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Abstract—Search in networks is defined as a process in which
an agent hops from one network node to another by traversing
network links in search for given nodes. The simplest example
of network search is a random walk where the agent selects a
link uniformly at random from all outgoing links of the current
node. On contrary, in an informed search the agent possesses
(partial) background knowledge of the network. This background
knowledge steers the agent’s decisions when selecting the next
link to traverse. The background knowledge of the network can
be represented as a similarity matrix with similarities between
pairs of nodes known to an agent. This matrix can be calculated
in various ways in order to model various search scenarios or to
best fit needs of an application. For example, similarities based
on node degrees or some external information about the nodes
have been commonly used in the past. In this paper we evaluate
the measures that capture regular equivalence of nodes in a
network with respect to their suitability as a similarity metric
to inform search in networks. In particular we are interested in
the properties of Katz similarity for this task.

I. INTRODUCTION

Search in a network is a dynamical process in which an
agent moves along the links between the nodes in search
for a given node or a given set of nodes. Depending on the
link selection mechanism we distinguish between a random
walk and an informed search. In a random walk an agent
selects the next link uniformly at random from the available
links (the links going out from the agent’s current node).
In an informed search the agent possesses some background
knowledge of the network, which guides it towards selecting
specific links. In other words, the agent exhibits a certain bias
towards selecting some of the links – the bias is induced by the
background information that the agent has about the network.
Another distinction between a random walk and an informed
search is the stochasticity of their link selection mechanism.
By definition a random walk is a stochastic dynamical process,
whereas in an informed search the link selection mechanism
can be (i) either deterministic in cases where the agent e.g.
acts greedy and always follows an optimal link (according to
a given criterion), (ii) or stochastic in cases where the agent
draws a link from a given probability distribution (induced by
the background knowledge).

Various studies investigated the nature of the background
knowledge in e.g. informed search in social networks. For
example, in studies of human search behavior that have been
inspired by the famous small-world experiment by Milgram
[1] the background knowledge about the network has been
represented as a hierarchy of network nodes [2], [3]. The

distance of nodes in the hierarchy has been used to inform
deterministic decentralized search. Another type of the back-
ground knowledge has been analyzed in [4]. In this study
a deterministic search is informed by the node degree (the
number of nodes adjacent to a given node), a quantity that
is always available locally as compared to a node hierarchy
which assumes a global knowledge about the network. In
[5] the authors built on this previous work and designed a
stochastic algorithm that takes into account the node degree,
as well as the nodes’ homophily, i.e. the tendency of nodes
to connect to other similar nodes. The presented algorithm
probabilistically weighted the influence of the node degree
and the node homophily on the link selection probability.
Moreover, the algorithm modeled a situation in which an agent
does not have information on the node similarities, in which
case the decision was based solely on the node degree.

Similarly to social networks search in information networks
is always local, i.e. users have at their disposal only the
links going out from their current Web page. Human search
behavior in information networks has been investigated in
the work of West and Leskovec [6]. They analyzed click
paths of users playing a navigation game on Wikipedia and in
their subsequent work [7] they compared decentralized search
algorithms using various distance functions and benchmarked
them against the human navigation paths. The authors found
that automatic deterministic search strategies with a complete
background knowledge typically outperform human informa-
tion seeking.

One of the most interesting findings was that human naviga-
tion in information networks exhibits two phases: (i) Zoom-out
phase in which the users strive to reach the network core, or
a hub in the network core, e.g. an overview Wikipedia page
with many links to different parts of the Wikipedia. In this
first phase the humans tend to base their search decisions on
the node degrees, i.e. they tend to select high-degree nodes.
(ii) Zoom-in phase in which the users leave the core and
close in on the topic of their interest, i.e. they dive in into a
Wikipedia cluster (community) dealing with a given topic. In
this second phase the humans base their decisions primarily on
the similarity between network nodes such as textual similarity
between Wikipedia nodes.

Thus, similarly to [5] where the authors engineered an
algorithm that interchangeably bases its decisions on the node
degree and the similarity between nodes West et al. [6], [7]
found empirically that humans base their search decisions on
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those two quantities – alternating between the node degree in
the first phase and the node similarity in the second phase.

Although the previous research has identified the impor-
tance of informing search in social as well as in information
networks with the node degree and the similarity between
nodes not much work has been done on the analysis of
various network internal similarity measures and their ability
to capture those two network properties. For example, in those
previous studies [5]–[7] the similarity has been calculated from
the external information about the network nodes: in [5] the
authors calculated standard vector-based similarity on the titles
of the scientific articles in the citation networks and in [6], [7]
the authors applied the same similarity measure but calculated
it on the complete text of Wikipedia articles.

However, it is an interesting research question to analyze
the properties of the similarity measures that are based on the
internal network linking patterns since the presence of the ex-
ternal information is not always guaranteed and its quality may
greatly vary from one network to another. Moreover, measures
based on the linking patterns can in a general case capture
both node properties: its degree and its similarity to other
nodes in a single quantity. Therefore, it seems important to
investigate if and how such measures are able to inform search
in networks. Thereby, we can concentrate on the suitability of
these measures to reflect e.g. the two phase process of the
navigation in social and information networks, where in the
first phase the node degree plays the most important role and
in the second phase that role is taken by the node similarity.

In this paper, we turn our attention to the analysis of internal
linking patterns to serve as a similarity measure for informing
search in networks. To that end, we concentrate on simple
algebraic measures that capture so-called regular equivalence
and analyze the distribution of such similarities over a range
of synthetic networks. In particular we concentrate on Katz
similarity as an example of a measure of regular equivalence
in networks. Thereby, we are interested how Katz similarity
captures heterogeneity in node degrees and the existence of
highly interlinked clusters of similar nodes (network commu-
nities).

The paper is organized as follows. In the next Section we
give a short overview of the related work in this field. In
Section III we describe our methodology and Section IV gives
the details about our experiments with synthetic networks. In
Section V we present the experimental results and shortly
discuss them. Finally, we conclude the paper and provide
directions for further research.

II. RELATED WORK

Search has been an important concept in theoretical and
empirical studies of networks. For example, in Web search
the famous PageRank calculation [8], which determines the
importance of Web pages is based on a random walk on
the Web network. In a so-called Random Surfer model a
hypothetical user navigates the Web by clicking randomly
on the Web links. In the limit of large number of clicks
the fraction of visits to each Web page gives its PageRank.

Another example of an application of the random walk in-
cludes the problem of detecting communities (groups of highly
connected and similar nodes) in networks. For example, it has
been shown that designing minimal codes for encoding paths
of a random walker in a network is equivalent to optimally
partitioning of the network into communities [9]. Thus, we can
design community detection algorithms that aim at optimally
compressing a random walk paths in a network.

Research on decentralized search in social networks started
with Milgram’s seminal small world experiment [1] in which
he aimed to study the connectedness of the US society.
Milgram found that people in such a large social network
are connected by short chains of acquaintances. Moreover, he
found that people are able to navigate large social networks
efficiently, i.e. that they are able to find those short chains
even if they only possess the local knowledge of the network.
In the subsequent research, Kleinberg analyzed the second
result of the Milgram’s experiment – the ability of humans
to find a short path when there is such a path between
two nodes [2], [10], [11]. Kleinberg concluded that social
networks possess certain latent properties that humans are
aware of. This background knowledge of network structure
allows humans to find a short path between two arbitrary
network nodes efficiently. Kleinberg has also investigated the
nature of background knowledge that is required for efficient
decentralized search algorithms. In other words: What struc-
tural properties do efficiently navigable networks possess? To
that end, Kleinberg designed a number of network models such
as the 2D-grid model [10], hierarchical model [11], and group
model [11]. Independently, Watts [3] introduced the notion
of social identity as a membership in a number of social
groups organized in hierarchies and showed the existence
of efficient decentralized search algorithms by simulation.
Finally, Adamic [12] and others applied such a model to
explain search in e.g. professional social networks.

All of these models have been based on the assumption
that an agent navigating the network possesses a complete
background knowledge on distances or similarities between
pairs of network nodes. Contrary to that, in [4] the authors
argued that distances between nodes are typically available
only for some of the node pairs and that the assumption
that an agent possesses a complete background knowledge
is unrealistic. Thus, the authors analyzed an informed search
algorithm that bases its decisions on the node degree (the
number of nodes adjacent to a given node), a quantity that
is always available locally. The algorithm performed better
in comparison with a random walk but could not reach
the performance of an agent having a complete background
knowledge.

In an information network decentralized search can be used
to model user navigation in an information network, e.g. the
Web or Wikipedia [6]. In that model the user navigates from
a Web page to a Web page by following her own intuition and
her own knowledge about the topics of various Web pages.
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III. METHODOLOGY

A. Node Similarity

A crucial element of an informed search is the notion of
distance or similarity between the pairs of network nodes.
Mathematically, we may represent the background knowledge
with a distance or a similarity matrix. The rows and columns
of the similarity matrix represent the network nodes and the
elements of the matrix give the similarity score between
corresponding network nodes. If the similarity function is
symmetric we obtain a symmetric similarity matrix. Partial
background knowledge may be easily represented by blank
elements in the matrix for those node pairs where the agent’s
knowledge is missing. In this paper we denote the similarity
matrix with σ – the element σij of the matrix gives the
similarity between nodes i and j from the network.

Different similarity measures have been previously dis-
cussed in the literature for various tasks. For example, [13]
gives an overview and evaluation of various similarity mea-
sures for the link prediction task. In general, similarities
in networks can be calculated from external or exogenous
information about the networks (e.g. textual content in an
information networks), or from internal or endogenous in-
formation (internal linking patterns). There are two possible
similarity measures based on the network linking patterns:
structural equivalence measures and regular equivalence mea-
sures. Structural equivalence is based on the simple idea
that two nodes are similar if they share many of the same
network neighbors, whereas regular equivalence between two
nodes is given if they have neighbors who themselves are
similar. Since absolute numbers of common neighbors are
hard to interpret, this number is typically normalized. Different
normalizing constants give rise to different similarity measures
such as cosine similarity, Pearson correlation coefficients, or
Euclidean distance ( [14] gives a nice overview and compar-
ison of various normalization methods). In contrast, regular
equivalence between nodes is established when two nodes do
not necessarily share same neighbors but rather they have
neighbors who themselves are similar, or in a more simple
case two network nodes i and j are similar if j is similar to
other neighbors of i. In past, several simple algebraic measures
have been developed in the past to measure regular equivalence
[15], [16].

Previous research showed that node degree as well as
node similarity play an important role in informed search in
many networks. Therefore, we concentrate in this paper on
the analysis of regular equivalence measures since structural
equivalence can not capture both of these aspects in a single
quantity. These measures assign a zero similarity to all nodes
that do not have neighbors in common – they only capture
local similarity between nodes but can not reflect any global
or long range dependences between nodes. They are suitable
to inform search if the agent is already in the proximity of its
goal, but they can not lead that agent from a distant part of
the network to the cluster or community where the target is
situated. In other words, structural equivalence would not be

able to instruct an agent in its zoom-out phase but only in its
zoom-in phase. On the other hand, because regular equivalence
measures are defined recursively over node neighbors, they
are able to capture global node similarities that go beyond
immediate node neighbors. They assign a non-zero similarity
value to each node pair that exhibits a structural dependence
in the network, e.g. the nodes are connected by at least one
path in the network.

B. Katz Similarity

In this paper we concentrate on a particular measure of
regular equivalence called Katz similarity [13]. Let us first
introduce the basic quantities relevant for measuring this
similarity. Let us denote the adjacency matrix of a graph
G(V,E) with A:

Aij =

{
1 if nodes i and j are connected by a link
0 otherwise.

(1)

We define Katz similarity recursively as [17]:

σij = α
∑
k

Aikσkj + δij , (2)

where δij is Kronecker delta (δij = 1 if and only if i = j,
otherwise δij = 0).

The idea is that the term σkj is large if the neighbor k of
i is similar to j. We then sum over all neighbors of i, which
is ensured by the product Aikσkj since Aik equals 1 only if i
and k are neighbors. Finally, the term δij assigns a high value
of “self-similarity” of a node to itself. The constant α weights
the influence of neighbors as compared to the influence of the
self-similarity to the nodes similarity.

We can write the expression for the Katz similarity in the
matrix form as:

σ = αAσ + I, (3)

where I is the identity matrix.
We can now solve this equation for σ, which gives us the

following:
σ = (I − αA)−1. (4)

In case of large networks with e.g. millions of nodes,
inverting a matrix is computationally expensive. Therefore, we
may want to evaluate the Equation 3 recursively. We would
typically start by assigning initial values for similarity to zero,
e.g. σ0 = 0. We then obtain (for the first three iterations):

σ0 = 0,σ1 = I,σ2 = αA+ I,σ3 = α2A2 + αA+ I. (5)

Thus, in the limit of large number of iterations m we have:

σ =
∞∑

m=0

αmAm. (6)

The elements of matrix Am at index i and j, i.e. [Am]ij
give the total number of paths of length m between nodes i
and j. The Katz similarity can be seen as a weighted count
of all paths between the nodes i and j with paths of length
r getting weight αr. As long as α < 1 longer paths obtain
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less weight than shorter ones.Thus, two nodes will be similar
if they are connected either by few short paths or if they are
connected by many longer paths.

The inverse of (I−αA) does not exist for det(I−αA) = 0,
which is exactly the characteristic equation for eigenvalues of
A, i.e. in the matrix form λ = 1/α. Thus, the inverse does
not exist whenever 1/α equals λi. If we start with α = 0
and gradually increase it, we first hit the equality 1/α = λi
for the largest eigenvalue λ1, and then again every time when
we approach the next eigenvalue. Thus, if we pick an α <
1/λ1 we ensure that the inverse exists (or that

∑∞
m=0 α

mAm

converges).
Therefore, we may set the value of parameter α for each

network as:
α =

1

λ1
f, (7)

where λ1 is the largest eigenvalue of the adjacency matrix A,
and f is a parameter in the interval [0.01, 0.99]. We call f the
α-parameter.

C. Synthetic networks

We carry our experiments on synthetic networks. The goal is
to generate networks that structurally closely reflect a typical
social or an information network. Although the real networks
exhibit a wide range of interesting structural properties we
concentrate on two which have been observed in the majority
of networks from different domains: (i) degree heterogeneity
(where we typically have only a few of high degree and
mid degree nodes that keep the network connected), (ii) and
modular or community structure (with various groups of nodes
that are tightly connected with each other and only loosely
connected to other communities – typically via high and
mid degree nodes). Such networks reflect also typical search
scenarios such as search for a similar node within the same
community and search for a distant target node in another
community. The first scenario is simpler and consists only
of the zoom-in phase where an agent needs only to close in
on the target node, whereas the second scenario is a more
complicated one and contains both search phases: zoom-out
phase where the agent exits the starting community and enters
the network core and zoom-in phase where the agent enters
the target community and finally closes in on the target node.

In our experiments we want to analyze if Katz similarity
can capture those two phases in a search process. Thus, for a
given target node i:

1) The most similar nodes to i should be the nodes from its
community – this would instruct an agent that entered the
i’s community and is already in the proximity of its target
to explore that community in its search for the target.

2) The nodes from the other communities should have low
similarity to the given target node i – this would prohibit
an agent to enter a distant community.

3) The nodes that keep the network connected such as high
and mid degree nodes should have high to moderate
similarity values to a given node i – this would guide
an agent to leave a distant community in the zoom-out

phase. Combined with the high similarity to the nodes
from the own community it would further instruct the
agent to enter the i’s community and explore it until it
reaches its goal.

Thus, we generate networks with injected communities and
heterogeneous node degrees. A standard generative model for
such networks are so-called stochastic block models, which
we describe next.

D. Stochastic Block Models

Stochastic Block Models (SBM) are generative models
for networks with clusters or communities [18]–[23]. They
are simple extensions of the standard Erdős–Rényi [24] or
Bernoulli graph model. In Bernoulli model any pair of nodes
from the network is connected with a constant probability
p. In addition, each link is independent on any other link
in the network. This model generates networks with rather
homogeneous (Poisson) degree distributions. In a stochastic
block model nodes are grouped into k communities and the
probability of a link between two nodes is conditioned on
their membership in different communities. Thus, a stochastic
block model is a mixture of k2 Bernoulli models with different
linking probabilities.

Mathematically, a stochastic block models is specified by:
(i) the number of the communities k, (ii) a vector s, which
defines the membership of nodes in communities, and (iii) a
k × k matrix P , which defines probabilities of links between
nodes from different groups.

The element Puv of the matrix P defines the linking
probability of nodes belonging to communities u and v. For
the elements on the diagonal Puu we obtain the linking
probabilities within communities and the off-diagonal ele-
ments represent the probabilities of links that run between
communities. To obtain a network with tightly connected
communities with only a few links that connect the nodes
from different communities we set higher probabilities in the
diagonal elements Puu and lower probabilities in the off-
diagonal elements (see Equation 8).

To obtain a heterogeneous degree distribution we need a
special community (or a couple of such communities) which
are smaller than the other communities and which reverse the
linking probabilities: the nodes from this community have low
probability for connecting to other members of their commu-
nity, but in turn they have high probability of connecting to
all other communities. As a consequence these nodes obtain a
larger number of links than average and thus represent high-
degree or hubs in the network. The same modeling concept
may be further applied to e.g. obtain mid-degree nodes, which
also have a degree larger than average but still smaller than
the hubs – the probabilities for connecting to the nodes from
other communities should be larger than for typical nodes but
smaller than the hub probabilities.

IV. EXPERIMENTS

In our experiments we generate networks with 12 commu-
nities with one high-degree community and one mid-degree
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Fig. 1. Left: Community structure. The community structure is clearly
visible in the visualization of the adjacency matrix. The thin blue line at the top
and to the left of the matrix is the community of high-degree nodes. A blueish
area beneath the top and to the right of the thin blue line is the mid-degree
community. Right: Heterogeneous degree distribution. Cumulative degree
distribution exhibits the existence of a small number of highly connected
nodes (hubs).

community, which have 5 and 10 nodes respectively. All other
10 communities have 50 nodes. In the probability matrix
for the high-degree community we assign a high probability
of those nodes connecting to all other nodes from other
communities. For mid-degree community we apply the same
mechanism but assign smaller probabilities than for the high-
degree community. All other 10 communities have a small
probability of connecting to a different community (low off-
diagonal entries) but a high probability of connecting to itself
(high diagonal entries):

s =


5
10
50
50
...

P =


0.000 0.400 0.400 0.400 . . .
0.400 0.000 0.100 0.100 . . .
0.400 0.100 0.400 0.005 . . .
0.400 0.100 0.005 0.400 . . .

...
...

...
...

. . .

 (8)

A typical adjacency matrix and a cumulative degree distri-
bution are shown in Figure 1.

Now, we are interested in the average similarity of nodes
to:

1) the nodes from their own community (Own),
2) the nodes from the other communities (Other),
3) the nodes from a moderate size community of mid-degree

nodes (Mid),
4) the nodes from a small size community of high-degree

nodes (High).

We investigate how these average similarities change as a
function of the α-parameter f from Equation 7. Thus, we
iterate over the interval [0.01, 0.99] in steps of 0.01 for a total
of 99 different parameter settings. For each setting we generate
1, 000 random networks (for a total of 99, 000 generated
networks for all parameter configurations) using a stochastic
block model with the group vector s and the probability matrix
P from Equation 8. For each parameter value we plot the
average similarities and the standard deviation over 1, 000
generated networks.

V. RESULTS AND DISCUSSION

Figure 2 shows the results of our experiments. For smaller
values (e.g. f less than 0.1) of the α-parameter the most
similar nodes to arbitrary nodes are, on average, high-degree
nodes and the nodes from their own community. The mid-
degree nodes have moderate average similarity and the nodes
from communities other than the own community have a
small average similarity. Thus, these distributions of similarity
are suitable for informing search in networks. For example,
these configurations can support zoom-out phase, where an
agent starting in a distant community needs first to leave that
community and access nodes that provide shortcuts to the
target community. High-degree nodes connect different parts
of the network and an agent needs to visit them first to close
in on the target community. Since the high-degree nodes have
a large average similarity to an arbitrary node in a network an
agent following this similarity intuition would first visit one
of the high-degree nodes. On the other hand, once when the
agent reaches the target community the most similar nodes to
the target node are the nodes from its own community – thus,
an agent would enter the target community and remain within
it to explore the community nodes and eventually reach its
target.

For mid range of values of α-parameter (greater than 0.1 and
less than 0.9) the high-degree nodes start to dominate other
node types and become the most similar nodes to arbitrary
nodes regardless of their community. Thus, an agent would
correctly leave a distant community by visiting one of the
high-degree nodes. However, the agent would remain in the
network core indefinitely long. Even if the agent succeeds in
reaching the target community it would in most cases try to
reach the target node by leaving the target community and
revisiting the high-degree nodes. The exploration of the target
community would not take place at all.

For even larger values of the α-parameter (greater than 0.9)
even the mid-degree nodes become more similar to arbitrary
nodes than the nodes from their communities. Thus, an agent
would in most cases traverse links connecting high-degree and
mid-degree nodes hoping in the network core and failing even
to reach the target community.

Summarizing, regular equivalence measures in general and
Katz similarity in particular can provide the background
knowledge and inform search in networks efficiently. They
are able to capture both phases of the search process: exiting
a distant community and entering the network core with many
long range links to the target community, as well as the
exploration of the target community. However, it is necessary
to configure the parameters for calculating the regular equiva-
lence measures appropriately. Our experiments show that the
desired behavior of these measures can be only obtained by
lower values of the control α-parameter, i.e. for values less
than 0.1.

VI. CONCLUSIONS

In this paper we provide a short overview of various search
process on structurally complex networks. We then analyze the
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Fig. 2. Average similarity as a function of α-parameter For smaller
values of the path weights the most similar nodes are those from the own
community, closely followed by the hubs. The average similarity of the mid
degrees is also significantly higher than the average similarity to nodes in the
other communities. For large values of the path weights the similarity of high
degree nodes dominates all other communities. The similarity to the nodes
from the own community rapidly drops and for the values above 0.9 even the
mid degree nodes become more similar on the average than the nodes from the
own community. From the informed search point of view, the smaller values
of α-parameter (i.e. values less than 0.1) are more suitable for providing
guidance in both phases of search: zoom-out phase where high-degree nodes
must be quickly reached, and the zoom-in phase where the nodes from the
target communities need to be the most similar nodes.

suitability of regular equivalence measures to inform search in
such networks. In particular, we analyze simple algebraic mea-
sures such as Katz similarity which capture several network
structural properties such as node degree and node similarity
into a single similarity score. Our experiments on synthetic
networks with heterogeneous node degree distributions and
injected community structure show that Katz similarity can
efficiently inform search in networks. However, the parameters
used to calculate the similarity need to be chosen with care
and appropriately.

The main limitation of our work is the theoretical nature
of the analysis. Specifically, we estimated the theoretical
suitability of Katz similarity to inform search in networks.
An experimental proof of concept would be also needed. For
example, one can simulate an agent performing greedy search
in networks by using the Katz similarity as the background
knowledge and measure the agent’s success rate and its search
efficiency. Furthermore, the experiments should be repeated on
empirical social and information networks that exhibit typical
structural properties such as heterogeneous node degrees and
community structure. However, we leave these experiments for
the future work.
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