component
are identical (since all members of a strongly connected component
are mutually reachable)
Thus, out-components belong to strongly connected components
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Components

Components in directed networks

Similarly, in-component is the set of nodes (including A) from which
via directed paths a specified node A can be reached
Links to external nodes (such that are not in an in-component) only
point outward from the members of the component
In-component is a property of the network structure and a starting
node
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Components

Components in directed networks

In-components of all members of a strongly connected component are
identical (since all members of a strongly connected component are
mutually reachable)
Therefore, in-components belong to strongly connected components
A strongly connected component is the intersection of its in- and
out-components
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Components

Components in directed networks

Out

In

Figure: In- and out-components in a directed network
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The Graph Laplacian

The graph Laplacian

The adjacency matrix captures the whole structure of a network
There is another matrix, closely related to the adjacency matrix
However, it differs in some important aspects which can provide some
additional information about the network structure
This is the graph Laplacian
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The Graph Laplacian

The graph Laplacian

Definition
The degree matrix 𝐃 of a simple undirected graph is the diagonal matrix
with the node degrees along its diagonal:

𝐃 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑘1 0 0 …
0 𝑘2 0 …
0 0 𝑘3 …
⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

(48)
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The Graph Laplacian

The graph Laplacian

Definition
The graph Laplacian 𝐋 of a simple undirected graph is defined as:

𝐋 = 𝐃 − 𝐀 (49)
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The Graph Laplacian

The graph Laplacian

Definition
The graph Laplacian 𝐋 of a simple undirected graph is the matrix with
elements 𝐿𝑖𝑗 such that

𝐿𝑖𝑗 =
⎧{{
⎨{{⎩

𝑘𝑖 if 𝑖 = 𝑗
−1 if there is a link between nodes 𝑖 and 𝑗 and 𝑖 ≠ 𝑗
0 otherwise.

(50)
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The Graph Laplacian

The graph Laplacian

Alternatively, we can write
𝛿𝑖𝑗 is the Kronecker delta, which is 1 for 𝑖 = 𝑗 and 0 otherwise

𝐿𝑖𝑗 = 𝛿𝑖𝑗𝑘𝑖 − 𝐴𝑖𝑗 (51)
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The Graph Laplacian

The graph Laplacian

1

2

3 4

5

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 1
1 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(52)
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The Graph Laplacian

The graph Laplacian

1

2

3 4

5

Figure: 𝐷 = 𝑑𝑖𝑎𝑔(𝑠𝑢𝑚(𝐴))

𝐃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(53)
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The Graph Laplacian

The graph Laplacian

1

2

3 4

5

Figure: 𝐿 = 𝐷 − 𝐴

𝐋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 −1
−1 3 −1 −1 0
0 −1 3 −1 −1
0 −1 −1 2 0

−1 0 −1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(54)
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The Graph Laplacian

Eigenvalues of the graph Laplacian

The eigenvalues of the graph Laplacian are its most interesting
property
The Laplacian is a symmetric matrix → it has real eigenvalues
We can even show that all of its eigenvalues are non-negative
Also, we can show that its smallest eigenvalue 𝜆1 = 0
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The Graph Laplacian

The link incidence matrix

Definition
The link incidence matrix 𝐁 of a simple undirected graph with 𝑛 nodes and
𝑚 links is an 𝑚 × 𝑛 matrix with elements 𝐵𝑖𝑗 such that

𝐵𝑖𝑗 =
⎧{{
⎨{{⎩

1 if end 1 of link 𝑖 is attached to node 𝑗
−1 if end 2 of link 𝑖 is attached to node 𝑗
0 otherwise.

(55)

We designate for each link one end as end 1 and other as end 2
Each row of the link incidence matrix has exactly one 1 and one -1
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The Graph Laplacian

The link incidence matrix

What is the value of 𝐵𝑘𝑖𝐵𝑘𝑗 for 𝑖 ≠ 𝑗

If link 𝑘 connects 𝑖 and 𝑗 then the product has value −1, otherwise it
is 0
What is the value of ∑

𝑘
𝐵𝑘𝑖𝐵𝑘𝑗 for 𝑖 ≠ 𝑗

In a simple graph there is at most one link connecting 𝑖 and 𝑗
If there is a link between 𝑖 and 𝑗 the sum is −1, otherwise it is 0
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The Graph Laplacian

The link incidence matrix

What is the value of 𝐵𝑘𝑖𝐵𝑘𝑗 for 𝑖 ≠ 𝑗
If link 𝑘 connects 𝑖 and 𝑗 then the product has value −1, otherwise it
is 0
What is the value of ∑

𝑘
𝐵𝑘𝑖𝐵𝑘𝑗 for 𝑖 ≠ 𝑗

In a simple graph there is at most one link connecting 𝑖 and 𝑗
If there is a link between 𝑖 and 𝑗 the sum is −1, otherwise it is 0
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The Graph Laplacian

The link incidence matrix
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The Graph Laplacian

The link incidence matrix

What is the value of 𝐵2
𝑘𝑖 for 𝑖 = 𝑗

If link 𝑘 connects to 𝑖 the product has value 1, otherwise it is 0
What is the value of ∑

𝑘
𝐵2

𝑘𝑖 for 𝑖 = 𝑗

It is equal to the degree 𝑘𝑖 of node 𝑖
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The Graph Laplacian

The link incidence matrix

Thus, ∑
𝑘

𝐵𝑘𝑖𝐵𝑘𝑗 = 𝐿𝑖𝑗

The diagonal elements 𝐿𝑖𝑖 are equal to the degrees 𝑘𝑖
The off-diagonal elements are −1 if there is a link between 𝑖 and 𝑗

𝐋 = 𝐁𝑇𝐁 (56)
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The Graph Laplacian

Eigenvalues of the graph Laplacian

Let 𝐯𝑖 be an eigenvector of 𝐋 with eigenvalue 𝜆𝑖, then 𝐋𝐯𝑖 = 𝜆𝑖𝐯𝑖

𝐯𝑇
𝑖 𝐁𝑇𝐁𝐯𝑖 = 𝐯𝑇

𝑖 𝐋𝐯𝑖 = 𝜆𝑖𝐯𝑇
𝑖 𝐯𝑖 = 𝜆𝑖 (57)

We assume that 𝐯𝑖 is normalized, so that its scalar product with itself
is 1
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The Graph Laplacian

Eigenvalues of the graph Laplacian

Any eigenvalue 𝜆𝑖 is equal to the scalar product of (𝐁𝐯𝑖) with itself
(𝐯𝑇

𝑖 𝐁)(𝐁𝐯𝑖)
(𝐁𝐯𝑖) is a vector with real elements
The product is the sum of the squares of real elements
𝜆𝑖 ≥ 0, for all 𝑖
In fact, the Laplacian always has at least one zero eigenvalue
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The Graph Laplacian

Eigenvalues of the graph Laplacian

𝐋
⎛⎜⎜⎜⎜⎜⎜
⎝

1
⋮
1
⋮

⎞⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
𝑗

(𝛿1𝑗𝑘1𝑗 − 𝐴1𝑗)

⋮
∑
𝑗

(𝛿𝑖𝑗𝑘𝑖𝑗 − 𝐴𝑖𝑗)

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑘1 − ∑
𝑗

𝐴1𝑗

⋮
𝑘𝑖 − ∑

𝑗
𝐴𝑖𝑗

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑘1 − 𝑘1
⋮

𝑘𝑖 − 𝑘𝑖
⋮

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
⋮

⎞⎟⎟⎟⎟⎟⎟
⎠

= 0
⎛⎜⎜⎜⎜⎜⎜
⎝

1
⋮
1
⋮

⎞⎟⎟⎟⎟⎟⎟
⎠

(58)
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The Graph Laplacian

Eigenvalues of the graph Laplacian

The vector 𝟏 is always an eigenvector of 𝐋 with eigenvalue 0
There are no negative eigenvalues, thus this is the lowest eigenvalue
Convention: 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆𝑛
We always have 𝜆1 = 0
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The Graph Laplacian

Componenents and the algebraic connectivity

Suppose we have a network with 𝑐 different components
The components have sizes 𝑛1, 𝑛2, … , 𝑛𝑐

𝐋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 …

0 …

⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(59)
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The Graph Laplacian

Componenents and the algebraic connectivity

𝐯 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1
⋮
0
0
⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(60)

We have 𝑛1 ones and this is an eigenvector with eigenvalue 0
We have 𝑐 such eigenvectors
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The Graph Laplacian

Componenents and the algebraic connectivity

In a network with 𝑐 components 𝑐 eigenvalues are equal to 0
The second eigenvalue 𝜆2 of the graph Laplacian is non-zero iff the
network is connected
The second eigenvalue of the Laplacian is called algebraic connectivity
It is a measure of how connected is a network, i.e. how difficult is to
divide that network

Denis Helic (ISDS, TU Graz) NetSci October 5, 2017 107 / 107


	Introduction
	Representation of Networks
	Directed Networks
	Bipartite Networks
	Degree
	Paths
	Components
	The Graph Laplacian

