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Introduction

Introduction

Once when we know the structure of the network we can calculate
many useful quantities
Such network analysis originates from social network analysis
Mostly these ideas reflect some sociological concepts, such as
influence, status, balance, ...
However, today many of the methods from social network analysis are
applied in computer science, physics, biology, and so on
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Centrality

Centrality

One of the key topics in network science is centrality
What are the most central nodes in a network?
What are the most important nodes in a network?
What are the most influential nodes in a network?
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Centrality

Centrality

In different kind of networks different interpretation are possible
E.g. in a social network the most central node might be the most
popular person
E.g. on the Web the most central node might be a page with the
best quality of content in a specific field
E.g. on the Internet the most central node might be a router with the
highest bandwidth
Thus, there are many possible definitions of importance and many
possible interpretations and therefore there are many centrality
measures
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Centrality
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Figure: Sample network
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Centrality

1 2 3

4

5 6

7 8

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(1)
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Centrality

Degree centrality

The simplest centrality measure is just the degree of a node
In directed networks nodes have in- and out-degree and therefore
there are two types of degree centrality
In social networks persons that have high degree centrality might have
better prestige, influence, access to information, ...
In citation networks papers that have high in-degree centrality have a
lot of citations
This is a widely used metric for measuring the scientific impact of a
paper
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Centrality

Degree centrality

However, in many cases simple degree centrality is not enough
E.g. a popular actor might have a high in-degree centrality, but is this
a good proxy for measuring influence?
Sometimes not only the number of links counts but also who are the
neighbor nodes
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Centrality

Eigenvector centrality

A natural extension of the degree centrality
Degree centrality awards one centrality point for every neighbor a
node has
However, not all neighbors are equally important
In many cases the importance of the node is increased by having
connections to other nodes that are themselves important
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Centrality

Eigenvector centrality

Basic concept of eigenvector centrality: not only count of neighbors is
important but also the importance of the neighbors
Degree centrality awards nodes with one centrality point for each
neighbor
Eigenvector centrality gives each node a score proportional to the sum
of the scores of its neighbors
Typically, we calculate eigenvector centralities iteratively
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Centrality

Eigenvector centrality

We make an initial guess about the centrality 𝑥𝑖 of each node 𝑖
E.g. we set 𝑥0

𝑖 = 1 for all 𝑖
Then we calculate a new iteration 𝑥1

𝑖 as the sum of the centralities of
𝑖’s neighbors

𝑥1
𝑖 = ∑

𝑗
𝐴𝑖𝑗𝑥0

𝑗 (2)

x1 = Ax
0 (3)
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Centrality

Eigenvector centrality

In matrix form we have

x1 = Ax
0 (4)

After 𝑡 steps we have

x𝑡 = A𝑡x0 (5)
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Centrality

Eigenvector centrality

We can write x0 as a linear combination of the eigenvectors v𝑖 of the
adjacency matrix (for appropriate choice of constants 𝑐𝑖)

x0 = ∑
𝑖

𝑐𝑖v𝑖 (6)

x𝑡 = A𝑡 ∑
𝑖

𝑐𝑖v𝑖 = ∑
𝑖

𝑐𝑖A
𝑡v𝑖 = ∑

𝑖
𝑐𝑖𝜅𝑡

𝑖v𝑖 = 𝜅𝑡
1 ∑

𝑖
𝑐𝑖 [ 𝜅𝑖

𝜅1
]

𝑡
v𝑖 (7)
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Centrality

Eigenvector centrality

x𝑡 = 𝜅𝑡
1 ∑

𝑖
𝑐𝑖 [ 𝜅𝑖

𝜅1
]

𝑡
v𝑖 (8)

𝜅𝑖 are eigenvalues, and 𝜅1 is the largest of themselves
𝜅𝑖
𝜅1

< 1 for all 𝑖 > 1
When 𝑡 → ∞ 𝜅𝑖

𝜅1
→ 0, for all 𝑖 > 1

When 𝑡 → ∞ x𝑡 → 𝑐1𝜅𝑡
1v1
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Centrality

Eigenvector centrality

In other words, the limiting vector of centralities is proportional to the
leading eigenvector of the adjacency matrix
In matrix form the centrality x satisfies:

Ax = 𝜅1x (9)

𝑥𝑖 = 1
𝜅1

∑
𝑗

𝐴𝑖𝑗𝑥𝑗 (10)
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Centrality

Eigenvector centrality

Thus, eigenvector centrality of a node can be large if a node has
many neighbors or if it has important neighbors, or both
If a person knows a lot of people (even if they are not important)
Or if a person knows only a few people but in high places
The eigenvector centralities are all non-negative
If we chose x0 with all non-negative elements, multiplication by A
can never introduce negative elements since all elements in A are
non-negative
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Centrality

Eigenvector centrality

Centralities are not normalized
Typically, we are interested only in relative centralities of nodes
We want to know which are important nodes and how their
importance compares to others
Absolute values are not needed

Denis Helic (ISDS, TU Graz) NetSci November 20, 2017 18 / 118



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Centrality

Eigenvector centrality

For directed networks some complications arise
Directed networks have an asymmetric adjacency matrix
Asymmetric matrices have two sets of eigenvectors: the left and the
right eigenvectors
The right eigenvectors sum over in-coming links
The left eigenvectors sum over out-going links
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Centrality

Eigenvector centrality

We assume that the importance is given through links pointing to a
node
E.g. in citation networks citations of a paper
E.g. on the Web links from other Web pages on a particular page
The right eigenvectors sum over in-coming links
Thus, the correct definition is same as for undirected case

𝑥𝑖 = 1
𝜅1

∑
𝑗

𝐴𝑖𝑗𝑥𝑗 (11)
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Centrality
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Figure: Sample network
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Centrality

Eigenvector centrality

Nodes 7 and 1 have no incoming links
Such nodes will always have eigenvector centrality zero
This might be ok since they do not have incoming links
However, node 8 has one incoming link but still centrality zero
The link pointing to node 8 originates at node 7, and hence node 8
“inherits” centrality of node 7 which is zero
This can propagate through many levels
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Centrality

Eigenvector centrality

Only nodes that are in a strongly connected component or in its
out-component can have eigenvector centralities larger than zero
However, even nodes in an in-component might have many incoming
links and be therefore important
Acyclic networks have no strongly connected components and
therefore all nodes have eigenvector centrality zero
E.g. citation networks
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Centrality

Katz centrality

One simple solution: we give each node a small amount of centrality

𝑥𝑖 = 𝛼 ∑
𝑗

𝐴𝑖𝑗𝑥𝑗 + 𝛽 (12)

𝛼 and 𝛽 are positive constants
The first term is the normal eigenvector centrality and the second
term is the “free” centrality
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Centrality

Katz centrality

Even nodes with zero in-degree still get 𝛽 centrality and can pass on
this amount of centrality
A node that has a high in-degree will always have a high centrality
Also, nodes pointed by few other nodes with high centrality will also
have a high centrality
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Katz centrality

In matrix form

x = 𝛼Ax + 𝛽1 (13)

x = 𝛽(I − 𝛼A)−11 (14)

Denis Helic (ISDS, TU Graz) NetSci November 20, 2017 26 / 118



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Centrality

Katz centrality

Typically, we do not care about absolute values, thus 𝛽 is unimportant
We set 𝛽 = 1

x = (I − 𝛼A)−11 (15)
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Centrality

Katz centrality

The difference from standard eigenvector centrality is the free
parameter 𝛼
It weights the eigenvector term and the constant term
Before we calculate the Katz centrality we have to chose a value for 𝛼
If 𝛼 → 0 then the eigenvector term disappears and only the constant
term 𝛽 remains
By increasing 𝛼 the centralities increase and there is a point at which
they diverge
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Centrality

Katz centrality

This happens when (I − 𝛼A)−1, i.e. when (I − 𝛼A) does not have an
inverse
I.e., 𝑑𝑒𝑡(I − 𝛼A) = 0

𝑑𝑒𝑡(A − 𝛼−1I) = 0 (16)
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Katz centrality

But this is the characteristic equation with roots 𝛼−1 and these are
eigenvalues of the adjacency matrix
Thus, as 𝛼 increases the determinant first becomes zero when
𝛼−1 = 𝜅1
After that the centralities diverge, i.e. whenever the determinant
becomes zero again
Thus, we should chose 𝛼 less than 1

𝜅1
for the centralities to converge

No further suggestions on choosing a value for 𝛼, i.e. chose it
empirically
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Centrality

Note on the largest eigenvalue

Symmetric matrix has all real eigenvalues
Eigenvectors are orthogonal and form ℝ𝑛 vector basis
According to Perron-Frobenius theorem an irreducible non-negative
matrix has a real largest eigenvalue
Other eigenvalues might be complex but come always in
complex-conjugate form
In both cases the leading eigenvector has all non-negative values
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Centrality
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Figure: Sample network

Denis Helic (ISDS, TU Graz) NetSci November 20, 2017 32 / 118



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Centrality

Katz centrality

Inverting a matrix has 𝑛3 time complexity
For large networks this is extremely slow
Repeating the process many times x converges to a value close to the
correct centrality
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Katz centrality

In each iteration step we have 𝑚 multiplications as A has 𝑚 non-zero
elements
Thus, the total time complexity is 𝑟𝑚, where 𝑟 is the number of
iterations
𝑟 depends on the network and 𝛼 and no general guidelines exist
Observe 𝑥𝑖, apply thresholds, etc.
However, for large networks iteration is much faster then inverting the
matrix
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PageRank

One problem with the Katz centrality
If a node with high centrality points to many others then all of these
nodes get also high centrality
However, in many cases it means less if a node gets a link if it is only
one of many
E.g. Yahoo has many links but not all of the Web pages included in
the directory are as important as Yahoo
Better solution would be that a high centrality node passes only a
fraction of its centrality to the neighbors
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Centrality

PageRank

We can define a variation in which the centrality derived from
neighbors is proportional to their centrality divided by their out-degree

𝑥𝑖 = 𝛼 ∑
𝑗

𝐴𝑖𝑗
𝑥𝑗

𝑘𝑜𝑢𝑡
𝑗

+ 𝛽 (17)

If 𝑘𝑜𝑢𝑡
𝑖 = 0 we set 𝑘𝑜𝑢𝑡

𝑖 = 1, since 𝐴𝑖𝑗 = 0 for all 𝑖 and the contribution
of a node without outgoing links remains zero
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Centrality

PageRank

In matrix form

x = 𝛼AD−1x + 𝛽1 (18)

D id the diagonal matrix with elements 𝐷𝑖𝑖 = 𝑚𝑎𝑥(𝑘𝑜𝑢𝑡
𝑖 , 1)
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Centrality

PageRank

Again, we do not care about absolute values, thus 𝛽 is unimportant
We set 𝛽 = 1

x = 𝛼AD−1x + 1 (19)
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Centrality

PageRank

Solving for x

x = (I − 𝛼AD
−1)−11 = D(D − 𝛼A)−11 (20)
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Centrality

PageRank

Again, PageRank has the free parameter 𝛼
Before we calculate PageRank we have to chose a value for 𝛼
By analogy with the Katz centrality, 𝛼 should be less then inverse of
the largest eigenvalue of AD

−1

For undirected networks the largest eigenvalue is 1, thus 𝛼 should be
less than 1
For directed networks the largest eigenvalue can be different than 1,
but it is roughly of order 1
Google uses 𝛼 = 0.85 (empirical choice)
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Centrality

1 2 3

4

5 6

7 8

Figure: Sample network
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Centrality

Centrality

with constant term without constant term
divide by x = D(D − 𝛼A)−11 x = AD

−1
x

out-degree PageRank degree centrality
no division x = (I − 𝛼A)−11 x = 𝜅−1

1 Ax
Katz centrality eigenvector centrality

Table: Comparison of centrality measures
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Centrality

Centralities Notebook

Jupyter Notebook example
http:
//kti.tugraz.at/staff/denis/courses/netsci/cent.ipynb
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Centrality

Closeness centrality

A completely different measure is the closeness centrality
It measures the average distance of a node to other nodes
I.e. it measures the average shortest path length of a node to other
nodes
Let 𝑑𝑖𝑗 be the shortest path length between nodes 𝑖 and 𝑗

ℓ𝑖 = 1
𝑛 ∑

𝑗
𝑑𝑖𝑗 (21)
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Centrality

Closeness centrality

That quantity is the average shortest path length of node 𝑖
It is low for nodes that are separated by short distances from other
nodes in the network
E.g. such nodes might have better access to information, or more
influence on the others in a social network
This is however not a centrality measure since it gives low values to
central nodes

𝐶𝑖 = 1
ℓ𝑖

= 𝑛
∑𝑗 𝑑𝑖𝑗

(22)
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Centrality

Closeness centrality

It is often used in network analysis, however it has some problems
What is the dynamic range of the shortest path length in empirical
networks
Lower bound on 𝑑𝑖𝑗 is 1
Upper bound is typically 𝑙𝑜𝑔𝑛, which is e.g. 5, 6, or similar
Thus, the range is small
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Closeness centrality

In practice the values of closeness centrality are very close to each
other with differences in the trailing digits
Very often you have huge number of nodes with the exact same
closeness centrality
The values are also very unstable
Small changes in the network structure tend to have huge impact on
the closeness centralities
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Centrality

Closeness centrality

There is another problem
ℓ𝑖 is infinite for all 𝑖 in a network with two or more components
This can be solved by defining closeness centrality as the harmonic
mean of distances between nodes

𝐶𝑖 = 1
𝑛 − 1 ∑

𝑗(≠𝑖)

1
𝑑𝑖𝑗

(23)

We have to exclude 𝑑𝑖𝑖 since this is zero
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Centrality

Betweenness centrality

Betweenness centrality addresses dynamic processes that can take
place on a network
For example, suppose we a have a network with something flowing
around
E.g. messages, news, information, data packets
A simple assumption is that objects will flow using shortest paths
Then, the total number of messages that crosses a node is
proportional to the number of shortest paths that each node lies on
This is the betweenness centrality where more central nodes are more
important for the communication processes that take place on the
network
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Centrality

Betweenness centrality

Let 𝑛𝑖
𝑠𝑡 be 1 if node 𝑖 lies on a shortest path between 𝑠 and 𝑡 and zero

if it does not, or there is no such path

𝑥𝑖 = ∑
𝑠𝑡

𝑛𝑖
𝑠𝑡 (24)

This is the case where there is only one shortest path between 𝑠 and 𝑡
However, if we have more than one, e.g. 𝑔𝑠𝑡

𝑥𝑖 = ∑
𝑠𝑡

𝑛𝑖
𝑠𝑡

𝑔𝑠𝑡
(25)
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Centrality

Betweenness centrality

Betweenness centrality differs from the other centrality measures
because it does not measure how well connected is a node
Rather it measures its position in the network, and how much a node
lies “between” other nodes
Can you imagine a node that has high betweenness centrality but all
other centralities are low
I.e. it has low degree, it is on the periphery, etc.
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Betweenness centrality

A

Figure: Node with high betweenness centrality
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Centrality

Betweenness centrality

The range for betweenness centralities is rather large
The maximum possible value for the betweenness centrality of a node
is when the node lies on the shortest path between all pairs of nodes
This occurs for the central node in a star network
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Betweenness centrality

Figure: Star network
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Centrality

Betweenness centrality

It lies on 𝑛2 shortest paths between node pairs except for 𝑛 − 1 paths
from the peripheral nodes to themselves
Thus, the betweenness centrality of the central node is 𝑛2 − 𝑛 + 1
The smallest possible value of the betweenness centrality in a
connected network is when a node lies only on shortest paths to or
from itself
𝑛 − 1 from such a node, 𝑛 − 1 to such a node and 1 to itself
Thus, the minimum is 2𝑛 − 1
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Betweenness centrality

The ratio is 𝑛2−𝑛+1
2𝑛−1

Theoretically, it is approx. 1
2𝑛

Moreover, it increases with 𝑛
Also, differences between centralities of different nodes are larger and
therefore the relative order of nodes is quite stable
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Centrality

Centrality: Project suggestions

Correlations between various centralities
Time evolution of centralities
Rank-correlations
Comparison of ranks with null models
Configuration model: keep the degrees but create links at random

Denis Helic (ISDS, TU Graz) NetSci November 20, 2017 57 / 118



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Clustering and Reciprocity

Clustering

In social network a very important property is transitivity
If “connected by a link” is transitive that would mean that if (𝑢, 𝑣)
and (𝑣, 𝑤) then (𝑢, 𝑤)
The friend of a friend is also my friend
Total transitivity occurs in a clique, i.e. in a fully connected network
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Clustering and Reciprocity

Clustering

More interesting is partial transitivity
Social networks exhibit a high degree of partial transitivity
(𝑢, 𝑣) and (𝑣, 𝑤) does not guarantee (𝑢, 𝑤)
But, it makes it much more likely
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Clustering and Reciprocity

Clustering

We can quantify it in the following way
If (𝑢, 𝑣) and (𝑣, 𝑤) then we have a path of length two: 𝑢𝑣𝑤
If also (𝑢, 𝑤) then the path is closed forming a triangle
In social networks literature this is called closed triad
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Clustering and Reciprocity

Clustering

u

v w

Figure: A closed triad
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Clustering and Reciprocity

Clustering coefficient

Clustering coefficient is the fraction of closed triads in the network,
i.e. the fraction of paths of length two that are closed

𝐶 = (number of closed paths of length two)
(number of paths of length two) (26)

𝐶 = (number of triangles) × 6
(number of paths of length two) (27)

𝐶 = (number of triangles) × 3
(number of connected triples) (28)
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Clustering and Reciprocity

Clustering

Social networks tend to have quite high values of the clustering
coefficient
E.g. actor collaborations 𝐶 = 0.2, e-mail communication 𝐶 = 0.16,
etc.
Technological and biological networks have smaller values of the
clustering coefficient
E.g. the Internet 𝐶 = 0.01
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Clustering and Reciprocity

Clustering

What does it mean that these values for social networks are high?
Clustering coefficient is the probability that two of my friends are also
friends
E.g. in a random network with the average degree 𝑐 and 𝑛 nodes, this
probability is 𝑐

𝑛
E.g. for film actors this is 0.0003, for e-mail communication 0.00002
Thus, the measured clustering coefficient is much larger than the
estimation based on random network connections
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Clustering and Reciprocity

Local clustering

Clustering for a single node

𝐶𝑖 = (number of connected pairs of neighbors of 𝑖)
(number of pairs of neighbors of 𝑖) (29)
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Clustering and Reciprocity

Local clustering

The number of pairs of neighbors of 𝑖 equals 1
2𝑘𝑖(𝑘𝑖 − 1)

It is the average probability that a pair of 𝑖’s friends are friends with
each other
Local clustering depends on degree
In most networks nodes with higher degrees have lower values of the
local clustering coefficient
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Clustering and Reciprocity

Local clustering

The local clustering coefficient measures the existence of structural
holes
A lower value of the local clustering coefficient means that a lot of
expected links between 𝑖’s friends is actually missing
Such structural holes improve the importance of the central node 𝑖
E.g. the communication between friends can be controlled by 𝑖
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Clustering and Reciprocity

Local clustering

It is a local version of the betweenness centrality
It measures the importance of the node for local communication
whereas the betweenness centrality measures this at the global level
Also, more central nodes have lower values for the local clustering
coefficient
In practice, betweenness and local clustering are strongly correlated
(Burt, Structural Holes: The Social Structure of Competition)
However, local clustering is faster to calculate
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Clustering and Reciprocity

Global clustering

𝐶𝑊𝑆 = 1
𝑛

𝑛
∑
𝑖=1

𝐶𝑖 (30)

This is an alternative equation for calculating global clustering
coefficient
It gives typically different results as the previous equation
It is dominated by the nodes of lower degrees
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Clustering and Reciprocity

Reciprocity

The clustering coefficient measures the frequency with which the
loops of length three appear in a network
In directed networks we can also concentrate of loops of length two
A pair of nodes with links between them running in both directions
The frequency of such loops is measured by reciprocity
Reciprocity tells us how likely, on average, is that a node that you
point to, points back to you
Back link from a Web page, or a person you follow on twitter follows
you
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Clustering and Reciprocity

Reciprocity

The reciprocity 𝑟 is defined as the fraction of links that are
reciprocated
𝐴𝑖𝑗𝐴𝑗𝑖 = 1, if and only if we have a link from 𝑖 to 𝑗 and from 𝑗 to 𝑖
𝐴𝑖𝑗𝐴𝑗𝑖 = 0, otherwise

𝑟 = 1
𝑚 ∑

𝑖𝑗
𝐴𝑖𝑗𝐴𝑗𝑖 = 1

𝑚𝑇𝑟A2 (31)

𝑟 ≈ 0.57 on the Web
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Similarity

Similarity

How nodes can be similar to each other and how can we quantify this
similarity
Similarity can be calculated in many different ways even without the
networks
E.g. content-based similarity of text documents
E.g. User similarities based on their profiles
Here we are interested in measuring similarities based on the network
properties such as links, degrees, etc.
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Similarity

Similarity

There are two approaches to measuring similarity of nodes in a
network
Structural similarity is based on the number of the common neighbors
Regular similarity is based on the similarity of their respective (not
necessarily common) neighbors
The distinction is similar to centrality measures
Degree (neighbors count) vs. eigenvector centralities (recursion over
the neighbors)
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Similarity

Structural similarity

The most obvious measure of structural similarity is the number of
common neighbors of two nodes

𝑛𝑖𝑗 = ∑
𝑘

𝐴𝑖𝑘𝐴𝑘𝑗 (32)

This is the 𝑖𝑗th element of A2

It is “cocitation” for undirected networks
This is also the number of paths of length 2 between 𝑖 and 𝑗
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Similarity

Structural similarity

A simple count of common neighbors on its own is not a good
measure of node similarity
E.g. what does it mean that two nodes have 3 or 1000 common
neighbors
We need normalization
We could normalize by dividing by the maximal number of common
neighbors (𝑛 − 2)
However, this penalizes the nodes with low degrees, e.g. two nodes
with degrees 3 and all three common neighbors will get a small
amount of similarity in a large network
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Similarity

Cosine similarity

The scalar product of two vectors x and y

x ⋅ y = |x||y|cos𝜃 (33)

where |x||y| and 𝜃 is the angle between the two vectors

cos𝜃 = x ⋅ y
|x||y| (34)
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Similarity

Cosine similarity

We can regard 𝑖th and 𝑗th rows and columns of the adjacency matrix
as vectors

𝜎𝑖𝑗 = cos𝜃 =
∑𝑘 𝐴𝑖𝑘𝐴𝑘𝑗

√∑𝑘 𝐴2
𝑖𝑘√∑𝑘 𝐴2

𝑗𝑘

(35)
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Similarity

Cosine similarity

For simple networks: 𝐴2
𝑖𝑗 = 𝐴𝑖𝑗

Then: ∑
𝑘

𝐴2
𝑖𝑘 = ∑

𝑘
𝐴𝑖𝑘 = 𝑘𝑖

Definition
Cosine similarity

𝜎𝑖𝑗 =
𝑛𝑖𝑗

√𝑘𝑖𝑘𝑗
(36)

If any of degrees equals to zero then we set 𝜎𝑖𝑗 = 0
It always lies in the range 0 to 1
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Similarity

Pearson coefficients

Another normalization possibility is to compare the number of
common neighbors to the number of common neighbors if nodes
select their neighbors randomly
I.e. we compare the actual network structure with a random network
structure
We obtain in this way Pearson correlation coefficient
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Similarity

Pearson coefficients

Let nodes 𝑖 and 𝑗 have degrees 𝑘𝑖 and 𝑘𝑗 respectively
Now we first let 𝑖 and then 𝑗 to choose their neighbors randomly
The probability that 𝑗 selects one node that 𝑖 already has chosen is
equal to 𝑘𝑖

𝑛

In total: the expected number of common neighbors is 𝑘𝑖𝑘𝑗
𝑛

We define now similarity as the difference between the actual number
of common neighbors and the expected number if they chose their
neighbors randomly
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Similarity

Pearson coefficients

∑
𝑘

𝐴𝑖𝑘𝐴𝑘𝑗 −
𝑘𝑖𝑘𝑗
𝑛 = ∑

𝑘
𝐴𝑖𝑘𝐴𝑘𝑗 − 1

𝑛 ∑
𝑘

𝐴𝑖𝑘 ∑
𝑙

𝐴𝑗𝑙

= ∑
𝑘

𝐴𝑖𝑘𝐴𝑘𝑗 − 𝑛𝐴𝑖 𝐴𝑗

= ...
= ∑

𝑘
(𝐴𝑖𝑘 − 𝐴𝑖)(𝐴𝑘𝑗 − 𝐴𝑗) (37)
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Similarity

Pearson coefficients

The last equation is 𝑛 times covariance cov(𝐴𝑖, 𝐴𝑗) of the 𝑖th and 𝑗th
row of the adjacency matrix
It is positive if 𝑖 and 𝑗 have more common neighbors than what would
be expected by chance
It is negative if 𝑖 and 𝑗 have less common neighbors than what would
be expected by chance
It is zero if 𝑖 and 𝑗 have exactly as what would be expected by chance
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Similarity

Pearson coefficients

We can normalize by the maximal value of the covariance which
occurs when two set of quantities are the same
Then covariance equals to variance of either sets 𝜎2

𝑖 , or 𝜎2
𝑗 , or 𝜎𝑖𝜎𝑗

Normalizing by this quantity we obtain the standard Pearson
correlation coefficient
−1 ≤ 𝑟𝑖𝑗 ≤ 1
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Similarity

Pearson coefficients

Definition
Pearson correlation coefficient

𝑟𝑖𝑗 =
cov(𝐴𝑖, 𝐴𝑗)

𝜎𝑖𝜎𝑗
=

∑𝑘 (𝐴𝑖𝑘 − 𝐴𝑖)(𝐴𝑘𝑗 − 𝐴𝑗)

√∑𝑘 (𝐴𝑖𝑘 − 𝐴𝑖)2√∑𝑘 (𝐴𝑘𝑗 − 𝐴𝑗)2
(38)
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Similarity

Regular similarity

The structural similarity measures the extent to which two nodes
share the same neighbors
Regularly similar nodes are those that have neighbors that are similar
These neighbors must not be shared
The basic idea is to define a similarity score 𝜎𝑖𝑗 such that 𝑖 and 𝑗 have
high similarity if they have neighbors 𝑘 and 𝑙 that themselves have
high similarity
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Similarity

Regular similarity

𝜎𝑖𝑗 = 𝛼 ∑
𝑘𝑙

𝐴𝑖𝑘𝐴𝑗𝑙𝜎𝑘𝑙 (39)

𝝈 = 𝛼𝐀𝝈𝐀 (40)
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Similarity

Regular similarity

The formula does not give a high value for “self-similarity” 𝜎𝑖𝑖
As a consequence this does not give a high similarity score to nodes
that share neighbors
If self-similarity is high this would also give a high similarity score to
nodes with many common neighbors

𝜎𝑖𝑗 = 𝛼 ∑
𝑘𝑙

𝐴𝑖𝑘𝐴𝑗𝑙𝜎𝑘𝑙 + 𝛿𝑖𝑗 (41)

𝝈 = 𝛼𝐀𝝈𝐀 + I (42)
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Similarity

Regular similarity

What happens if we evaluate the formula iteratively with 𝝈0 = 0

𝝈1 = I (43)
𝝈2 = 𝛼A2 + I (44)
𝝈3 = 𝛼2A4 + 𝛼A2 + I (45)
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Similarity

Regular similarity

The pattern is clear
In the limit of many iterations we get a sum over even powers of the
adjacency matrix
The elements of the 𝑟th power of A count the number of paths of
length 𝑟 between nodes
Why should we count only paths of even length?
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Similarity

Regular similarity

This leads to a better definition of regular similarity
Nodes 𝑖 and 𝑗 are similar if 𝑖 has a neighbor 𝑘 that is itself similar to 𝑗
Again we assume that nodes are similar to themselves

𝜎𝑖𝑗 = 𝛼 ∑
𝑘

𝐴𝑖𝑘𝜎𝑘𝑗 + 𝛿𝑖𝑗 (46)

𝝈 = 𝛼𝐀𝝈 + I (47)

Denis Helic (ISDS, TU Graz) NetSci November 20, 2017 90 / 118



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Similarity

Regular similarity

Evaluating the new formula iteratively with 𝝈0 = 0

𝝈1 = I (48)
𝝈2 = 𝛼A + I (49)
𝝈3 = 𝛼2A2 + 𝛼A + I (50)
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Similarity

Regular similarity

In the limit of a large number of iterations:

𝝈 =
∞
∑
𝑚=0

(𝛼A)𝑚 (51)

And also, by rearranging:

𝝈 = (I − 𝛼A)−1 (52)

∞
∑
𝑚=0

(𝛼A)𝑚 = (I − 𝛼A)−1 (53)
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Similarity

Regular similarity

This similarity measure includes counts of paths of all lengths
A weighted count of all the paths between nodes 𝑖 and 𝑗 with paths of
length 𝑟 getting weight 𝛼𝑟

As long as 𝛼 < 1 longer paths get less weight than shorter ones
In effect we say that two nodes are similar either if they are connected
by few short paths or by many long paths
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Similarity

Regular similarity

The matrix (I − 𝛼A) does not have inverse when 𝑑𝑒𝑡(I − 𝛼A) = 0

𝑑𝑒𝑡(I − 𝛼A) = 𝑑𝑒𝑡(−𝛼(A − 1
𝛼I)) (54)

= (−𝛼)𝑛𝑑𝑒𝑡(A − 1
𝛼I) (55)

(56)

Since 𝛼 ≠ 0, there is no inverse when 𝑑𝑒𝑡(A − 1
𝛼I) = 0

This is characteristic polynomial and the solutions 1
𝛼 = 𝜅 are

eigenvalues
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Similarity

Regular similarity

Thus, the matrix does not have inverse (divergence) whenever 𝛼 = 1
𝜅

If we start with small 𝛼 values and increase it the first time we hit the
divergence is when 𝛼 = 1

𝜅1

After that it happens always when we hit another eigenvalue
Thus, if we pick 𝛼 < 1

𝜅1
we guarantee convergence
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Similarity

Regular similarity

“Katz similarity”
It is a generalization of the structural similarity
With structural similarity we count common neighbors
The number of common neighbors is the number of paths of length
two
Our “Katz similarity” counts paths of all lengths and weight them
differently
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Regular similarity

Similarly to discussion of PageRank and Katz centrality we can
remove the effect of forwarding to much similarity to neighbors by
dividing with node degree

𝜎𝑖𝑗 = 𝛼
𝑘𝑖

∑
𝑘

𝐴𝑖𝑘𝜎𝑘𝑗 + 𝛿𝑖𝑗 (57)

𝝈 = (D − 𝛼A)−1D (58)
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Homophily

Homophily

Figure: Friendship network at a US high school
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Homophily

Homophily and assortative mixing

Division of the network into two groups
Along lines of a membership in a class, e.g. race
In social networks this phenomenon has been long observed
Sociologists have observed such division along side many different
dimensions
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Homophily

Homophily and assortative mixing

People tend to make friends based on all sorts of characteristics, e.g.
age, nationality, language, income, etc
People tend to associate with other who are similar to them
This tendency is called homophily or assortative mixing
Sometimes, disassortative mixing is also observed
This is tendency for people to associate with others who are unlike
them, e.g. gender in romantic partnerships
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Homophily

Assortative mixing

Assortative mixing by enumerative characteristics
E.g. belonging to a certain class such as nationality, race, or gender
These are discrete values and in most cases binary values
Assortative mixing by scalar characteristics
E.g. age, income, degree, etc.
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Homophily

Assortative mixing by enumerative characteristics

We have a network in which the nodes are classified according to
some characteristic that has a finite set of possible values
For instance, nodes are people classified by nationality, or gender
Nodes are Web pages classified by language
Nodes are Wikipedia pages classified by topic
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Homophily

Assortative mixing by enumerative characteristics

The network is assortative if a significant fraction of links run between
nodes of the same type
An elegant way to measure the assortiveness is to find the fraction of
links that run between nodes of the same type and then subtract the
fraction of such links that we would expect in a random network
If the fraction of links between nodes of the same type equals the
expected number then our measure gives 0
Only if the fraction of links between nodes of the same type is
significantly higher than the expected number we will have positive
difference
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Assortative mixing by enumerative characteristics

In mathematical terms, let us denote by 𝑐𝑖 the class of node 𝑖
Then the total number of links that run between nodes of the same
type is:

∑
𝑙𝑖𝑛𝑘𝑠(𝑖,𝑗)

𝛿(𝑐𝑖, 𝑐𝑗) = 1
2 ∑

𝑖𝑗
𝐴𝑖𝑗𝛿(𝑐𝑖, 𝑐𝑗) (59)
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Assortative mixing by enumerative characteristics

What is the expected number of links between nodes 𝑖 and 𝑗
Let nodes 𝑖 and 𝑗 have degrees 𝑘𝑖 and 𝑘𝑗 respectively
Now we let 𝑗 attach the second end of its single link to a random node
The probability that 𝑗 selects node 𝑖 is equal to 𝑘𝑖

2𝑚

In total: the expected number of links between 𝑖 and 𝑗 is 𝑘𝑗𝑘𝑖
2𝑚 , and the

expected number of links between nodes of the same type:

1
2 ∑

𝑖𝑗

𝑘𝑖𝑘𝑗
2𝑚 𝛿(𝑐𝑖, 𝑐𝑗) (60)
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Assortative mixing by enumerative characteristics

Taking the difference we get:

1
2 ∑

𝑖𝑗
𝐴𝑖𝑗𝛿(𝑐𝑖, 𝑐𝑗) − 1

2 ∑
𝑖𝑗

𝑘𝑖𝑘𝑗
2𝑚 𝛿(𝑐𝑖, 𝑐𝑗) = 1

2 ∑
𝑖𝑗

(𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚 )𝛿(𝑐𝑖, 𝑐𝑗) (61)

Typically, we will calculate the fraction of such links:

𝑄 = 1
2𝑚 ∑

𝑖𝑗
(𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚 )𝛿(𝑐𝑖, 𝑐𝑗) (62)
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Assortative mixing by enumerative characteristics

The quantity 𝑄 is called the modularity and is a measure of the
extent to which like is connected to like in a network
It is strictly less than 1
It takes positive values if there are more links between nodes of the
same type then what we would expect by chance
It takes negative values otherwise
We can also define 𝐵𝑖𝑗 = 𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗

2𝑚 as an element of matrix B

Modularity matrix
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Assortative mixing by scalar characteristics

Scalar characteristics allows us to say that two nodes are
approximately the same
E.g. two people are approximately of the same age
In fact, people tend to associate with others on the basis of such
approximate ages
Thus, if nodes tend to be connected more often with other nodes
having a similar characteristic then we say that the network is
assortitavely mixed by that characteristic
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Assortative mixing by scalar characteristics

Figure: Assortative mixing by age (from Mixing patterns in networks by Newman)
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Assortative mixing by scalar characteristics

How to measure the magnitude of the assortative mixing
Let us use again covariance of a scalar quantity over all links
We have the pairs of values (𝑥𝑖, 𝑥𝑗) for nodes linked by link (𝑖, 𝑗)

Definition
Average 𝜇 of the value 𝑥𝑖 at the end of a link

𝜇 =
∑𝑖𝑗 𝐴𝑖𝑗𝑥𝑖

∑𝑖𝑗 𝐴𝑖𝑗
=

∑𝑖 𝑘𝑖𝑥𝑖
∑𝑖 𝑘𝑖

= 1
2𝑚 ∑

𝑖
𝑘𝑖𝑥𝑖 (63)
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Assortative mixing by scalar characteristics

Definition
Covariance of 𝑥𝑖 and 𝑥𝑗 over links

cov(𝑥𝑖, 𝑥𝑗) =
∑𝑖𝑗 𝐴𝑖𝑗(𝑥𝑖 − 𝜇)(𝑥𝑗 − 𝜇)

∑𝑖𝑗 𝐴𝑖𝑗
= ...

= 1
2𝑚 ∑

𝑖𝑗

⎛⎜
⎝

𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

⎞⎟
⎠

𝑥𝑖𝑥𝑗 (64)
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Assortative mixing by scalar characteristics

The covariance is positive if values 𝑥𝑖 and 𝑥𝑗 et both ends of a link
tend to be either both small or both large
It will be negative if they vary in opposite directions
Thus, if we have assortative mixing the covariance is positive
If we have disassortative mixing the covariance is negative
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Assortative mixing by scalar characteristics

We can normalize to obtain 1 for a perfect mixed network
In a perfectly mixed network 𝑥𝑖 and 𝑥𝑗 at both ends of a link are
always equal
We put 𝑥𝑗 = 𝑥𝑖 in the previous equation and obtain the maximal
covariance as our normalization constant
In fact, it is the variance in this case
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Assortative mixing by scalar characteristics

Definition
Assortativity coefficient

𝑟 =
∑𝑖𝑗 (𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗

2𝑚 )𝑥𝑖𝑥𝑗

∑𝑖𝑗 (𝑘𝑖𝛿𝑖𝑗 − 𝑘𝑖𝑘𝑗
2𝑚 )𝑥𝑖𝑥𝑗

(65)

−1 ≤ 𝑟 ≤ 1
𝑟 = 0 it the values on both ends of links are uncorrelated
For the data from the previous figure 𝑟 = 0.574
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Assortative mixing by degree

It is of special interest because degree is a network property
E.g. if we have assortative mixing by degree high-degree nodes tend
to connect to other high-degree nodes
Low-degree nodes tend to connect to other low-degree nodes
Typically, we obtain a network structure with a core of high-degree
nodes and a periphery of low-degree nodes
In a disassortative mixing network we obtain a star-like structure
where high-degree nodes connect to low-degree nodes
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Assortative mixing by degree

Definition
Covariance of 𝑥𝑖 and 𝑥𝑗 over links

cov(𝑘𝑖, 𝑘𝑗) = 1
2𝑚 ∑

𝑖𝑗

⎛⎜
⎝

𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

⎞⎟
⎠

𝑘𝑖𝑘𝑗 (66)

Definition
Assortativity coefficient

𝑟 =
∑𝑖𝑗 (𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗

2𝑚 )𝑘𝑖𝑘𝑗

∑𝑖𝑗 (𝑘𝑖𝛿𝑖𝑗 − 𝑘𝑖𝑘𝑗
2𝑚 )𝑘𝑖𝑘𝑗

(67)
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Assortative mixing by degree
16 M. E. J. Newman and M. Girvan

(a) (b)

Figure 8: The giant component of two graphs generated using a Monte Carlo procedure with
edge distribution given by Eq. (9) with κ = 10 and (a) p = 0.5 and (b) p = 0.05.

As an example, we show in Fig. 8 the giant components of two graphs of this type
generated using the Monte Carlo method. One of them, graph (a), is assortatively
mixed by degree, while the other, graph (b), is disassortatively mixed. The difference
between the two is clear to the eye. In the first case, because the high degree vertices
prefer to attach to one another, there is a central “core” to the network, composed of
these high-degree vertices, and a straggling periphery of low-degree vertices around
it. In epidemiology a dense central portion of this type is called a “core group” and is
thought to be capable of acting as a reservoir for disease, keeping diseases circulating
even when the density of the network as a whole is too low to maintain endemic
infection. In social network analysis one also talks of “core/periphery” distinctions in
networks, another concept that mirrors what we see here. In the second graph, which
is disassortative, a contrasting picture is evident: the high-degree vertices prefer not
to associate with one another, and are as a result scattered widely over the network,
producing a more uniform appearance.

To shed more light on the effects of assortativity, we show in Fig. 9 the size of the
largest component in networks of this type as the degree distribution parameter κ is
varied, for various values of p. For low values of κ the mean degree of the network
is small, and the resulting density of edges is too low to produce percolation in the
network, so there is no giant component. As κ increases, however, there comes a
point, clearly visible on the plot, at which the edge density is great enough to form
a giant component. Figure 9 reveals two interesting features of this transition. First,
the position of the transition, the value of the parameter κ at which it takes place, is
smaller in assortatively mixed networks than in disassortative ones. In other words,
it appears that the presence of assortativity in the degree correlation pattern allows
the network to percolate more easily. This result is intuitively reasonable: the core
group of the assortative network seen in Fig. 8a has a higher density of edges than the

Figure: Assortative mixing by degree (from Mixing patterns and community
structure in networks by Newman)
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Measures Notebook

Jupyter Notebook example
http:
//kti.tugraz.at/staff/denis/courses/netsci/measures.zip
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