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ABSTRACT
Websites have an inherent interest in steering user naviga-
tion in order to, for example, increase sales of specific prod-
ucts or categories, or to guide users towards specific infor-
mation. In general, website administrators can use the fol-
lowing two strategies to influence their visitors’ navigation
behavior. First, they can introduce click biases to reinforce
specific links on their website by changing their visual ap-
pearance, for example, by locating them on the top of the
page. Second, they can utilize link insertion to generate new
paths for users to navigate over. In this paper, we present a
novel approach for measuring the potential effects of these
two strategies on user navigation. Our results suggest that,
depending on the pages for which we want to increase user
visits, optimal link modification strategies vary. Moreover,
simple topological measures can be used as proxies for as-
sessing the impact of the intended changes on the navigation
of users, even before these changes are implemented.

Keywords
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tribution

1. INTRODUCTION
Millions of people use the Web on a daily basis to buy

products in online shops, perform financial transactions via
online banking, or simply browse information systems, me-
dia libraries or online encyclopedias, such as IMDb, Netflix
or Wikipedia. To find and access relevant information on
the Web, people either search, navigate, or combine these
two activities. A recent study [10] found that 35% of all
visits to a website can be attributed to teleports, which are
the direct result of clicks on search-engine results, navigation
through manually typed URLs, or clicks on browser book-
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marks. The remaining 65% of the clicks can be attributed
to the task of navigating a webpage. In this paper, we di-
rect our attention towards these 65% of actions and tackle
the question what potential effects we can expect if we influ-
ence the link selection process of website visitors by simple
link modifications. In particular, we are interested in the ef-
fects of different link modification strategies on (stochastic)
models of Web navigation.
Problem. By inserting new links between webpages of a
website, we alter the link structure. This has the potential
to change user browsing behavior, since new links create
new paths for users to explore the website. Alternatively,
without changing the link structure of the website, we might
be able to influence the link selection process of visitors.
Studies have shown that the decisions of users for where
to navigate next can be influenced by the layout and the
position of the links on a webpage. In particular, due to
position bias [20] users are more likely to select links higher
up on webpages [5, 6, 24]. As a result, inducing click biases,
such as repositioning links on a webpage, highlighting the
links, or even making them visually more appealing, can
affect the users’ decision of where to click next on a website,
similar to the way that adding new links affects browsing.

In this paper we are particularly interested in investigat-
ing and comparing the potential consequences of inserting
new links and modifying already existing links on the nav-
igational behavior of users. These newly obtained insights
are of a significant practical relevance for website owners,
as they can be used, for example, by owners of media li-
braries to increase visits of specific media files in order to
reduce the number of different files that need to be cached
on fast storage devices. Another example includes online
encyclopedias, where operators may want to guide users to-
wards articles of a specific category over some period of time
(e.g., the birthday of an inventor). In some of these cases,
link insertion might be more time-consuming than simply
changing the layout of the website to increase visibility of
specific links and vice versa. Theoretically, we would like
to analyze and compare the effects of such link modification
endeavors. Practically, new tools are needed to assist web-
site operators in deciding which of the two strategies they
should deploy to achieve the desired effects.
Methods. In this paper we study the impact of link mod-
ifications on the random surfer, which we apply as a proxy
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for real user behavior. In the past, a user’s decision to click
on a link on a webpage was successfully modeled using the
random surfer [4, 15, 30]. In this model, a user selects one
of the links on a webpage uniformly at random and nav-
igates to the page to which the link points. Apart from
the huge success of the Google search engine, whose ranking
algorithm is based on the random surfer model, empirical
studies have shown that this model provides a very precise
approximation of real browsing behavior in many situations
and for a variety of applications [4, 9]. An important prop-
erty of a random surfer is its stationary distribution, which
is the probability distribution of finding a random surfer at
a specific webpage in the limit of large number of steps.

In particular, we investigate how the random surfer’s sta-
tionary distribution of a subset of pages (i.e., target pages) of
a given website changes as a consequence of (i) modifying al-
ready existing links towards them, (ii) introducing new links
towards them, or by (iii) combining these two approaches.
To that end, we introduce a click bias, and a link insertion
strategy. We model the effects of click biases on the intrinsic
attractiveness of a link to the user by increasing the weight
of that link. In practice, we may introduce such click bi-
ases, for example, by locating the corresponding link on the
top of a page. With link insertion, we simply introduce new
links between webpages of a website, for example, by linking
towards a given target page from the starting page.

We introduce quantitative measures that allow us to ad-
dress the following research questions:
Navigational Boost. How stable is the stationary distribu-
tion with respect to the proposed modification strategies,
and what are the limits of stationary distributions that can
be achieved for a given set of webpages? Is it (theoretically)
possible to achieve a given stationary probability distribu-
tion for an arbitrary subset of webpages of a website? What
is the connection between simple topological measures of the
website network and stationary probability?
Influence Potential. What is the relative gain of the station-
ary probabilities compared to their unmodified counterparts.
This provides us with an answer to the “guidance” potential
of a set of webpages, defining to what extent it is possible
to increase the relative stationary probabilities as compared
to the initial unmodified values.
Combinations. Finally, we are interested how combinations
of the two proposed link modification strategies perform in
terms of increased stationary probabilities of selected sub-
pages. In particular, we investigate the performance of cer-
tain combinations across several different networks and/or
selected subpages.
Contributions & Findings. We find that intuitions about
how either modification strategy affects navigation are not
always correct. Further, our experiments show that the size
of a set of targeted subpages is not always a good predictor
for the observed effects. Rather, other topological features
often better reflect the consequences of a modification. Prac-
tically, we provide an open source framework1 for website
administrators to estimate the effects of link modifications
on their website.

2. RELATED WORK
The random surfer model has received much attention

from the research community [22, 31]. While the model is

1https://github.com/floriangeigl/RandomSurfers

very simple, it became well-established over the last years. It
was applied to a variety of problems from graph generators
over graph analysis to modeling user navigation. Further-
more, the model has been applied to calculate structural
node properties in large networks. HITS [18] and PageR-
ank [4, 26] rank network nodes according to their values in
the stationary distribution of the random surfer model. Es-
pecially for the later there exists a detailed analysis rang-
ing from the efficiency of its calculation towards its robust-
ness [3,19]. Bianchini et al. [3] provided an in-depth analysis
of how to tweak the cumulative PageRank of a community of
websites. They found that splitting up the content of pages
onto more highly interlink pages increases the community’s
cumulative PageRank—since the community is larger it con-
sists of more pages which are able to trap the random surfer
for a longer period of time. Moreover, they suggest to avoid
dangling webpages (i.e., pages without links to other pages).
In this paper we are also interested in the sum of the ran-
dom surfers visit probabilities in a community, however we
do not use (i) teleportation as in the PageRank model, and
(ii) do not modify the network in its size (i.e., number of
pages). On the contrary we modify the transition probabil-
ities of certain links and insert new links into the network.
Moreover, since all our datasets are strongly connected, we
do not face the problem of unwanted high visit probabilities
of usually unimportant pages (i.e., dangling nodes) [3].

A random surfer can be steered towards specific nodes in
the network by increasing the probability of traversing links
towards those nodes. This can be accomplished by biasing
random surfer’s link selection strategy so that it is not uni-
formly random anymore, but biased towards specific nodes.
For instance, in the field of information retrieval Richard-
son et al. [28] successfully applied biased random surfers
to increase the quality of search results compared to those
achieved using a simple PageRank. At the same time Haveli-
wala [13,14] biased PageRank towards topics retrieved from
a search query to rank the query results. Utilizing this tech-
nique the results where more accurate than those produced
using a single, generic PageRank. Moreover, Gyongyi et
al. [12] successfully used trust as bias to detect and filter out
spam pages of search results. However, Al-Saffar and Heile-
man [1] showed that biased PageRank algorithms generate a
considerable overlap in top results with a simple PageRank.
Concerning this problem their main suggestion was to use
external biases which do not rely onto the underlying link
structure of the network. In our paper we randomly decide
towards which nodes we bias the random surfer. This allows
us to explore the borders of changes in stationary distribu-
tions caused by a bias.

In 2013, Helic et al. [15] compared click trails characteris-
tics of stochastically biased random surfers with those of hu-
mans. Their conclusion was, that biased random surfers can
serve as valid models of human navigation. Further, Geigl
et al. [9] validated this by showing that the result vector
of PageRank and clickdata biased PageRank have a strong
correlation in an online encyclopedia. This is especially in-
teresting, since it creates the connection of our simulation
to real human navigation on the web. Additionally, Lerman
and Hogg [20] already showed that it is possible to bias the
link selection of users. In particular, they came to the con-
clusion that users are subject to a position bias, making the
selection of links higher up on webpages up to a factor of
3.5 more likely [5, 20, 24]. Hence, it is of practical relevance
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to investigate also the effects of biases in the link selection
process onto the stationary distribution.

Concerning link insertion there already exists work in lit-
erature which makes use of statistical methods to suggest
new links in network structures to, for instance, increase the
performance of chip architectures [25]. In particular, the
authors use a standard mesh and insert long-range links,
converting the network into a small-world network. This
reduced packet latency results in a major improvement in
throughput. Another field of research where link insertion
is of interest are recommender systems for social friendship
networks [2, 21, 23, 29]. For example, Xie et al. [32] charac-
terized interests of users in two dimensions (i.e., context and
content) and exploited this information to efficiently recom-
mend potential new friends in an online social network. In
this paper we focus on the effects of inserted links onto the
typical whereabouts of the random surfer.

3. METHODOLOGY
We base our methodology on the calculations of the sta-

tionary distribution of a random surfer on the original and
manipulated networks. The networks consist of nodes, which
represent webpages and directed links between nodes, which
represent hyperlinks between webpages. We first calculate
the transition matrix and the stationary distribution for the
original network as a baseline for comparing the effects of
link modifications. Second, we increase the statistical weight
of a random surfer visiting a set of predefined nodes (i.e.,
target pages or target nodes). We do that either by increas-
ing the link weights towards selected nodes (click bias) or
by adding new links pointing towards those nodes (link in-
sertion). Third, we compute the corresponding transition
matrix for the modified network. Fourth, we calculate the
stationary distribution of the new transition matrices. Fi-
nally, we compare the modified stationary distribution with
the original stationary distribution to gain insights into the
effects of the different link modifications. Figure 1 illustrates
these steps on a toy example.

3.1 Preliminaries
In what follows we formalize our approach algebraically.

We represent a website as a directed network with a weighted
adjacency matrix W ∈ Rn×n, where n is the number of
webpages in the website under investigation. We define the
element Wij of the weighted adjacency matrixW as the sum
of edge weights of all links pointing from node j to node i.
For example, Wij = 1 if there is a single link from page j to
page i with weight 1, and Wij = 3 if there are three links
pointing from page j to page i each with weight 1.

For our analysis we introduce target nodes as the nodes
whose stationary probability we want to increase. We use
vector t ∈ Rn to specify them:

ti =

{
1 if i is a target node

0 otherwise.
(1)

We further define φ as a fraction of target nodes with respect
to the total number of nodes n:

φ =

∑
i ti

n
(2)

Hence, φ = 0.1 means that 10% of nodes from the network
are target nodes.

3.2 Stationary Distribution
The stationary distribution is a probability distribution

over nodes that assigns a probability of finding the random
surfer on a given node in the limit of large number of steps.
To compute the stationary distribution we first need to con-
struct a diagonal out-degree matrix D, with the weighted
node out-degrees on its diagonal. Using diag(v) to denote
diagonal matrices with elements of a vector v on their diag-
onal we define D as:

D = diag

(
n∑

i=1

Wij

)
. (3)

Using D matrix we can calculate the transition matrix P ,
which is a left stochastic matrix of W as P = WD−1 (in
fact this is PageRank matrix without teleportation). The
stationary distribution π now satisfies the (right) eigenvalue
equation for the matrix P : π = Pπ.

3.3 Click Bias
To introduce click biases that influence the link selection

strategy of the random surfer, we reweigh the links pointing
towards target nodes by multiplying their weight by a con-
stant scalar b, which we call bias strength. For example, a
bias strength of b = 2 doubles the weight of all links towards
target nodes. The final probability of the random surfer to
traverse a link is then directly proportional to its weight.

Algebraically, we induce biases with a diagonal bias ma-
trix B which we define as B = I + (b − 1) · diag(t). The
adjacency matrix of a biased network is W ′ = BW . To
compute the stationary distribution of the biased network,
we first calculate the new transition matrix P ′ = W ′D′−1

and then its stationary distribution π′.
Please note that from the technical perspective, inducing

a bias is the same as inserting parallel links towards target
nodes—it increases the value of specific elements (i.e., those
representing links towards target nodes) in the adjacency
matrix. The total weight of newly added parallel links l(b)
due to an induced bias b is given by:

l(b) =
∑
ij

W ′ij︸ ︷︷ ︸
# links in W ′

−
∑
ij

Wij︸ ︷︷ ︸
# links in W

(4)

To allow for a fair comparison between the click bias and
the link insertion strategy we insert exactly l(b) new links
with weight 1 in the latter case.

3.4 Link Insertion
The second link modification strategy consists of insert-

ing new links towards the target nodes from a given set
of source nodes. This strategy represents the case where
a website administrator inserts links towards target nodes
from important subpages of their website. We define the
importance of a webpage as its stationary probability in the
original network.

To insert a given number l(b) of new links we proceed
as follows. We start by sorting nodes by their stationary
probability in a descending order. In the next step we insert
new links from the top l(b)/(n ·φ) nodes to all target nodes.
Here n · φ is the number of target nodes and we always
ceil the calculated number of source nodes to ensure that
there are enough pairs of nodes. If one of the target nodes
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Figure 1: Modeling Click Bias and Link Insertion - Illustrative Example. We intend to use different link modification
strategies to steer the random surfer towards the red colored node 1 more often. Hence, our target nodes vector consists of
only one node: node 1 (t =

(
1 0 0 0

)ᵀ
). In each row we visualize the corresponding network of the website, where nodes

represent webpages and links represent hyperlinks between the webpages. Further, for each of them we show how we calculate
its stationary distribution. This involves (from left to right) the weighted adjacency matrix W (unmodified network) or W ′

(modified networks), the corresponding transition matrix P (unmodified network) or P ′ (modified networks) and finally the
corresponding stationary distribution π (unmodified network) or π′ (modified networks). The blue links in the graphs and
the blue matrix elements in bold show the link modifications and their effects on the adjacency and the transition matrix.
The red vector elements show the effects of the modifications on the stationary probability (energy) of node 1. Top row.
Here we depict the original and unmodified network. Middle row. We modify the network with a click bias. We double
the statistical weights of links towards target nodes (bias strength b = 2). To calculate the modified adjacency matrix we
first construct the diagonal bias matrix B and then compute W ′ = BW . We see an increase in energy of node 1 from 0.18
in the unmodified network to 0.24. Bottom row. We insert a new link from node 4 to 1 (i.e., blue link in graph and blue
element in W ′) into the original network. Due to the link insertion the energy of node 1 increases from 0.18 in the unmodified
network to 0.22 in the modified network. Thus, in this toy example the effects of the click bias are stronger than those of link
insertion. Additionally, we see that also elements in the out-component of node 1 (i.e., node 4) profit of an increased energy
of node 1 since a significant amount of 1’s increased energy flows into node 4.

is itself designated as a source node we do not insert self-
loops—from the practical point of view, it does not make
sense to link a webpage to itself. In the rare case where
we have connected all possible combinations of source and
target nodes but did not reach the required number of links,
we simply reiterate the list of the source nodes resulting
in parallel links between nodes. Please note that we insert
parallel links if a link between a source and a target node
has already existed in the original network. However, this
happens extremely rarely because all of our networks are
sparse. In fact, in all our experiments the fraction of inserted
parallel links was on average less than 1%.

3.5 Combinations
Finally, we can combine the two link modification strate-

gies and study the effects of such combinations on the sta-
tionary distribution and investigate if an optimal combina-
tion of strategies exists, which outperforms the individual
approaches. From the practical point of view this means
that for optimally steering website users, we combine both,
the click bias and link insertion mechanisms.

To create a combined link modification method we first

introduce α ∈ [0, 1], which we call the mixing factor. The
mixing factor determines how many of the l(b) links are in-
serted by the click bias. Then, 1−α defines how many links
are inserted by the link insertion strategy:

l(b) = α · l(b)︸ ︷︷ ︸
# biased links

+ (1− α) · l(b)︸ ︷︷ ︸
# inserted links

(5)

With a combined strategy we cannot bias all links towards
target nodes—again, we need to select a subset of links to-
wards target nodes. In analogy to the link insertion method
we again preferably select links between nodes having higher
stationary probability in the unmodified network. Thus, we
first compute the probability distribution over the eligible
links in the form of matrix L, where

∑
ij Lij = 1. We define

matrix L as:

L = diag(π) · diag(t) ·W · diag(π). (6)

The probability of selecting a link is directly proportional to
the product of the unmodified stationary probability of its
source and target node. Note that due to the multiplicative
factor diag(t) ·W only links towards target nodes have a
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non-zero probability. With L in place we sample α·l(b) links
without replacement and multiply their value in W ′ by b to
induce the click bias. To insert the remaining (1 − α) · l(b)
links we adopt the link insertion strategy on the matrix W ′

as described previously.

3.6 Measuring the Effects
To measure the effects of link modification strategies we

quantify how the stationary probabilities of given target
nodes change as a function of the modification. In the re-
mainder of this paper we will refer to a node’s stationary
probability using the, in the literature established, term en-
ergy [3]. To that end, we calculate the energy of target nodes
(π′t), which is the sum of the modified stationary probabili-
ties of target nodes, as following:

π′t =
∑
i

π′i · ti , (7)

where π′ is the stationary distribution of the modified ad-
jacency matrix.

We further measure the influence potential, which is the
relative increase in the energy of target nodes due to the
modification, as a factor τ :

τ =
π′t
πt
, (8)

where πt is the energy of target nodes of the unmodified
network (i.e., πt =

∑
i πi · ti).

4. DATASETS
For our experiments we use three datasets: an online en-

cyclopedia Wikipedia for Schools2 (W4S) and two online
media libraries ORF TVthek3 (ORF ) and Das Erste Me-
diathek4 (DEM ).

We collected the data by crawling the corresponding web-
sites. Starting from the main page of a website we recur-
sively crawled all subpages by following all outgoing links
from a given webpage. Note that we did not follow external
links, meaning that we skipped links to pages not belonging
to a given website. Further, we did not follow links gener-
ated via Flash, AJAX or any other client-rendered content.

After collecting the data, we removed self-loops, which
are links from a webpage to itself, and special links such as
“log-in”, “write a review”, and all other links that require a
session-id. In the next step, we represented each dataset as
a directed network—webpages are represented as nodes con-
nected by directed links. For calculating the stationary dis-
tribution, we extracted the largest strongly connected com-
ponent (SCC) of each network, so that in the final network
it is possible to navigate from any given node to any other
node in the network. These final networks have 4, 051 nodes
and 111, 795 links (W4S), 9, 799 nodes and 301, 844 links
(ORF ), and 70, 063 nodes and 3, 448, 513 links (DEM ).

5. EXPERIMENTAL SETUP
To investigate the effects of manipulating links we first

generate sets of target nodes. For this purpose we draw the
desired number of nodes uniformly at random from the net-
work without replacement, creating a synthetic set of nodes

2http://http://schools-wikipedia.org/
3http://tvthek.orf.at/
4http://mediathek.daserste.de/

of a specified size. Note that those sets can consist of uncon-
nected webpages. We conduct all of our experiments with
the same initially generated target nodes to reduce the in-
fluence of the random node selection process. For making
the number of webpages selected as target nodes compara-
ble between datasets we refer to the size of target nodes as
φ, which is the fraction of target nodes. To generate target
nodes we use several values for φ which range from 0.01 to
0.2. For each dataset and each φ we generate 100 different
synthetic sets of nodes (i.e., target nodes).
Limiting (High) Bias Behavior. In our first experiment
we are interested in analyzing the impact of an increasing
bias strength on the energy of target nodes using either a
click bias on already existing links or inserting new links in
an informed way. We use bias strengths reaching from b = 2
to b = 200 to investigate their effects. Note that for the link
insertion strategy the number of inserted links is defined by
the bias strength b using Equation 4. This ensures a fair
comparison between the two methods.
Realistic (Lower) Bias Strengths. In this experiment
we investigate practically relevant [17,20] values for the bias
strength b. In particular, we iterate over the range 2 to 15
as bias strengths. With this experiment we gain insights
into the effects of the proposed modifications, which can
be implemented in websites. After the modification of the
adjacency matrix we measure the energy of target nodes π′t.
This allows us to investigate the efficiency of both methods
for a given bias strength.
Relative Increase in Stationary Probability. With the
previous experiments we analyze changes in the energy of
target nodes in absolute terms. For instance, we may learn
that for a given set of target nodes we may achieve an energy
of π′t = 0.5. However, we do not know what the relative
increase in their energy is. For example, the set of target
nodes may have had πt = 0.49 in the unmodified network
rendering our efforts futile in relative terms. Thus, in this
experiment we use τ to measure the influence potential. A
higher value for τ means a larger relative increase in the
energy of target nodes. Again, we compare the results for a
given bias strength between our two methods.
Combination of Strategies. Finally, we are interested
in investigating if and to what extent the energy of target
nodes changes if we combine click biases and link insertion.
We vary the mixture factor α from 0 to 1 in steps of 0.1
and measure the energy of target nodes π′t of the modified
networks.

6. RESULTS & DISCUSSION

6.1 Saturation
Figure 2 depicts the effects of link modifications in our

datasets with increasing values of bias strength b and varying
fractions of target nodes φ (0.01, 0.1 and 0.2).

In the case of click bias we observe the following situation.
For small values of b the energy of target nodes π′t increases
very quickly (navigational boost phase, which we analyze in
more detail in Section 6.2)—this energy saturates for larger
values of b (i.e., b > 35). This holds for larger φ values (0.1
and 0.2), whereas for a smaller φ, for example φ = 0.01,
the initial growth as well as the saturation are significantly
slower and lower respectively. Further, for higher φ (0.1 and
0.2) π′t saturates at an almost identical and very high level
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Figure 2: Saturation. The plots depict the connection
between bias strength (x-axis) and the increased energy of
target nodes due to an induced click bias (left) or link in-
sertion (right). Each marker type and color refers to one
dataset. Dashed, solid and dotted line styles refer to frac-
tion of target nodes φ 0.01, 0.1 and 0.2 respectively. We can
observe that both link modification strategies reach a cer-
tain level of saturation—meaning that further increases in
bias strength do not result in an increase in energy of target
nodes. Therefore, for both strategies we identify two phases:
a (i) navigational boost phase in which we observe a rapid
increase of the stationary probability (blueish region with
small values of the bias strength), and a (ii) saturation phase
(reddish region with larger values of the bias strength).

(>0.8)—if the click bias is strong enough we can increase the
energy of any fraction of target nodes larger than φ > 0.1.

An interesting question in this respect is the height of the
energy saturation level. Theoretically, this level is close to
1.0 but as Figure 2 shows, in empirical networks this level
can not be fully reached. Essentially, due to the directed na-
ture of the network, the target nodes out-component (i.e.,
the nodes with incoming links from target nodes) will al-
ways act as a drain that will take some energy from the
target nodes. That amount depends on the size of the out-
component as well as its connectivity with other parts of the
network—in particular the existence of back-links towards
target nodes. This situation is depicted in our toy example
Figure 1 in the middle row. Node 4, which has an incoming
link from node 1, profits from an induced click bias towards
node 1 (cf. original π4 = 0.27 and modified π′4 = 0.29).
Thus, although π′1 increases with increasing bias strength,
node 1 would never reach energy values close to 1.0 because
node 4 attracts a certain amount energy to itself.

In the case of the link insertion strategy the results are
more diverse (cf. Figure 2b). For DEM dataset we observe
a quick saturation for all values of φ. Differently from the
click bias the saturation level is significantly lower for this
dataset (i.e., 0.6). For the ORF dataset we do not observe
saturation but a monotonous increase in the energy of target
nodes for increasing values of φ. Finally, for the W4S dataset
and larger φ (0.1 and 0.2) we can observe saturation at levels
higher than 0.9.

As previously, the size of the out-component of the target
nodes, combined with the size of their in-component (i.e.,
the source nodes which point towards target nodes), as well
as the ratio of these two quantities provide a possible ex-
planation for this behavior. Basically, we can calculate the
average number of newly inserted links as l(b) = d · n · φ · b,
where d is the average degree (i.e., in a directed network
average degree d corresponds to both the average in-degree
as well as average out-degree) and n, φ, b are as before.
Thus, in the networks with a higher average degree we in-

sert more new links. For smaller values of bias strength
(blueish region in Figure 2b) these new links lead to a nav-
igational boost, resulting in a quick increase in the energy
π′t of target nodes. The navigational boost is higher in net-
works with a higher average degree—we observe the highest
increase in π′t in DEM with d = 49.22, the second highest in
ORF with d = 30.8, and the lowest in W4S with d = 27.6.
As mentioned before, in Section 6.2 we analyze this navi-
gational boost in more detail. However, for larger values of
bias strength (reddish region in Figure 2b) the effects of the
drain due to the larger size of the out-component become
visible—the networks with a higher increase for smaller bias
strengths lose their energy now more quickly. Thus, the or-
dering of the saturation levels for higher bias strengths is
reversed to the navigational boost in energy for lower bias
strengths, resulting in W4S to now have the highest satura-
tion level, followed by ORF and then by DEM.

To confirm our intuition about the saturation for the link
insertion strategy we performed the following analysis. First,
we calculated some structural properties for the target nodes.
In particular, based on the insights of Ding et al. [7,8], we de-
fine the in-degree of target nodes as the sum of the weights of
links pointing towards target nodes d−t =

∑
ij ( diag(t) ·W )ij .

The out-degree of target nodes is the sum of the weights of
outgoing links of target nodes d+t =

∑
ij (W · diag(t))ij .

Finally, the degree ratio of target nodes is a ratio between the
previous two measurements (i.e., drt = d+t /d

−
t ). Although,

it has been shown that properties, such as the simple count
of in-links of a node, are bad approximations for PageRank
on a large scale [27], they proved to be a good indicator for
the random surfer behavior on our datasets.

In our experiments, DEM has on average by one order of
magnitude higher both target node in-degree and out-degree
than the other two datasets. This explains a quick increase
of π′t for smaller bias strengths. However, degree ratio is
typically larger in DEM target nodes than in ORF or W4S
target nodes and this explains a higher drain of energy and
a lower saturation level in the DEM dataset (cf. Figure 3).
Finding. For larger fractions φ of target nodes their energy
π′t achieved through a click bias quickly saturates across all
datasets at very high levels (> 0.8). Boost and saturation
of the energy is significantly slower for smaller fractions φ.
The saturation level is determined by the out-degree of the
target nodes and reciprocity of outgoing links from the tar-
get nodes. For link insertion saturation existence, speed,
and levels vary between datasets and φ values. The average
degree of the original networks as well as the ratio between
out-degree and in-degree of target nodes significantly influ-
ences those effects.
Implications. In case of medium (φ = 0.1) and large
(φ = 0.2) fractions of target nodes we reach high saturation
levels with both link modification methods even with small
bias strengths. For example, if we would like to increase
visibility of a large category in, for example Wikipedia, we
can achieve this by either slightly increasing the font size of
the links towards the articles of that category or by simple
creating some new links towards those articles. Click bias
reaches very high visibility levels consistently across several
different datasets, whereas link insertion is dependent on
the network structure—in datasets with a smaller average
number of links we can achieve larger changes. This follows
our intuition—in a network with a smaller number of links,
each new link affects the network more significantly. How-
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Figure 3: Influence of Target Nodes Degree Ratio onto the Saturation of their Energy. The plots depict the due to
link insertion achieved energy of target nodes pi′t as the function of their degree ratio. Each line depicts the results for a given
φ. For increased readability we group data points into six equally sized bins according to their degree ratio (x-axes). Values
on the y-axes represent the averages of the data points falling into the corresponding bin. Top row. In the top row we show
the distribution of the target nodes degree ratios (in bins; x-axes)—the y-axes denote the number of data points (N) falling
into each bin. Middle row. Here, we depict the results for medium and large fractions of target nodes. Bottom row. For
readability we depict small fractions of target nodes separately. Over all datasets and all φ we consistently observe a negative
correlation between degree ratio and energy π′t. This means that with an increasing ratio—an increasing out-degree and a
decreasing in-degree—the drain of energy increases and this leads to the saturation of the energy of target nodes.

ever, to match the effects of the click bias we need to insert
a very large amount of new links. On the other hand, in
case of small (φ = 0.01) fractions of target nodes, we can
achieve larger changes by using link insertion—we are able
to reach higher saturation levels more consistently and more
quickly regardless of the dataset. Again, we can explain this
intuitively—small fractions of target nodes have, on aver-
age, only few links pointing towards them. Hence, inserting
a new link from a top webpage achieves larger changes than
highlighting an existing (and probably negligible) link.

6.2 Navigational Boost
The blueish region from Figure 2b corresponds to smaller

and more realistic bias strengths. In practice, increasing the
visibility of a link (e.g., by repositioning or highlighting) by
more than a factor of 15, meaning that it would receive 15
times more clicks than before, seems quite unrealistic. In
particular, users position bias is estimated to be lower than
3.5 [17,20]. Hence, we focus on bias strengths ranging from 2
to 15 (the blueish region in Figure 2b) where we can observe
a phase of quick increase in the energy of target nodes. We
call this phase navigational boost phase. The results for all
bias strengths from 2 to 15 are quite similar and therefore
we report only the results for bias strength b = 5.

For click bias we observe a robust performance across
datasets, see Figure 4. The energy of target nodes π′t in-
creases almost linearly with the fraction φ of target nodes.
However, at higher φ (i.e., 0.15 ≤ φ ≤ 0.2) the linear trend
tends to flatten. This is due to a transition to the stationary
phase (cf. Section 6.1). Further, we observe a rather high
variance of π′t over φ and different sets of target nodes. For
example, we measure the following average standard devia-
tions over φ: W4S = 0.023, ORF = 0.103 and DEM = 0.068.
This high variance can be attributed to situations in which
smaller fractions of target nodes are often able to outper-
form larger ones. We depict one such extreme situation of
two outlier samples marked as A and B in Figure 4. Target
nodes depicted with A with φ = 0.1 reach an energy that is
almost twice as high as those of the target nodes depicted
with B with φ = 0.2.

One potential explanation for these observations is that
if the energy of target nodes of the unmodified network is

already quite high, that is, the target nodes include one or
more nodes with a substantial energy, then the click bias
acts as an amplifier further magnifying the energy of target
nodes. On the other hand, target nodes with a small un-
modified energy receive indeed the amplifying effect but are
never able to reach the same (high) levels of the modified
energy. Therefore, it is possible for smaller fractions of tar-
get nodes with one or more nodes with high starting energy
to outperform larger fractions of target without such nodes.
This can be further attributed to the target nodes struc-
tural properties, such as out-degree, in-degree and degree
ratio, which we introduced in the previous sections. Basi-
cally, starting energy positively correlates with in-degree of
target nodes, and therefore we can expect that the click bias
is able to amplify target nodes with a higher in-degree more
than the target nodes with a lower in-degree. In particular,
to confirm this finding we conducted a similar correlation
experiment as depicted in Figure 3, but used a combination
of the target nodes in-degree and energy achieved due to a
click bias. However, due to limitations in space, we do not
report the experimental details here.
Finding. The fraction φ of target nodes does not have
a decisive effect on navigational boost. Often, smaller φ
exhibit larger effect sizes. Click bias acts as an amplifier
that only magnifies what is already present in the target
nodes.

In the case of link insertion, navigational boost appears to
be highly dataset dependent (see Figure 4b). However, the
variance of each dataset individually is very low with average
standard deviations of 0.017 for W4S, 0.029 for ORF and
0.034 for DEM. Across all datasets we can observe a quick
increase in the energy of target nodes with an increasing
fraction of target nodes, which then experience a transition
towards a stable saturation phase.

To explain the difference in performance between different
datasets we have plotted the Lorenz curves of the station-
ary distributions of our datasets (see Figure 4c). We see that
for W4S, a very small fraction of top nodes (0.01) only pos-
sesses 0.4 of energy. Diversely, for ORF and DEM the same
fraction of top nodes already possesses energy higher than
0.85. As the out-component of a specific set of nodes acts
as a drain for the energy of source nodes, connecting source
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Figure 4: Navigational Boost. Left center figures depict the energy of target nodes after modifying the network through
either inducing a click bias or link insertion respectively. The x-axes correspond to the fraction φ of target nodes, whereas
on the y-axes we denote the energy of target nodes π′t. Each line represents the average of 100 samples for each φ of one
dataset. The areas filled with the same color denote the corresponding standard deviations. Left. Inducing a click bias is
robust across datasets. However, the variability within values of φ is rather high. The high variance is caused by the presence
or absence of one or more nodes with high original energy in the target nodes. Thus, in cases where such nodes are present
in target nodes (depicted as point A in the plot) even smaller fractions of target nodes are able to outperform larger fractions
of target nodes without such a top node (depicted as point B in the plot). Center. On the contrary, the performance of link
insertion varies over datasets but is stable across various φ values, which is signified by the low standard deviation suggests
over φ. Right. We plot the Lorenz curve of the datasets’ original stationary distributions. We can observe that for different
datasets these distributions are differently skewed. In particular, in DEM the energy of just a few nodes is close to 1, whereas
in ORF and W4S we need far more nodes to reach the same level (i.e., 0.4 and 0.7 respectively). This explains why we can
achieve the highest effect with link insertion in DEM, followed by ORF and W4S. Thus, the performance of link insertion
depends on the initial stationary distribution of the network, whereas click biases are robust across datasets. Moreover, for
smaller fractions of target nodes link insertion constantly outperforms click biases.

nodes with high energy to target nodes leads to a flow of en-
ergy from those source nodes towards target nodes. Thus,
the initial energy of source nodes plays a crucial role in this
process. Through link insertion from top source nodes to-
wards target nodes we attach the target nodes as drains to
such top nodes. Consequently, target nodes receive a huge
amount of energy and experience a large navigational boost
(i.e., ORF and DEM). In other words, we can say that link
insertion induces diffusion of the energy of top nodes to-
wards target nodes. Given the average degree of the network
and the fraction of source nodes (which increases with the
fraction φ of target nodes), we can use the Lorenz curves
to approximately predict the point where the performance
across datasets becomes similar. For example, the Lorenz
curves of DEM and ORF meet around a fraction of 0.4 of
source nodes and we can expect that the performance of
those two datasets will become similar for all fractions of
source nodes larger than 0.4. In the case of W4S, we need
a larger fraction of source nodes (0.7) to reach a similar be-
havior (cf. Figure 4c).

Comparing link insertion with click bias we find that the
former outperforms the latter for smaller fractions φ of tar-
get nodes. For example, in the DEM dataset, link insertion
reaches four times higher energy values for the target nodes
with φ = 0.01. However, for higher values of φ the click bias
exhibits a similar performance as link insertion. Further,
in the case of the W4S dataset, the click bias even outper-
forms link insertion (see W4S in Figure 4a and Figure 4b)
at φ = 0.2).
Finding. The performance of link insertion varies across
the datasets and depends on the skewness of the initial sta-
tionary distribution in a dataset. Inserting links from other
important webpages towards a given set of webpages results
in a higher navigational boost than with the click bias. This
is due to the induced diffusion of the energy from top nodes
towards target nodes.

Implications. If it is possible to insert new links on a web-
site (especially if the fraction of target nodes is small) we
should prefer the link insertion over the click bias. However,
creation and insertion of such links may be problematic in
practice. For example, on Wikipedia it may be difficult and
semantically unjustified to insert new links to completely un-
related articles since this may have opposite and contrasting
effects on the navigational behavior of users, such as confu-
sion and dissatisfaction. In those cases we may rather choose
to increase the transition probability of an already existing
link by, for example, highlighting that link (i.e., using CSS5)
or repositioning it to the webpage’s top area. In some other
scenarios (i.e., birthdays of famous inventors) implementing
a banner which contains links towards a given set of web-
pages may be an easy way to insert thousands of new links
instantly. In those cases, such user interface modifications
may prove to have higher lasting effects on the stationary
probability than, for example, highlighting links.

6.3 Influence Potential
Figure 5 depicts the effects of link modifications strate-

gies on the relative increase of the energy of target nodes
(i.e., influence potential). Again, we concentrated in this
experiment on realistic settings for the bias strength from
the interval [2, 15]. Since we got comparable results over
that complete interval we present only the results for bias
strength b = 5.

The performance of the click bias is robust across datasets
and different φ with a low variance in both dimensions (cf.
Figure 5a). We observe a negative correlation between in-
fluence potential and fraction φ of target nodes, meaning
the smaller fractions of target nodes profit more from an in-
duced click bias than larger fractions. Our calculations of
the influence potential confirm once more the results from
the previous section, in which smaller fractions with top en-
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Figure 5: Influence Potential. The figure depicts the rel-
ative increase in the energy of target nodes τ with a fixed
bias strength of b = 5 over different φ and datasets. Left.
Inducing a click bias performs robustly and similarly over
all datasets (curves for different datasets overlap each other
in the plot). Influence potential correlates negatively with
the fraction of target nodes, that is, the relative increase in
energy is higher for small fractions of target nodes than for
large fractions. Right. With link insertion, we find a sig-
nificant variance in performance across our datasets. This
confirms our findings from the previous section—the skew-
ness of the original stationary distribution determines the
effectiveness of the link insertion strategy in a dataset. Sim-
ilarly to the click bias, the influence potential decays with
an increasing fraction of target nodes.

ergy nodes are able to outperform larger fractions of target
nodes without top nodes. We once more depict two such
examples from Figure 4a. Target nodes depicted by A with
φ = 0.1 reach an energy that is almost twice as high as
those depicted by B with φ = 0.2. However, nodes A start
with a larger initial energy and nodes B with a smaller one.
Therefore, in relative terms nodes B have a higher influence
potential than nodes A (cf. Figure 5a).

Performance of link insertion is again strongly dependent
of the dataset. However, similarly to the click bias we ob-
serve over all datasets that smaller fractions of target nodes
profit significantly more from the link insertion than the
larger ones. For example, in DEM dataset for φ = 0.01 we
measure an average influence potential of more than 100,
whereas for φ = 0.2 influence potential is less than 4 (cf.
Figure 5b). A similar decay, although not as pronounced
as in DEM can be seen in the other two datasets. Simi-
larly to the navigational boost this high influence potential
of smaller fractions of target nodes in the case of link in-
sertion can be explained through the skewness of the initial
stationary distributions (cf. Figure 4c).

As previously, we investigated more closely the relation
between influence potential of small fractions of target nodes
and their structural properties such as in-degree, out-degree
and degree ratio. Target nodes with a high degree ratio
(i.e., a small in-degree, a large out-degree or both) have the
largest influence potential. Intuitively, such target nodes
start with a very small initial energy and therefore can achieve
a significant relative increase. On contrary, in absolute terms
such target nodes keep a rather small energy even after the
modification, whereas target nodes with a large initial en-
ergy (a low degree ratio) are experiencing a significant nav-
igational boost in absolute terms but possess relatively low
influence potential.
Finding. The influence potential of small fractions of target
nodes is very high regardless of the link modification strat-
egy. For click bias the influence potential is limited by the
bias strength, whereas for link insertion we do not observe

such a limit and influence potential can become as high as
100. With increasing fraction of target nodes the influence
potential decays drastically.
Implications. As previously, if possible we should prefer
link insertion over click bias in cases where we are interested
in utilizing the influence potential of the target nodes. Our
findings suggest that in practice there is a trade-off that we
need to make between optimizing for influence potential and
for navigational boost. For the former, we need to aim at
target nodes with a high degree ratio and for the latter at
target nodes with a low degree ratio.

6.4 Combinations
In the previous experiments we found that in some situa-

tions link insertion should be preferred over click bias (e.g.,
small fraction φ of target nodes), whereas sometimes the
opposite represents an optimal approach (e.g., large φ). For
that reason we want now to shed more light onto combi-
nations of both strategies, that is, we are interested in the
navigational effects of simultaneously applying click bias and
link insertion to varying extent. Figure 6 depicts the results
of this experiment. We find consistent best performing mix-
tures over all datasets. In particular, we observe that for
small fractions φ of target nodes, exclusive link insertion
outperforms any other combination (see Figure 6a). For
medium sized target nodes (i.e., φ = 0.1) we observe a shift
of best performing combinations towards α = 0.9 for higher
bias strengths (i.e., b = 5 and b = 15). This combination
consist of 90% click bias and 10% link insertion. For com-
binations of large fractions of target nodes (i.e., φ = 0.2)
and small bias strengths (b = 2) the best performing com-
bination is around α = 0.5 (50% click bias and 50% link
insertion) and further shifts towards α = 0.9 (90% click bias
and 10% link insertion) with an increased bias strength.

These results confirm our insights from the previous ex-
periments. Thus, click biases act as an amplifier and only
work well if target nodes initially possess valuable incom-
ing links. This is highly likely for larger and medium sized
fractions of target nodes, and very unlikely for the case of
smaller fractions of target nodes. On the other hand, link
insertion diffuses a large portion of the energy of top nodes
towards target nodes. Hence, it works especially well for
combinations of small fractions of target nodes and datasets
with a highly skewed stationary distribution.
Finding. For small fractions of target nodes with initially
low energy, pure link insertion should be preferred over any
other combination. However, with increasing bias strength
and larger fraction of target nodes, combinations consisting
of 90% click bias and 10% link insertion performs best.
Implications. Smaller sets of webpages (i.e., small φ) should
focus on introducing new links to achieve the highest brows-
ing guidance. The bigger the set of webpages and the used
bias strength becomes, the more this preference shifts to-
wards a combination of 0.9, meaning that 90% of the modi-
fications should be invested in increasing the transition prob-
ability of already existing links towards target nodes (e.g.,
highlighting in the user interface). The remaining 10% should
be used to insert new links towards target nodes.

6.5 Stationary vs. Transient User Behavior
The random surfer which navigates forever (stationary be-

havior) may look like a rather unrealistic behavior of users.
More realistically, a single user visits a website clicks a cou-
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Figure 6: Combinations of Link Modification Strategies. The plots depict average results of 100 sets of target nodes of
W4S for three φ: 0.01 small on the left, 0.1 medium in the middle, and 0.2 large on the right. On the x-axes we denote α, which
defines the combination of the two link modification strategies, whereas on the y-axes we denote the energy of target nodes.
We see that for smaller values of φ α = 0 (100% link insertion) outperforms all the others over all used bias strengths. However,
for medium and large φ values with higher bias strengths this sweet spot shifts towards higher combinations (α = 0.7). In
the other two datasets we can observe similar results.

ple of times on various links and leaves the website again
(transient behavior). However, our calculations of the sta-
tionary distribution show that, at least on the networks that
we have investigated in this paper these two behaviors are
quite similar to each other.

The stationary distribution is calculated with the power-
iteration method [11]. Thus, we initialize a probability vec-
tor representing an initial probability to find a random surfer
on each particular node in the network. We initialize this
vector (i) with a uniform distribution and (ii) by setting the
visit probability of the home page to 1. The former initial-
ization accounts for the assumption that initially each page
is equally likely to be visited by users, whereas the latter
models users entering the website over the home page. Af-
terwards, we iterate by recalculating the probabilities for
the next click of the random surfer. Thus, one iteration step
of the power-iteration method can be interpreted as a step
or a click performed by the random surfer moving from the
current node to one of its neighbors. Hence, the number of
iteration steps that are needed until there are no significant
changes in the node probabilities, that is, the convergence
rate of the power-iteration method, can be interpreted as
the number of clicks needed to model the stationary user
behavior. In other words the random surfer does not need
to navigate forever—it only needs to navigate through the
network until the point where the next click does not change
the observed stationary distribution.

In all our datasets, all networks that we generated and
modified for these datasets, all combinations of fractions
of target nodes φ and the bias strength b our calculations
converge within 8 iterations regardless of the initialization.
Thus, the stationary user behavior is in fact a behavior of
users who navigate 8 pages in a website at most. We be-
lieve that these 8 clicks are within realistic boundaries for
user behavior in the cases in which users decide to explore
and browse a website. However, since many users leave a
website immediately upon arrival or within only a single
or a small number of clicks this still represents a limita-
tion in our work. This limitation can be easily remedied
by introducing a small teleportation probability of jumping
to an arbitrary page without following the underlying net-
work structure (i.e., calculating PageRank vector instead of
the stationary distribution). We have already experimented
with the calculations of PageRank and our first results are
quite similar to results that we have presented in this paper.

However, we plan to address this question in more details in
our future work.

7. CONCLUSIONS
In this paper we have analyzed the effects of two link mod-

ification strategies used to influence the typical whereabouts
of the random surfer. We investigated how an induced click
bias towards a set of webpages changes the stationary distri-
bution (i.e., energy) of those pages. Additionally, we com-
pared those effects with the consequences of altering the
network structure by inserting new links. We find that both
strategies have a high potential to modify the stationary
distribution and that for certain situations there exist con-
stantly high performing link modification strategy. In par-
ticular, click biases work well on sets of webpages contain-
ing already highly visible webpages, whereas link insertion
should be preferred for sets of webpages consisting of pages
with low visibility. Further, we showed that a simple struc-
tural property of target nodes, namely degree ratio, provides
a valuable basis for the estimation of the effects of both link
modification strategies.

Assuming that the random surfer is a realistic model of
user behavior on the Web—which previous studies seem to
confirm [9,15]—website operators can use our approach and
open source framework to determine the best strategy for
their settings without having to implement and test all the
different strategies. Such strategies include but are not lim-
ited to altering link positions [20] (bias) or creating new links
using a recommender systems [16] (link insertion).

An important practical issue that we have not addressed
in this paper is usability. Usability considerations limit the
number of new links that we can insert or how we can repo-
sition links. In future, we plan to account for usability by
extending our model and investigating limitations induced
by various usability restrictions. Also, including the existing
user link selection bias derived from user clickstreams into
the model would further improve the practical relevance of
our method.
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