
Navigational Evaluation of Breadth First Search
Spanning Trees

Denis Helic∗, Markus Strohmaier∗†,Weronika Wójcik∗
∗ Knowledge Management Institute

Graz University of Technology

Graz, Austria

Email: {dhelic,markus.strohmaier}@tugraz.at, weronika.wojcik@student.tugraz.at
† Know-Center, Graz University of Technology, Graz, Austria

Abstract—Decentralized navigation is one of the most impor-
tant functions of complex networks. A wide variety of different
networks such as communication, social, or information networks
possesses certain structural clues which allow navigational agents
to efficiently navigate those networks even with local knowledge of
the network only. Such structural clues include node degrees and
their centralities, similarities between nodes, or node clustering
coefficients. In practice, those properties may be combined and
abstracted in the form of a distance metric on the network node
set – a typical representation of such a distance metric is a
hierarchy of network nodes where the most central nodes are
situated in the upper levels of the hierarchy and the hierarchy
links capture the node similarities or their clustering. Recently, a
number of algorithms for extracting such hierarchies have been
introduced. The majority of those algorithms is based on complex
and computationally intensive methods such as hierarchical
clustering. In this paper we analyze several simple spanning
tree algorithms and their ability to extract sound hierarchies for
network navigation. In particular, we are interested in correlation
of structural node properties (such as node degree) and the
navigational quality of spanning trees that are rooted at those
nodes. Our work sheds light on the ability of spanning trees
to serve as a distance metric for decentralized navigation in
networks. Our results are relevant for scientists interested in
the navigability of complex networks and for engineers who
are interested in fast and simple extraction of hierarchies for
supporting navigation in networks.

I. INTRODUCTION

Decentralized navigation in social or information networks

represents a task where an agent navigates a network with

limited knowledge. The agent’s goal is to navigate from a

starting node s to another target node t without having detailed

knowledge about the full network topology. Informally, we say

an agent uses local knowledge for navigation when the agent

has knowledge about the nodes within the immediate one-

hop neighborhood of the current location only, but no detailed

knowledge of the network beyond that. We refer to these nodes

as candidate nodes, because they are candidates for navigation.

We say an agent uses background knowledge for navigation

when the agent has some intuitions about the candidate nodes -

for example which candidate nodes might bring her closer to a

target. In previous research, Kleinberg [1]–[3] and others have

introduced a simulation-based navigation framework called

decentralized search that is formally capable of capturing these

and other aspects of navigation.

In this paper, we turn our attention to spanning trees as one

particular technique for constructing background knowledge.

We define the problem formally, and investigate the usefulness

of breadth first search constructed spanning trees for naviga-

tion. We prove a few navigational properties of spanning trees

theoretically, and expand our analysis by conducting experi-

ments. We conclude that breadth first search spanning trees

represent an interesting new option for constructing efficient

trees for navigation that can be used as background knowledge

in decentralized navigation. However, relation between node

properties and the efficiency of their corresponding breadth

first search spanning trees is not immediately visible requiring

further research that should analyze further algorithms for

construction of spanning trees.

II. RELATED WORK

Research on decentralized search in social networks started

with Milgram’s seminal small world experiment [4] in which

he aimed to study the connectedness of the US society. In

his experiments he found that people are able to navigate

large social networks (such as the population of the USA)

efficiently. Specifically, he found that the average number of

links between people in his experiment is around 6, hence

a “small world”. Later, Kleinberg analyzed an implicit result

of the Milgram’s experiment, the ability of humans to find a
short path when there is such a path between two nodes [1]–

[3]. Kleinberg concluded that social networks possess certain

latent properties that humans are aware of. This background
knowledge of network structure allows humans to find a

short path between two arbitrary network nodes efficiently.

Kleinberg defined an “efficiently” navigable network as a

network for which a decentralized search algorithm exists,

such that its delivery time (the number of nodes that the

algorithm needs to visit before it reaches the destination node)

is polynomial in log(n), where n is the number of nodes in

the network.

Subsequent work has investigated the nature of background

knowledge that is required for efficient decentralized search

algorithms. In other words: What structural properties do

efficiently navigable networks possess? To that end, Kleinberg

designed a number of network models such as the 2D-grid

model [1], hierarchical model [3], and group model [3]. Inde-

�������	
����
���	������	
�����
���
�����
��

998

pendently, Watts [5] introduced the notion of social identity

as a membership in a number of social groups organized in

hierarchies and showed the existence of efficient decentralized

search algorithms by simulation.

Decentralized search has been used to model navigation in

social and information networks. For example, Adamic and

Adar [6] have used organizational hierarchies as background

knowledge to model navigation in e-mail networks. In our own

previous work, we have used decentralized search to evaluate

the usefulness of topical hierarchies for navigating information

networks such as social tagging systems [7], [8]. Decentralized

search has also been used to model navigational trails left by

users on Wikipedia [9]. However, little is known about the

nature and impact of background knowledge on decentralized

search. For example, we don’t know how different kinds of

background knowledge influence the ability of a decentralized

search model to efficiently navigate networks with local infor-

mation. This issue is what we want to explore in this work. In

particular, we turn our attention to the efficiency of spanning

trees as background knowledge for decentralized search.

III. THEORETICAL FRAMEWORK

A. Preliminaries

Let us first define some basic terms that we use throughout

the paper. G(V,E) is a network with nodes from a non-empty

set V and links from set E. We denote the number of nodes

in a network with n and the number of links with m. In this

paper we focus on the analysis of undirected networks – the

analysis of the directed networks is more complicated and we

leave it for the future work. A path in a network is a sequence

of different nodes that are connected by links – it is a route
through the network. The path length is the number of links

in that path. A shortest path between nodes u and v is a path

between u and v with the minimal length. We define distance

d(u, v) between u and v as the length of the shortest path

connecting u and v. We call a network connected if there is a

path from every node to every other node in the network. A

cycle is a path that starts and ends at the same node. A tree is

a connected network that has no cycles. It is easy to show that

a tree with n nodes has exactly n − 1 links. A network can

also consist of a number of disconnected parts, all of which

contain no cycles. In that case the individual parts are all trees.

We call then the complete network a forest.
A spanning tree of a connected graph G is a tree that spans

every node from the network. A special type of a spanning tree

is a shortest path spanning tree rooted at node r, which is a

spanning tree such that for any node u, the distance between

r and u is the same as in the network.

In this paper we will denote the distance between u and

v in the network with dG(u, v) and their distance in a forest

with dF (u, v).

B. Global vs. local knowledge

Finding a shortest path between any two nodes in a network

is easy if we know about all the nodes and links; that is if

we have global knowledge of the network. Asymptotically,

global knowledge is of size O(n2), since we might have a link

between any two nodes to denote distances in the network. In

practice, we often do not possess such global knowledge of

the network, but local knowledge of the network only. For

instance, in a social network we typically know about our one

hop neighborhood; that is we know about our friends, but not

about the friends of their friends, and so on. Analogously, in an

information network such as Wikipedia, we can see only the

links emanating from the page that we are currently viewing.

That means that in practice, our knowledge about the network

structure is much smaller than O(n2) – we only have intuitions

about parts of the network.

Yet, people are still able to find shortest paths in social

networks even with such limited knowledge. For example,

in the famous “small world” experiment by Milgram [4],

randomly selected persons from Nebraska and Massachusetts

were required to pass a letter to a target person in Boston,

Massachusetts in a decentralized manner through their social

contacts, thereby requiring a group of people to search in a

very large social network by utilizing local knowledge only.

One of the most important results of the experiment was the

finding that people are able to efficiently find short chains from

the network in a decentralized manner. For example, Kleinberg

concluded that humans possess background knowledge of

the network structure and that this background knowledge

allows humans to efficiently find short paths [1]–[3]. Kleinberg

represented such background knowledge as a hierarchy (tree)

of nodes, where more similar nodes are situated closer to each

other in the tree. Thus, people consult the tree and base their

navigation decisions on this background knowledge, which is

encoded in a tree.

It is important to note that the size of background knowledge

(represented as a tree) is considerably smaller than the size of

global knowledge. Specifically, there are n−1 links in the tree,

which means asymptotically the size of knowledge encoded in

the tree is O(n) as compared to the O(n2) links encoded in

global knowledge of the network.

Based on this difference between the size of background

knowledge vs. global knowledge, an interesting research ques-

tion to ask is the extent to which different kinds of background

knowledge exhibit different kinds of navigational properties.

In other words, how do different trees or forests differ with

regard to their ability to encode the knowledge about a network

for navigational purposes? To answer this question, we next

formalize some of the terms that are needed for analysis.

C. Navigation

Definition 1: Navigation (routing). Let G(VG, EG) be a

connected undirected network, and let F (VF , EF) be a forest

such that VF = VG, and |EF | ≤ n − 1. Let s be a start

node and t a target node. A navigation path between s and t
is defined as a path (s, u1, u2, ..., uk−2, uk−1, t) from G such

that dF (ui, t) > dF (uj , t) for i < j.

With that, we can say that in a navigation path, the subse-

quent node in a path has a smaller forest distance to the target

node than its predecessor. We call a network G navigationally

999

connected with respect to a forest F (that is the forest F
provides the distances for the navigational paths in G) if and
only if there exists a navigation path from every node to

every other node in the network. This allows us to connect the

structural description of a network and a forest in the form of

navigational paths with the dynamics of an agent navigating

the network. Thus, at each navigation step towards a target

node, an agent consults the forest about the distances of the

candidate nodes to the target node and selects a node with

a smaller distance to the target node than that of the current

node. We denote the current node with u, and the set of its

neighbors; that is the set of the candidate nodes with Γ(u).
Next, we demonstrate a number of ways in which forests

relate to their corresponding networks from a navigational

perspective.

Theorem 1: Let G be a connected undirected network, and

let F be a forest such that VF = VG, and |EF | ≤ n−1. Then:

(a) If F is disconnected then G is navigationally discon-

nected with respect to F .

(b) If F is connected and EF \EG �= ∅ then it is possible

that G is navigationally disconnected with respect to F .

(c) If F is connected, and F is a spanning tree of G; that

is EF ⊆ EG then G is navigationally connected with

respect to F .

Proof:
(a) Since F is disconnected, there are at least two trees

in F . Let us denote these two trees with T1 and T2,

respectively. Let t1 ∈ T1 and t2 ∈ T2. Then by definition

of the length of the shortest path dF (t1, t2) = ∞, and

thus we can not create a navigation path between those

two nodes with decreasing distances.

(b) We need to construct one configuration without a navi-

gation path between two nodes u and v. Let t be a node

with a single link (v, t) in G and a single link (u, t)
in F . In that case (u, t) ∈ EF \EG with dF (u, t) = 1.

There is no link between v and t in the forest, and thus

dF (v, t) ≥ 2. Now suppose also that there is a link

(u, v) between u and v in G. A path from u to t in the

network must go through v and so we have (u, v, t) with

the forest distances (1,≥ 2, 0) (see also Figure 1).

(c) Since F is a spanning tree of G, we have a path

in F from every node s to every other node t that

is also a path in the network. Each subsequent node

from this path has a smaller distance to target node

t, and the forest distance is decreased by 1. Thus,

dF (ui, t) > dF (uj , t) holds for every i < j and G
is navigationally connected with respect to F (see also

Figure 2).

The concept of navigational connectivity is closely related

to the success rate of an agent navigating a network with

the forest as the background knowledge. The success rate

captures the extent to which an agent is successful in finding

paths between two nodes with limited (local & background)

knowledge only.

� � �
���

�

� �

���

Fig. 1. A particular configuration of G (left) and F (right), which is
navigationally disconnected. There exist links in F that do not exist in G
– the link between u and t. The path from u to t passes through v – the
distances in F are not monotonously decreasing: (1, 2, 0).

�

�

�

�

�

�

�

	

��

(a) Sample network

�

� �

�

�

�
�

	
�

��
(b) Shortest path spanning tree rooted at 4

Fig. 2. Paths from 1 to 5 (red) and 6 and 7 (blue) exist both in the network
(left) and in the spanning tree (right). The distance dF (u, v) along the paths
is monotonously decreasing. Thus, the network is navigationally connected
with respect to the spanning tree.

Thus, if a network G is navigationally connected with

respect to the forest F , then the navigation agent will be able

to find any target node starting from any other start node.

However, if the network is not navigationally connected then

for certain configurations of the network G and forest F the

success rate will drop as for some combinations of start and

target node the navigational path does not exist. This might

happen in cases where F contains links that do not exist in G –

those links might be exogenous to the network – for instance,

two nodes are similar in some external properties but they do

not share a link in the network.

D. Greedy navigation

Next, we are interested in the efficiency of the navigational

agent, or in other words we are interested in the length of the

navigational paths.

Definition 2: Greedy navigation. Let G(VG, EG) be a

connected undirected network, and let F (VF , EF) be a forest

such that VF = VG, and |EF | ≤ n−1. Let s be a start node and

t a target node. A greedy navigation path is a navigation path

between s and t defined as a path (s, u1, u2, ..., uk−2, uk−1, t)
from G such that ui+1 ∈ M := argminuj∈Γ(ui) d

F (uj , t)
is the argument of the minimum of the distance function of

candidate nodes at node ui.

Thus, a greedy navigation path is a path where each node in

the path has the smallest distance to the target node among all

candidate nodes at that position. Dynamically, for each node

u a navigation agent selects an adjacent node v which has

1000

�

�

�

�

�

�

�

	

��

(a) Sample network

��

�

� �

�

�

	

�

��

(b) Shortest path spanning tree rooted at 9

Fig. 3. Path from 4 to 1 (red) is a greedy navigational path. There is a
leap in the distance reduction along the path (the dashed link from 3 to 8) –
this link exists in the network but not in the tree – this is an example of the
greedy navigator taking a shortcut in the network. The greedy navigational
path (4, 3, 8, 1) is longer than the shortest path in the network (4, 2, 1).

the smallest tree distance to the target node t. In cases where

|M | > 1 we have two or more candidate nodes that all have

the minimal distance to the target node we rely on a total

order defined over the node set V . For example, we might

count nodes and use < relation over the integer representation

of the nodes to select a node with the minimal encoding.

We denote the length of a greedy navigation path with

h(s, t) – it is the number of links in a greedy navigator

path between s and t. Note that depending on the particular

structure of the forest, a greedy navigational path might take

shortcuts (larger leaps than 1) in decreasing the distance in

a forest. On the other hand, a greedy navigation path is not

necessarily a shortest path in G, as can be seen in Figure 3.

To measure the navigational efficiency of a forest F , we

can compare h(s, t) to dG(s, t) for every s and every t.
We introduce stretch τ(s, t) as the ratio between h(s, t) to

dG(s, t):

τ(s, t) =
h(s, t)

dG(s, t)
, s �= t. (1)

Stretch τ(s, t) is equal to one if the greedy navigation path

is equal to the length of the shortest path between s and t
in G. Otherwise if the greedy navigation path is longer than

the shortest path, we obtain stretch values larger than one. For

example, a stretch value of 2 and dG(s, t) = 2 means that the

greedy navigation path between s and t is twice as long as

the global shortest path – it is 4. To assess the navigational

efficiency of a spanning tree, we will analyze the stretch in

more details.

We also introduce the global stretch τ . For a navigationally

connected network G with respect to a spanning tree F , we

calculate the global stretch:

τ =
1

n(n− 1)

∑

s �=t

h(s, t)

dG(s, t)
. (2)

E. Navigation efficiency

Next, we turn our attention to the analysis of the naviga-

tional properties of different spanning trees. In this paper we

focus on shortest path spanning trees, which can be obtained,

for example, by performing breadth first search. Such spanning

trees are rooted at the node from which we start breadth first

search and span a tree with distances from the root node to

every other node being the same as its distances to every

other node in the network. It is interesting to investigate

the relation between node properties in the network and the

navigational efficiency of spanning trees rooted at those nodes.

This would allow us to better identify spanning trees with

useful navigational properties.

First, we construct a shortest path spanning tree rooted

at a node v. Obviously, the efficiency of greedy navigation

from any starting node s towards v is maximal, since the tree

contains shortest paths to v from every other node. In other

words, the stretch τ(s, v) for all s is equal to 1.

However, we are interested in exploring what happens if

we navigate towards arbitrary nodes, not only towards v. Can

we measure stretch induced by a shortest path spanning tree

rooted at v over all search pairs by taking arbitrary s and t as

the starting and target node respectively?

Let us start our analysis with a conservative estimation

(upper bound) of the stretch of a given shortest path spanning

tree rooted at v. For a starting node s and a target node t we

can always take a path towards v first and then after we reach

v we can navigate from v towards t. The total number of steps

is:

dG(s, v) + dG(v, t). (3)

If we iterate over all starting nodes fixing t as the target

node, the total distance that the navigator travels is given by:

∑

s

(dG(s, v) + dG(v, t)) =
∑

s

dG(s, v) + ndG(v, t). (4)

If we now iterate over all target nodes t we obtain:

∑

t

(
∑

s

dG(s, v) + ndG(v, t)) = 2n
∑

s

dG(s, v). (5)

The estimation is proportional to the sum of shortest paths

of node v. For nodes which are on average “closer” to all other

nodes in the network this sum will be smaller. In fact, the sum

is reciprocal of the node closeness centrality – for nodes with

high closeness centrality we can expect the sum of the length

of navigational paths in the network to be small.

Following the same argument we can also calculate the

estimation (upper bound) of the global stretch of a shortest

path spanning tree rooted at v:

τ =
1

n(n− 1)

∑

s �=t

dG(s, v) + dG(v, t)

dG(s, t)
. (6)

The global stretch will become smaller for node v which

lies frequently on a shortest path between other nodes in the

network. In that case we have: dG(s, v)+ dG(v, t) = dG(s, t)
and therefore τ(s, t) = 1. Therefore, we can expect that nodes

with high betweeness centrality produce spanning trees that are

more efficient than the nodes with lower betweeness centrality.

1001

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 10 20 30 40 50 60 70 80 90

s,
τ

Degree

Stretch (τ)
Success Rate (s)

(a) Degree

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

s,
τ

Closeness Centrality

Stretch (τ)
Success Rate (s)

(b) Closeness centrality

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 100000 200000 300000 400000 500000 600000

s,
τ

Betweeness Centrality

Stretch (τ)
Success Rate (s)

(c) Betweeness centrality

Fig. 4. Success rate (green) and stretch (red) for each shortest path spanning tree of the GR-QC network. Our searches are always producing a successful
result with the stretch between 1.2 and 2, however it is impossible to notice, whether is it more advantageous, to choose shortest path spanning tree starting
at the root with a greater or with a lower centrality property.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 50 100 150 200 250 300

s,
τ

Degree

Stretch (τ)
Success Rate (s)

(a) Degree

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0.05 0.1 0.15 0.2 0.25 0.3

s,
τ

Closeness Centrality

Stretch (τ)
Success Rate (s)

(b) Closeness centrality

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 100000 200000 300000 400000 500000

s,
τ

Betweeness Centrality

Stretch (τ)
Success Rate (s)

(c) Betweeness centrality

Fig. 5. Success rate (green) and stretch (red) for each shortest path spanning tree of the GR-CondMat network. Again, we observe maximal success rates
(as expected from the theoretical analysis) with the stretch between 1.4 and 2.8. Consistent with the experiments with the GR-QC dataset we can not deduce
a simple relation between stretch and node centrality properties.

IV. EXPERIMENTS

We perform our experiments on two datasets: GR-QC (Gen-

eral Relativity and Quantum Cosmology)1 and GR-CondMat

(Condense Matter Physics)2 collaboration network. The first

dataset covers scientific collaborations between authors of pa-

pers submitted to General Relativity and Quantum Cosmology

category, whereas the second dataset includes the collabora-

tions between authors publishing in the field of Condense

Matter. If an author i co-authored a paper with author j,

the graph contains an undirected edge from i to j. If the

paper is co-authored by k authors, this generates a completely

connected (sub)graph on k nodes. The data covers papers in

the period from January 1993 to April 2003.

For our purposes, we choose the largest connected compo-

nent of the aforementioned networks containing 4158 nodes

and 26850 links (GR-QC dataset), and 21363 nodes and

182628 links (GR-CondMat dataset). From the chosen com-

ponent, we create shortest path spanning trees using breadth

first search, where each spanning tree has the root node in a

different node of the component. For evaluation, we randomly

select 1000 pairs of nodes and simulate navigation using

decentralized search. Each of those pairs represents a start

node and a target node for a greedy navigation path.

For every tree, we perform greedy navigation on the selected

pairs. Search is considered successful iff a navigation agent

1http://snap.stanford.edu/data/ca-GrQc.html
2http://snap.stanford.edu/data/ca-CondMat.html

finds a navigation path between the start and the target node.

Moreover for each root, we calculate degree, closeness and

betweenness centrality. This allows us to observe the extent

to which stretch changes according to the aforementioned

properties of a node. Figures 4 and 5 depict the relationship

between stretch and the various properties of the root.

V. RESULTS AND DISCUSSION

Figures 4 and 5 show that for every shortest spanning tree,

our navigation agent is able to find a navigation path between

the start and the target node - as expected from our theoretical

discussion of the problem. The stretch for both datasets is low:

for GR-QC it is less than 2, and for GR-CondMat less than

2.8.
When we focus on just one property of the root, for example

degree, we cannot deduce whether the stretch is going to

be better for a greater or for a lower degree of the root of

a shortest path spanning tree. A simple explanation for this

somewhat unexpected behavior might be easily found through

a closer investigation of the structure of the spanning trees

constructed by breadth first search.
Breadth first search algorithm produces in many cases

structurally similar or even identical shortest path spanning

trees regardless of the node from which we start the search.

For example, suppose that we start breadth first search at a so-

called hub i; that is a node which has a lot of links to other

nodes. Now, suppose that among the nodes that are linked

to that hub i, we have a node j with a single link (i, j).

1002

7

109

6

32

8

5
4

1

(a) Sample network

7

10

9

6

32

8

5

41
(b) Shortest path spanning tree rooted
at 6

7

10

9

6

32

8

5

4 1
(c) Shortest path spanning tree rooted at 7

7

10

9

6

3

2

8

5

41
(d) Shortest path spanning tree rooted at 3

Fig. 6. A sample network and three breadth first search spanning trees
rooted at nodes 6, 7, and 3. Although these nodes have different degrees
their corresponding spanning trees are identical. Therefore, the trees have
identical navigational properties, and we are not able to relate the navigational
efficiency of the trees with the structural properties of nodes at which the trees
are rooted.

Obviously, starting breadth first search at node j produces

an identical spanning tree to the spanning tree produced by

breadth first search started at node i. In the first step of the

algorithm we immediately reach node i and proceed from

there in the same way as previously. For an illustration of

this situation please consult Figure 6.

The same phenomenon can be observed when concentrating

on closeness or betweenness centrality. We expected that trees

with higher betweenness centrality of the root should have

lower stretch. However with breadth first search two shortest

path spanning trees constructed from roots with different

betweenness centralities, can be identical and therefore can

have the same stretch.

The estimations of the upper bound on stretch are in the

range of 1.4 to 4.0 for the GR-QC dataset. In our experiments,

the estimations turn out very precise. The stretch measured

by simulation is smaller than the conservative estimation in

99.8% of cases. The small amount of cases where stretch is

greater than the estimated upper bound is due to a small sample

size. We sample 1,000 search pairs out of 17,000,000 possible

search pairs.

VI. CONCLUSIONS

In this work, we analyzed spanning trees and their useful-

ness to act as background knowledge for informing decen-

tralized search in networks. We found that the navigational

quality of spanning trees rooted at certain nodes is mostly

independent from the node’s centrality in the network. On

one hand, this can be explained by the fact that different roots

can produce similar or identical spanning trees. On the other

hand, we found - through inspection - that even if different

spanning trees are produced, they do not necessarily differ

significantly. For example, the majority of the structure of a

spanning tree rooted at a high degree node can be similar to

the structure of a spanning tree rooted at a low degree node.

These results are interesting as they suggest that spanning trees

rooted at arbitrary nodes in a network can be used efficiently

as background knowledge for decentralized search. Our results

are relevant for designers of user interfaces aiming to build

hierarchical structures that aid users in navigating information

networks (such as Wikipedia) or for organizational researchers

interested in identifying organizational hierarchies that opti-

mize navigability of social networks within organizations. For

future research, we consider an expansion of our analysis to

directed networks, or the investigation of other spanning tree

algorithms (such as depth-first-search), as interesting routes

to take. Another promising approach would be to construct

spanning trees with a small, or even minimal diameter [10].

The diameter of a graph is the longest shortest path in a

network, and as such it is a structural upper bound on the

length of the navigational paths. One can expect a tree with

a shorter diameter to be more navigationally efficient than a

tree with a longer diameter.

ACKNOWLEDGMENT

This research was in part funded by the FWF Austrian

Science Fund research project ”Navigability of Decentralized

Information Networks” (P 24866-N15).

REFERENCES

[1] J. Kleinberg, “The small-world phenomenon: an algorithm perspective,”
in Proceedings of the thirty-second annual ACM symposium on Theory
of computing, ser. STOC ’00. New York, NY, USA: ACM, 2000, pp.
163–170.

[2] J. M. Kleinberg, “Navigation in a small world,” Nature, vol. 406, no.
6798, p. 845, August 2000.

[3] J. Kleinberg, “Small-world phenomena and the dynamics of informa-
tion,” in Advances in Neural Information Processing Systems (NIPS)
14. Cambridge, MA, USA: MIT Press, 2001, p. 2001.

[4] S. Milgram, “The small world problem,” Psychology Today, vol. 1, pp.
60–67, 1967.

[5] D. J. Watts, P. S. Dodds, and M. E. J. Newman, “Identity and search in
social networks,” Science, vol. 296, pp. 1302–1305, 2002.

[6] L. Adamic and E. Adar, “How to search a social network,” Social
Networks, vol. 27, no. 3, pp. 187 – 203, 2005.

[7] D. Helic, M. Strohmaier, C. Trattner, M. Muhr, and K. Lerman,
“Pragmatic evaluation of folksonomies,” in Proceedings of the 20th
international conference on World wide web, ser. WWW ’11. New
York, NY, USA: ACM, 2011, pp. 417–426.

[8] M. Strohmaier, D. Helic, D. Benz, C. Körner, and R. Kern, “Evaluation
of folksonomy induction algorithms,” ACM Trans. Intell. Syst. Technol.,
vol. 3, no. 4, pp. 74:1–74:22, Sep. 2012.

[9] C. Trattner, P. Singer, D. Helic, and M. Strohmaier, “Exploring the
differences and similarities between hierarchical decentralized search
and human navigation in information networks,” in Proceedings of
the 12th International Conference on Knowledge Management and
Knowledge Technologies, ser. i-KNOW ’12. New York, NY, USA:
ACM, 2012, pp. 14:1–14:8.

[10] R. Hassin and A. Tamir, “On the minimum diameter spanning tree
problem,” Information Processing Letters, vol. 53, no. 2, pp. 109 – 111,
1995.

1003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 841.680]
>> setpagedevice

