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a b s t r a c t

With the growing popularity of large-scale collaborative ontology-engineering projects, such as the
creation of the 11th revision of the International Classification of Diseases, we need new methods and
insights to help project- and community-managers to cope with the constantly growing complexity of
such projects. In this paper, we present a novel application of Markov chains to model sequential usage
patterns that can be found in the change-logs of collaborative ontology-engineering projects. We provide
a detailed presentation of the analysis process, describing all the required steps that are necessary to
apply and determine the best fitting Markov chain model. Amongst others, the model and results allow
us to identify structural properties and regularities as well as predict future actions based on usage
sequences. We are specifically interested in determining the appropriate Markov chain orders which
postulate on how many previous actions future ones depend on. To demonstrate the practical usefulness
of the extracted Markov chains we conduct sequential pattern analyses on a large-scale collaborative
ontology-engineering dataset, the International Classification of Diseases in its 11th revision. To further
expand on the usefulness of the presented analysis, we show that the collected sequential patterns
provide potentially actionable information for user-interface designers, ontology-engineering tool
developers and project-managers to monitor, coordinate and dynamically adapt to the natural
development processes that occur when collaboratively engineering an ontology. We hope that
presented work will spur a new line of ontology-development tools, evaluation-techniques and new
insights, further taking the interactive nature of the collaborative ontology-engineering process into
consideration.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, we have seen significant increase in the use of
structured data. In many cases, workers have used ontologies to
integrate and interpret this data. As a result, we have seen an
increase in the number of large-scale projects, focusing on colla-
boratively engineering ontologies. For example, the World Health
Organization (WHO) is leading the collaborative online develop-
ment of the new revision of the International Classification of

Diseases (ICD), which represents an important classification scheme
that is used in many countries around the world for health statistics,
insurance billing, epidemiology, and so on. Wikidata,1 another
collaborative ontology-engineering project initiated by the Wiki-
media Foundation,2 is gathering structured data in multiple lan-
guages to link to and between Wikipedia and its different language
editions. To understand and support the new requirements that this
collaborative approach introduces, researchers have analyzed and
developed new ontology-engineering tools, such as Protégé and
WebProtégé (Tudorache et al., 2008, 2011). These tools not only
provide a collaborative environment to engineer ontologies, but
also include mechanisms that are targeted towards augmenting
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collaboration and increasing the overall quality of the resulting
ontologies by supporting contributors in reaching consensus. For
user-interface designers, community managers as well as project
administrators, analyzing and understanding the ongoing processes
of how ontologies are engineered collaboratively is crucial. When
provided with detailed and quantifiable insights, the used ontology-
engineering tools or even the development strategy can be auto-
matically revised and adjusted accordingly. Engineering an ontology
by itself already represents a complex task; this task becomes even
more complex when adding a layer of social interactions on top of
the development process. In the light of these challenges, we need
new methods and techniques to better understand and measure
the social dynamics and processes of collaborative ontology-
engineering efforts.

In this work, we want to focus on sequences of actions that
users perform when collaboratively engineering ontologies. For
example, when the change of a property by a user is succeeded by
another change of a property by that user, the two changes can be
used to represent the sequence of properties that this specific user
has been working on. Better understanding such sequential
processes can help system designers to increase the quality of an
ontology or contributor satisfaction, among other things. To come
back to our previous example, if we better understand the process
of how users sequentially edit properties of concepts, we can
recommend to users the property that they potentially might want
to edit next. Alternatively, we can steer users away from their
typical behavior in order to cover niche parts of the ontology. We
know from previous studies, that sequential patterns of human
actions can usually be predicted quite well. For example, Song
et al. (2010) showed that human mobility patterns are predictable;
they also hypothesize that all human activities contain certain
regularities that can be detected. We explore whether these
regularities might also apply to our ontology-editing sequences.

Consequently, our main goal in this paper is the presentation of
methods and techniques for acquiring detailed insights into these
ongoing (sequential) processes when users collaboratively engi-
neer an ontology. Hence, we introduce a novel application of a
methodology based on Markov chains. We base our elaboration of
this method on previous work that has focused on studying
human navigational paths through websites (Singer et al., 2014).
We focus not only on the structure of given paths (e.g., the
identification of common sequences), but also on the detection
of memory (e.g., on how many previous changed properties does
the next property a user changes depend on). We lay our focus on
determining the appropriate Markov chain orders which allows us
to get insights into on how many previous actions users reason
their future actions. The main objectives of this paper are:

� The presentation of a novel application of Markov chains on the
change logs of collaborative ontology-engineering projects to
gather new insights into the processes that occur when users
collaboratively create an ontology.

� The demonstration of the utility of the presented and adapted
Markov chain framework by applying it on a large scale
collaborative ontology-engineering project.

Tackling these two objectives enables us to answer questions
that are of practical relevance for the development of collaborative
ontology-engineering tools, such as Do users have to switch
frequently between the user-interface sections when working on
the ontology? Which concept is a user likely to change next, the
one closer to or further away from the root concept of the
ontology? Which change type is a user most likely to perform
next? Do users move along the ontological hierarchy when
changing content? Can we identify edit behaviors, such as top-
down or bottom-up editing? Do users only reason their future

actions on the current ones or do they depend on a series of
preceding ones? However, other kinds of questions are conceiva-
ble and can be studied in straight-forward manner by researchers
by focusing on the methodological aspects presented in this work.

Results: Our results indicate that the application of Markov chains
on the change-logs of collaborative ontology-engineering projects
provides new and potentially actionable insights into the processes
that occur when users collaboratively create an ontology for project
administrators and ontology-engineering tool developers.

Contributions: We provide (i) a detailed description of the
process for applying Markov chains on the change-logs of colla-
borative ontology-engineering projects and (ii) an evaluation of
the extracted Markov chain models by applying the methodology
on the change-logs of ICD-11, representing a large-scale collabora-
tive ontology-engineering project that exhibits Markov chains of
varying orders. Our high-level contribution is the presentation of a
novel approach that can be used to gather new insights into
ongoing processes when collaboratively engineering an ontology
by making use of Markov chains to model sequential usage
sequences. Amongst others, this allows practitioners to identify
structural properties and regularities as well as predict future
actions based on usage sequences.

The remainder of the paper is structured as follows: In Section
2 we provide a brief introduction into collaborative ontology-
engineering. We then continue to review related work in Section
3. In Section 4, we briefly describe and characterize the history of
ICD-11 as well as the dataset and the underlying change-log. We
continue with the description of the process in Section 5, describ-
ing all necessary steps to extract and interpret Markov chains for a
given dataset. In Section 6, we apply the previously described
process to ICD-11, extracting Markov chains of different orders for
two different types of analyses. In Section 7, we discuss potential
implications and conclude our work in Section 8.

2. Collaborative ontology engineering

According to Gruber (1993), Borst (1997) and Studer et al. (1998),
an ontology is an explicit specification of a shared conceptualiza-
tion. In particular, this definition refers to a machine-readable
construct (the formalization) that represents an abstraction of the
real world (the shared conceptualization), which is especially
important in the field of computer science as it allows a computer
(among other things) to “understand” relationships between enti-
ties and objects that are modeled in an ontology.

The field of collaborative ontology engineering and its environ-
ment pose a new field of research with many new problems, risks
and challenges. In general, contributors of collaborative ontology-
engineering projects, similar to other collaborative online produc-
tion systems (e.g., Wikipedia), engage remotely (e.g., via the
internet or a client–server architecture) in the development
process to create and maintain an ontology. Given the complexity
assigned to engineering an ontology, researchers and practitioners
have already discussed and proposed different development
methodologies. Analogously to the plethora of different software
development processes and methodologies (i.e., the Waterfall-
Model, agile development or SCRUM), methodologies and guide-
lines exist for (collaboratively) creating an ontology which define
multiple different aspects of the engineering process. For example,
the Human-centered ontology engineering methodology (HCOME)
(Kotis et al., 2005; Kotis and Vouros, 2006; Kotis, 2008) represents
such an approach that sets its focus on (continuously and) actively
integrating the knowledge worker—the users who will rely on and
use the created ontology—in the ontology life-cycle (i.e., by
including the users in all planning stages, discussions, require-
ments analyses, etc.). Similarly, the DILIGENT process (Pinto et al.,
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2004, 2009; Tempich et al., 2005) defines principles for the
distributed development of an ontology, including different sta-
keholders (e.g., developers or users of the ontology, who both have
different purposes and needs for the resulting ontology). Debruyne
et al. (2010) and Debruyne and Meersman (2012) proposed the
Grounding Ontologies with Social Processes and Natural Language
(GOSPL) approach and tool in 2010. Again, a strong focus was put
on the formalization of social processes, which directly result in
and impact the evolution of the collaboratively engineered
ontology.

3. Related work

For the analysis and evaluation conducted in this paper, we
identified relevant information and publications in the domains of
(i) sequential pattern mining, (ii) Markov chain models and (iii)
collaborative authoring systems. We discuss each domain next.

3.1. Collaborative authoring systems

Research on collaborative authoring systems such as Wikipedia
has in part focused on developing methods and studying factors
that improve paper quality or increase user participation. For
example, Kittur et al. (2007) have shown that for Wikipedia and
del.ico.us, two collaborative online authoring systems, participa-
tion across users during the initial starting phase is unevenly
distributed, resulting in few users (administrators) with a very
high participation and contribution rate while the rest of the users
(common users) exhibit little if any participation and contribu-
tions. However, over time, contributions shift from administrators
towards an increasing number of common users, which at the
same time still make little contributions individually. Thus, an
analysis of the distribution of work across users and articles (as
mentioned in Kittur and Kraut, 2008) can provide meaningful
insights into the dynamic aspects of the engineering process. This
line of work is also related to research on problems that are
common in these types of environments, such as the free-riding
and ramp-up problems (Cabrera and Cabrera, 2002). The free-
riding problem characterizes the fact that users would rather tend
to enjoy a resource than contribute to it. The ramp-up problem
describes the issue of motivating users to contribute to a system
when either content or activity (or both) in the overall system is
very low. Researchers have proposed different types of solutions to
these—sometimes called—knowledge-sharing dilemmas (Cabrera
and Cabrera, 2002). Wilkinson and Huberman (2007) have shown
that the quality of Wikipedia articles correlates with the number
of changes performed on these articles by distinct users. More
recent research which uses collaborative authoring systems, such
as Wikipedia as a data source, focuses not only on describing and
defining the act of collaboration amongst strangers and
uncertain situations that contribute to a digital good (Keegan et
al., 2011) but also on antagonism and sabotage of said systems
(Shachaf, 2010). It has also been discovered that Wikipedia editors
are slowly but steadily declining (Suh et al., 2009). Therefore
Halfaker et al. (2011) have analyzed what impact reverts have on
new editors of Wikipedia, showing that users have a much higher
tendency to either stop working on Wikipedia articles after their
contributions have been reverted or drastically decrease the
amount of contributions.

Further, Viegas et al. (2007) have shown that the history of an
article and discussion pages in Wikipedia contain valuable infor-
mation for administrators and moderators. In Viégas et al. (2007)
the authors conclude that collectives in Wikipedia follow their
self-imposed rules regarding well defined and formalized pro-
cesses, such as featured articles. Schneider et al. (2013a, 2013b,

2010, 2012) discussed multiple different aspects and the impor-
tance of consensus finding on Wikipedia and the Social Semantic
Web, by analyzing the history of articles in said systems, further
strengthening the need for tools and analyses to be able to better
understand and support digital collaborative endeavors.

3.2. Collaborative ontology-engineering tools

A number of tools, such as the OntoWik (Auer et al., 2006), the
MoKi (Ghidini et al., 2009), Soboleo (Zacharias and Braun, 2007) or
PoolParty (Schandl and Blumauer, 2010) support collaborative
ontology engineering, focusing on supporting and augmenting
different aspects of collaborative development processes of ontol-
ogies. For example, Semantic MediaWikis (Krötzsch et al., 2006)
add semantic capabilities to traditional Wiki systems. They are
intended to help users navigating the Wikis by introducing more
meaningful semantic links and support of richer queries. Some of
the Semantic Wikis available today focus on enhancing content
with semantic links in order to allow more meaningful navigation
and to support richer queries. Semantic Wikis usually associate a
page to a particular instance in the ontology, and the semantic
annotations are converted into properties of that instance. As an
ontology represents a formalized and abstract version of a specific
domain, disagreements between authors on certain subjects can
occur. Similar to face-to-face meetings, these collaborative
ontology-engineering projects need tools that augment collabora-
tion and help contributors in reaching consensus especially when
modeling (controversial) topics of the real world.

In fact, the majority of the literature about collaborative
ontology engineering sets its focus on surveying, finding and
defining requirements for the tools used in these projects (Noy
and Tudorache, 2008; Groza et al., 2013).

Protégé, and its extensions for collaborative development, such
as WebProtégé and iCAT (Tudorache et al., 2011) (see Fig. 1 for a
screenshot of the iCAT ontology-editor interface) are prominent
tools that are used by a large community worldwide to develop
ontologies in a variety of different projects. Both WebProtégé and
Collaborative Protégé provide a robust and scalable environment
for collaboration and are used in several large-scale projects,
including the development of ICD-11 (Tudorache et al., 2010).

Pöschko et al. (2012) and Walk et al. (2013) have created and
further developed PragmatiX, a tool to browse an ontology and
visualize aspects of its history. PragmatiX also provides quantita-
tive insights into the creation process. The authors applied it to the
analysis of the ICD-11 project.

3.3. Collaborative ontology-engineering analyses

Strohmaier et al. (2013) investigated the hidden social
dynamics that take place in collaborative ontology-engineering
projects from the biomedical domain and provided new metrics to
quantify various aspects of the collaborative engineering pro-
cesses. Falconer et al. (2011) investigated the change-logs of
collaborative ontology-engineering projects, showing that contri-
butors exhibit specific roles, which can be used to group and
classify these users, when contributing to the ontology. Pesquita
and Couto (2012) investigated if the location and specific struc-
tural features can be used to determine if and where the next
change is going to occur in the Gene Ontology.3 Wang et al. (2013)
have used association-rule mining to analyze user editing patterns
in collaborative ontology-engineering projects. The approach pre-
sented in this paper uses Markov chains to extract much higher

3 http://www.geneontology.org
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detailed user-interaction patterns incorporating a variable number
of historic editing information.

Walk et al. (2014) provided a detailed analysis of the common-
alities and differences between five different collaborative ontology-
engineering projects. Contrary to the presentation of the Markov
chain framework in this paper, Walk et al. (2014) concentrated their
efforts on the interpretation of the differences and commonalities in
first-order sequential patterns between five different collaborative
ontology-engineering projects using aspects of the Markov chain
framework presented in detail in this paper.

Debruyne and Nijs (2013) presented a generic reputation
framework to identify leaders in collaborative ontology-
engineering projects. In their framework, they classified users as
leaders according to a set of different characteristics (or reputation
sensors), such as activity, engagement quality as well as features of
the social interaction graph. In De Leenheer et al. (2009), the
authors suggested the use of social performance indicators to
gather insights and broaden our understanding of the (ever
changing) social arrangement collaboratively evolving an ontology.

Recently, Van Laere et al. (2014) analyzed behavior-based user
profiles in collaborative ontology-engineering projects, relying on
GOSPL (Grounding Ontologies with Social Processes and Natural
Language) and K-means clustering to group similar users. Di
Francescomarino et al. (2014) investigated multiple different
features of wiki collaborative features for ontology authoring and
showed their impact on the ontology lifecycle and the engineered
ontology entities.

3.4. Sequential pattern mining

Agrawal and Srikant (1995) first addressed the problem of
sequential pattern mining in 1995. In their work the authors
defined sequential pattern mining as: given a collection of chron-
ologically ordered sequences, sequential pattern mining is about
discovering all sequential (chronologically ordered) patterns,
weighted according to the number of sequences that contain these
patterns. They also introduced AprioriAll and AprioriScale, which
also represent the first a priori sequential pattern mining algo-
rithm. One year later, in 1996, Srikant and Agrawal (1996) further
included time-constraints and sliding windows to the definition of

sequential patterns and introduced the widely popular and used
generalized sequential pattern algorithm (GSP). With this work
the authors showed that specific patterns cannot occur more
frequently (above a threshold) if a sub-pattern of this pattern
occurs less often (below that threshold). Many additional exam-
ples of a priori algorithms have been reviewed and discussed in
literature (Mannila et al., 1997; Wang et al., 1994; Bettini et al.,
1996), with SPADE (Zaki, 2001) being one of the most prominently
used and referred to algorithms. One major problem assigned to
the a priori based sequential pattern mining algorithms was (in
the worst case) the exponential number of candidate generation.
As a priori based sequential pattern mining algorithms create (in
the worst case) an exponential number of candidates, Han et al.
(2000) and Pei et al. (2001) invented the so-called pattern-growth
approaches. They circumvent the exponential candidate genera-
tion by strategically expanding found patterns and ignoring
patterns that are not present in the data.

Today, many researchers have adapted different sequential
pattern mining algorithms and approaches for different domains
and use-cases. For example, Hsu et al. (2007) analyzed algorithms
for sequential pattern mining in the biomedical domain.

In this work we use Markov chain models (see next section) as
opposed to sequential pattern mining techniques for our experi-
ments as they also allow us to directly gain insights into memory
effects in our sequential data at interest. Furthermore, we can
simply vary the length of patterns that we want to detect by
changing the order of the Markov chain model.

3.5. Markov chain models

Previously, Markov chain models have been heavily applied for
modeling Web navigation—some sample applications of Markov
chains can be found in Borges and Levene (2007), Deshpande and
Karypis (2004), Lempel and Moran (2000), Pirolli and Pitkow
(1999), Sen and Hansen (2003) and Zukerman et al. (1999).
Detailed specifications of the parameters used in a Markov chain
—e.g., transition probabilities or also the specification of model
orders—have previously been used to capture specific assumptions
about the real human navigational behavior. One frequently used
assumption is that human navigation on the Web is memoryless.

Fig. 1. The iCAT user-interface. A screenshot of the iCAT interface, a custom tailored version of WebProtégé, developed for the collaborative engineering of ICD-11. The inline
annotations represent exemplary transitions between states for two of our three analyses. The letters A�C represent the sequential Edit-Strategy Path (see Section 6.2) for
one user, while the roman numbers I� III constitute a representative sequential path for the User-Interface Sections Path analyses (see Section 6.3) for another users. Note that
for the Edit-Strategy Paths, every letter represents the transition between two consecutively changed concepts by the corresponding user. Analogously, for the User-Interface
Sections Paths each number represents one section of the user-interface that was used by the corresponding users to contribute to the ontology.
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This is further postulated in the Markovian assumption which
states that the next state in a system only depends on the current
one and not on a sequence of preceding ones. This is, for example,
also modeled in the Random Surfer model in Google's PageRank
(Brin and Page, 1998).

Previously, researchers have investigated whether human
navigation really is memoryless in a series of studies (e.g.,
Borges and Levene, 2000; Pirolli and Pitkow, 1999). However, they
mostly have shown that the benefit of higher orders is not enough
to compensate the extreme high number of parameters needed.
Hence, the memoryless model seems to be a plausible abstraction
(see e.g., Cadez et al., 2003; Sarukkai, 2000; Sen and Hansen,
2003; Zukerman et al., 1999). Recently, a study picked up on these
investigations and again suggested that the Markovian assumption
might be wrong for Web navigation patterns (Chierichetti et al.,
2012). Based on these controversies regarding memory effects in
human navigation, Singer et al. (2014) presented a framework for
determining the appropriate Markov chain order. Their studies on
several navigational datasets revealed that the memoryless model
indeed seems to be a plausible abstraction. However, their work
also highlighted that on a topical level (by looking at paths over
topics instead of pages) clear memory effects can be observed. In
this work, we adapt the corresponding framework in order to
apply it to the process of collaborative ontology engineering.

Using Markov chains we want to learn more about the ongoing
processes when collaboratively engineering an ontology, thus the
work presented in this paper partly builds upon this and related
lines of research and tries to expand them towards collaborative
ontology authoring systems.

4. Datasets

In this section, we present the main data studied in this paper.
Mainly, we focus on the International Classification of Diseases
(ICD-11) (Section 4.1). For deriving the change-logs, we utilize the
Change and Annotation Ontology (ChAO) (Section 4.2).

4.1. International classification of diseases, 11th revision

ICD-11,4 developed and maintained by the World Health
Organization, is the international standard for diagnostic classifi-
cation that is used to encode information relevant to epidemiol-
ogy, health management, and clinical use. Health officials use ICD
in all United Nations member countries to compile basic health
statistics, to monitor health-related spending, and to inform policy
makers. As a result, ICD is an essential resource for health care all
over the world.

The development of ICD-11 represents a major change in the
revision process. Previous versions were developed by relatively
small groups of experts in face-to-face meetings. ICD-11 is being
developed via a web-based process with many experts contribut-
ing to, improving, and reviewing the content online. It is also the
first version to use OWL as its representation format.

We choose ICD-11 as an example ontology to demonstrate the
effectiveness of the Markov chain methodology as the ontology
satisfies several critical requirements for the applicability of our
method: (i) at least two users have contributed to the project, and
(ii) a structured log of changes (see Section 4.2) without ambig-
uous references to the elements in the ontology is available. These
characteristics can be seen as the minimum requirements to allow
for an application of Markov chains onto collaborative ontology-
engineering projects. For a list of characteristics for ICD-11 see
Table 1.

4.2. The change and annotation ontology (ChAO)

The ontology that we use for the demonstration of the Markov
chain-based sequential usage pattern analysis, the International
Classification of Diseases in its 11th revision, is created using a
custom tailored versions of WebProtégé called iCAT. The tool
provides a web-based interface as well as change-logs, which
can be directly mapped onto the ontology that is to be created. The
mapping of the change-log entries and the ontology depends on
the availability of unique IDs for entities, such as users and
concepts. These unique IDs are internally (unambiguously)
mapped to the IDs (or URIs) of the corresponding elements of
the ontology, allowing us to track, extract and analyze changes of
concepts even if, for example, their title and all of their attributes
are changed or their values are ambiguous. This means that for
every entry in the change log we have unique IDs that can be used
to retrieve all involved entities. In traditional change-logs, which
are usually separated from the productive environment, one
minimalistic change could, for example, solely consist of one
string, such as “The title of concept 02 II Neoplasms was changed
from Neoplasm to Neoplasms”. The change logs provide a direct
mapping to the concept and user (among others) affected by the
changes, avoiding ambiguity, even if multiple concepts exhibit the
same property values (i.e., have the same title “Neoplasms”). Note
that whenever we refer to the underlying ontology, we refer to
ICD-11 and not ChAO or the change-logs.

Protégé and all of its derivatives use the Change and Annotation
Ontology (ChAO) (Noy et al., 2006) to represent these changes. In
contrast to traditional change-logs, ChAO itself represents a
structured log of changes that allows for explicitly (semantically
rich) defined classes, properties and relationships. This means that
change types are represented as ontology classes in ChAO and
changes in the domain ontology (e.g., ICD-11) are instances of
these classes (Fig. 3). Similarly, notes that users attach to concepts
or threaded user discussions (represented as Annotations in Fig. 3)
are also stored in ChAO. Further, ChAO contains unique and
unambiguous references to all entities in the ontology, for which
ChAO is storing the changes and annotations.

ChAO records two types of changes, the so-called “Atomic” and
“Composite” changes. “Atomic” changes represent one single
action within the ontology and they consist of several different
types of changes such as Superclass Added, Subclass Added or
Property Value Changed. “Composite” changes combine several
atomic changes into one change action that usually corresponds
to a single action by a user. For example, moving a concept inside
the ontology is represented by one composite change that consists
of—at least—four “atomic” changes for removing and adding
parent and child relations for all involved concepts. Every change
and annotation provides information about the user who

Table 1
Characteristics of the International Classification of Diseases 11th revision (ICD-11)
that we used for the demonstration to extract sequential patterns in collaborative
ontology-engineering projects. The number of users corresponds to the number of
users that have contributed at least 1 change to ICD-11.

ICD-11

Concepts 48,771
Changes 439,229
Users 108
Development tools iCAT
First change 18.11.2009
Last change 29.08.2013
Log duration (ca.) 4 years

4 http://www.who.int/classifications/icd/ICDRevision/
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performed it, the involved concept or concepts, a time stamp and a
short description of the changed or annotated concepts/properties.
Whenever we talk about changes we refer to the 439,229 changes
stored in the ChAO (see Table 1), which are always actual changes
to the ontology (e.g., changes performed on ICD-11; opposed to
proposed changes).

5. The analysis process

Fig. 2 depicts an abstraction of all the steps necessary to better
understand the process of how users sequentially edit properties
of concepts in collaborative ontology-engineering projects. The
first two steps of the analysis process, Mapping (Section 5.1) and
Session Separation (Section 5.2), involve a mapping of the struc-
tured logs of changes onto the ontology as well as session
separation tasks to prepare the data. In the State Selection step
(Section 5.3) research questions are formulated allowing for the
corresponding features of changes to be identified and selected. In
the Path Extraction (Section 5.4) step, all of the previously
identified features have to be extracted and chronologically sorted
as they are needed as input for the Markov chain analysis.

For the Path Extraction step, we already have to know which
questions we want to have answers for, as this determines the
features of the changes that we are going to extract. Once the
change data is mapped, extracted and converted into the required
format, we can start the Model Fitting (Section 5.5). In this step, we
use the extracted and preprocessed data to calculate the transition
probabilities for the different orders of the Markov chain models.
To determine which Markov chain order provides the best trade-
off between model complexity and predictive performance we
conduct several Model Selection tasks (Section 5.6). In the last step
of the process, Interpretation (Section 5.7), we combine the
gathered information of the model selection tasks and provide

insights on choosing the Markov chain order that statistically
significantly best models the sequential data.

5.1. Step 1: mapping

Given the structured nature of ChAO, it already provides the
necessary internal IDs to map the referenced entities, which are
involved in the corresponding stored change-actions, to the
corresponding concepts, properties and users of the actual ontol-
ogy (for more details see Section 4.2). For example, if a specific
property of a specific concept was changed, ChAO would provide
us with the necessary IDs to unambiguously identify the changed
concept and property. Hence, the mapping process for ICD-11
consists of simple id look-ups and joins between entries of ChAO
and the actual ontology. For other datasets, individual mapping
strategies have to be developed or derived, which allow for an
unambiguous identification of all involved entities, such as users,
concepts and properties.

5.2. Step 2: session separation

Ontologies of the size of ICD-11 cannot be developed in one
single day, hence we decided to introduce what we call artificial
session breaks to be able to gather more detailed information of the
ongoing processes. As neither iCAT nor ChAO provide information
about user sessions, we manually added these artificial session
breaks, which allow us to identify (or at least approximate)
concepts and properties that users will work on, after or shortly
before they take a break from editing the ontology. These session
break states are named BREAK throughout all of our analyses and
are specifically used to uncover the states before and after a break
occurs in the change-logs for all analyses that investigate user-
based activities (opposed to concept-based activities, which are
only analyzed in Section 6.3).

Fig. 2. The analysis process. This figure depicts the different steps of the process that have to be performed to determine and evaluate the best fitting order of a Markov chain
for a given dataset. The first two steps of the process involve a Mapping (Section 5.1) of the change-log data onto the underlying ontology and Session Separation (Section 5.2)
tasks. The State Selection step (Section 5.3) is split into two separate tasks. First, questions have to be formulated that are to be investigated relying on the presented Markov
chain analysis. Second, features of changes, which correspond to the previously formulated questions, have then to be identified and selected. In the Path Extraction (Section
5.4) step, all of the previously identified features of changes have to be extracted and chronologically sorted. Once the paths are extracted, they can be used as input for the
Model Fitting (Section 5.5), where the transition probabilities for the Markov chains are calculated. In the Model Selection step (Section 5.6), we determine the best fitting
order of a Markov chain according to over- and under-fitting of the underlying data. The last step of the process, Interpretation (Section 5.7), is used to combine the results of
the different approaches of the Model Selection to determine the best-fitting Markov chain order for the underlying data.

Fig. 3. The change and annotation ontology. The figure depicts a visual excerpt of the structure of the change and annotation ontology (ChAO) used by Protégé (Noy et al.,
2006). Boxes represent classes and lines with arrows represent relationships (labeled) and subclasses.
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Fig. 4 depicts the total amount of timespans between the
changes of each user for ICD-11. The y-axis depicts the percentage
of all changes performed within the corresponding timespan on
the x-axis. The x-axis depicts the different timespan intervals in
minutes. The majority (495%) of all changes in ICD-11 are
performed within 5 min. Thus, if two changes of the same user
are apart longer than 5 min, we have introduced an artificial
session break represented as a BREAK state in all the conducted
user-based analyses.

5.3. Step 3: state selection

To be able to select the states for the Markov chain analysis we
have to first define what kind of questions we seek answers for
and then identify and extract the corresponding states. For
example, if we are interested to know what kind of change a user
is most likely to conduct next, the set of states to be extracted are
all the different types of changes in the system. If we are interested
in the relative movement of users, allowing us to predict if a user
will move closer, further away or stay at the same distance to the
root node, we have to extract the depth-levels of the changed
concepts and compare the previous level with the current level to
extract relative movement states (i.e., UP, DOWN and SAME; for
more info see Section 6.2).

It is important to understand that, using Markov chains, we are
mainly interested in predicting which state to occur next for a
given user or a given concept. Note that if we do not have enough
information to extract a chronologically ordered sequence of
states, Markov chains cannot be used.

5.4. Step 4: path extraction

To be able to analyze sequential usage patterns, we first have to
extract sequential paths from the preprocessed structured logs of
changes, which we can then use as input data for the Markov
chains.

A path represents a chronologically ordered list of changes or
features that can be associated with that change, which are
performed either by a user or are performed on a concept
(Fig. 5). For example, when predicting the property that a user is
most likely to work on next, we extract a chronologically ordered
list of all changed properties for all users. We then store these lists
in a file, where each user is represented by one line and the
content of each line is the chronologically ordered list of changed
properties of that user.

If we want to predict which property is most likely to be
changed next for a given concept, we have to collect a chronolo-
gically ordered list of changed properties for each concept. Again,
each line of the resulting file represents a concept while the
content of each line is the chronologically ordered list of changed
properties for that concept, not including artificial session breaks as
this analysis is now concept-based.

For some of our analyses, we merged multiple consecutive
changes of the same user on the same concept into two con-
secutive changes, resulting in one self-loop. For example, if one
user would change the same property (e.g., title) on the same
concept 5 times, we would merge these 5 changes of the same
property into two changes, resulting in one self-loop in the
extracted path from title to title, opposed to four transitions from
title to title. We performed this process of merging multiple
consecutive changes into one single self-loop to minimize the
detection of higher order Markov chains that are biased towards
transitions between the same states from the same concepts. This
is particularly useful as there is no, or only minimal, actionable
information when predicting that a user is going to perform the
same change on the same concept again. If an ontology would
provide multilingual properties and we are specifically interested
in potential change-sequence patterns between these multilingual
property values, we would have to create additional states
accordingly (e.g., property_eng, property_ger, etc.)

5.5. Step 5: model fitting

Markov chain models are well-known tools, among others, for
modeling navigation on the web. We resort to and recapitulate the
established methods first described by Singer et al. (2014).

In general, a Markov chain consists of a finite state-space and
the corresponding transition probabilities between these states. For
our analysis, we will make use of the transition probabilities to
identify likely transitions for a variety of different states. To be able
to do so, it is important to understand the nature of Markov
chains. Formally, a finite and discrete (in time and space) Markov
chain can be seen as a stochastic process that contains a sequence
of random variables—X1;X2;…;Xn. One of the most well-known
assumptions about Markov chains is the so-called Markovian
property that postulates that the next state of a sequence depends
only on the current state and not on a sequence of preceding ones.
Such a first-order (also called memoryless) Markov chain holds if

PðXnþ1 ¼ xnþ1 jX1 ¼ x1;X2 ¼ x2;…;Xn ¼ xnÞ
¼ PðXnþ1 ¼ xnþ1 jXn ¼ xnÞ ð1Þ
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Fig. 4. Occurrence of different timespans. This plot depicts the percentage of all
changes that have been performed within a specific timespan for ICD-11. The x-axis
lists the timespans in minutes and the y-axis lists the accumulated percentage of all
timespans between two consecutively conducted changes for every user. To avoid
the introduction of too many artificial session breaks, we decided to insert breaks for
timespans between changes that are greater to the timespan so that 495% of all
changes do not introduce new sessions. In the case of ICD-11, this timespan is the
1–5 min one, meaning that BREAKs have been introduced if the two changes in
question are apart longer than 5 min.

U P2 P3 P1

C P3P2P1:

:

Fig. 5. Sequential paths sample. The top row of the figure depicts an exemplary
concept-based sequential property path (P1 to P3) for concept C. This means that for
concept C the property P1 was changed first, then property P2 and most recently
changed was property P3. The bottom row of the figure depicts the sequential
property path (P1 to P3) for a user U (user-based). Analogously, user U has first
changed P2, continued to change property P3 and most recently changed P1.
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We assume time-homogeneity which means that the probability
of a transition is independent of n. For all our Markov chains and
for simplification we will refer to data (i.e., sequential paths) on
which we fit a Markov chain model as a sequence D¼ ðx1; x2;…; xnÞ
with states from a finite set S. Hence, we can rewrite the
Markovian property as

pðxnþ1 jx1; x2;…; xnÞ ¼ pðxnþ1 jxnÞ ð2Þ
Furthermore, as we are also interested in higher order Markov

chains (i.e., the next state not only depends on the current one but
on a series of preceding ones), we can state that in a k-th order
Markov chain the next state depends on k previous ones. This
leads to the following, more general equation:

pðxnþ1 jx1; x2;…; xnÞ ¼ pðxnþ1 jxn; xn�1;…; xn�kþ1Þ ð3Þ
Note that we can easily convert higher order Markov chains to

first-order Markov chains by modeling all possible sequences of
length k as states and adjusting the probabilities accordingly.
Hence, we can focus on defining the methods for first-order chains
solely, as this applies for higher ones as well.

A Markov chain model is usually represented via a stochastic
transition matrix P with elements pij ¼ pðxj j xiÞ where it holds that
for all i:
X

j

pij ¼ 1 ð4Þ

For easier understanding, one could think of a first-order
Markov chain model as a matrix, where each column and row
correspond to a state of the state-space and the elements within
the matrix represent the transition probabilities to and from each
state towards the corresponding other states. For higher order
Markov chain models, the states would include the combinations
of all states, which is drastically increasing the state-space and
thus, the complexity of the Markov chain.

Furthermore, we also allow k to be zero, resulting in a so-called
zero-order Markov chain model. This can be seen as a lower
baseline and corresponds to a weighted random selection (Singer
et al., 2014)—i.e., the probabilities are defined by the number of
occurrences of states.

Maximum likelihood estimation (MLE): To be able to determine
the transition probabilities pij between the states xi and xj, we
apply Eq. (5), where nij corresponds to the total number of
transitions between states xi and xj:

pij ¼
nijP
jnij

ð5Þ

Hence, the maximum likelihood estimate (MLE) for the transi-
tion probability pij simply is the number of times we observe a
transition between state xi to state xj in our data D divided by the
total number of outgoing transitions from state xi to any
other state.

5.6. Step 6: model selection

As our goal is to determine the most appropriate Markov chain
order, we need to establish some methods for choosing the right
one. Basically, we always want to compare a null model with an
alternative model. To give an example, in our case the null-model
could refer to a first-order Markov chain model while the
alternative-model could refer to a second-order Markov chain
model. Simply comparing likelihoods of two alternative models
with each other is not enough though. Higher-order Markov chain
models are always better fits to the data compared to lower-order
ones by definition. This is reasoned by the higher complexity
(higher number of parameters) of such higher-order Markov chain
models. Thus, we need to balance the goodness of fit with the

corresponding complexity when we want to compare models with
each other.

To do so, we first focus on the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) to compare varying order
Markov chain models with each other. In the following, we
describe both methods, but we want to guide the reader to the
work by Singer et al. (2014) for a more thorough description.

Likelihood ratio: To be able to calculate AIC and BIC, we have to
calculate the likelihood ratio, which simply is the ratio of the
maximum likelihoods of the alternative and the null model. The
ratio gives us an indicator quantifying how much more likely the
observed data is with the alternative model compared to the null
model. As a result, we always compare lower order models with
higher order models. In order to avoid underflow, we calculate the
log likelihood ratio. We follow the notation by Tong (1975) who
defines the log likelihood ratio as kηm:

kηm ¼ �2ðLðPðDjθkÞÞ�LðPðDjθmÞÞÞ ð6Þ

LðPðDjθkÞ represents the MLE for the null-model, while
LðPðDjθmÞ represents the MLE for the alternative model. Note
that simply using this likelihood ratio as a proper indicator for
choosing between two models is not enough due to the reasons
outlined above. Hence, we resort to the AIC and BIC methods
which we outline next.

Akaike information criterion (AIC): This information criterion
can help us to determine the optimal model from a class of
competing models—i.e., the appropriate Markov chain order. The
final method is based on the minimization of the AIC—minimum
AIC estimate also called MAICE—(Gates and Tong, 1976) and has
been first used for Markov chains by Tong (1975). We define the
AIC based on the work by Tong (1975):

AICðkÞ ¼ kηm�2ðj Sjm�jSj kÞðjSj �1Þ ð7Þ

Basically, AIC subtracts the degrees of freedom from the like-
lihood ratio—thus, it penalizes models by their complexity. In our
analysis, the degrees of freedom (2ðjSjm�jSj kÞðj Sj �1Þ) represent
two times the difference between the number of parameters for
the null-model (order k) and the alternative model (order m). The
basic idea is to choose m as the maximum order we want to study
and compare it with lower order models until the optimal Markov
chain order is found. The most appropriate one is the one that
exhibits the lowest AIC score.

Bayesian information criterion (BIC): This information criterion
is very similar to the AIC except for the difference in penalization,
as it increases negative weight on higher order models even more
(Katz, 1981):

BICðkÞ ¼ kηm�ðjSjm�j Sj kÞðj Sj �1Þ lnðnÞ ð8Þ

We proceed similar as for AIC and choose m reasonably high.
The specific penalty function is the degree of freedoms multiplied
with the natural logarithm of the number of observations n (Katz,
1981), where an observation is always represented as a state in the
change-logs.

Prediction task: In addition to our information-theoretic meth-
ods for determining the appropriate Markov chain order, we use a
cross validation prediction for this task. This prediction task is
conducted to actually measure which model order is best suited
for predicting the next state, with the available change-logs as
input. The main idea behind this approach is to calculate the
parameters on a training set and to validate the model on an
independent test set. We apply Laplace smoothing in order to be
able to predict states that are present only in the test set and not in
the training set. To reduce variance, we perform a stratified 7-fold
cross validation. In this case, we stratify the folds in order to keep
the number of visited states in each fold equal.
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The validation is based on the task of predicting the next step
in a path of the test set. This validation also enables us to get
detailed insights into the prediction possibilities of distinct Mar-
kov chain order models. Simply, one could predict the next state
by taking the state with the highest probability in the transition
matrix P. In the following, we describe the process of calculating
the prediction accuracy.

First, we start by calculating the prediction accuracy for each
fold separately. For doing so, we determine the average rank of
each observation in a test set given the transition matrix as
learned from the training data. In detail, given a current state xn
(or series of preceding states for higher order models), we look up
the rank of the next state xnþ1 in the sorted list of transition
probabilities. Next, we average over the rank of all observations in
the test set. We follow the notation of Singer et al. (2014) and
define the average rank rðDf Þ of a fold Df for some model Mk the
following way5:

rðDf Þ ¼
P

i
P

jnijrijP
i
P

jnij
; ð9Þ

where nij is the number of transition from state xi to state xj in Df

and rij denotes the rank of xj in the i-th row of P. As frequently ties
occur in these rankings, we assign the maximum rank to such ties
(i.e., modified competition ranking). This method also includes a
natural Occam's razor (penalty) for higher order models. After we
have calculated the prediction accuracy of all folds, we average
them and suggest the model with the lowest average rank.

In the last part of the Model Selection, we have to manually
assess and combine the different results from the information
criteria, the significance tests and the prediction task (see Section
5.6), to determine the Markov chain order, which provides the best
trade-off between model complexity (and thus, also computation
time) and predictive power. Depending on the size of the change-
log and the number of states that we want to investigate and
predict, the different information criteria yield different sugges-
tions for the best fitting Markov chain order, avoiding over- and
under-fitting. The significance tests provide information about the
highest Markov chain order, that is still significantly different to
the remaining Markov chain orders.

In general, BIC exhibits a tendency to suggest lower Markov
chain orders than AIC, due to the heavier weighted bias on model
complexity. In contrast, the prediction task usually suggests the
usage of higher order Markov chains. However, on closer investi-
gation, the absolute differences between the suggested orders of
AIC and BIC versus the suggested order of the prediction task, most
of the time, do not justify the drastically increased model com-
plexity (and thus computation time) of higher order Markov
chains.

Overall, all presented methods try to achieve the same goal, i.e.,
balancing the goodness of fit with the number of parameters of
varying Markov chain orders. Higher order Markov chain models
have much higher complexity and thus, are potentially prone to
overfitting. AIC and BIC achieve this in a natural manner by having
direct complexity balance terms in their equations. For cross-
validation, we try to include a natural Occams razor by our
corresponding choice of how to rank ties. Thus, we believe that
contrasting all presented methods in this paper provides really
thorough insights into the appropriate Markov chain order given
the data.

However, as mentioned, the results of these methods (which
frequently match anyhow) might be weighted differently accord-
ing to the goal of the study. If the main goal is to study
predictability, one might want to focus on cross-validation as it

also directly provides a measure of how well we can predict with
varying order models. However, the calculation of the cross-
validation is quite expensive, which is why one want to focus on
AIC and BIC. The focus of these two methods is to provide an
answer to how well varying order models fit the data in relation to
each other. As mentioned, complexity is incorporated; BIC has a
higher penalty for complexity compared to AIC. According to
Singer et al. (2014), AIC might be best suited for prediction, while
BIC might be better for explanation. This is also reasoned by the
observation that AIC is asymptotically equivalent to cross valida-
tion if both use MLE. As a final note, we want to mention that BIC
is asymptotically consistent. For further information of the advan-
tages and disadvantages—as well as further methods for order
estimation—refer to the work by Vrieze (2012) and Singer et al.
(2014).

Limitations: Note that the model-estimation methods described
in this work balance the goodness of fit with the number of
parameters needed for each Markov chain order model. This trade-
off is necessary, as specifically higher order models need an
exponentially growing number of parameters which might not
be offset by the statistically significant benefit against lower order
models and is also reflected by the initial choice about the set of
states to consider. Thus, the results are also influenced by the
amount of finite data available which is a common problem of
statistical methods that mostly rely on asymptotic approximations.
Basically, the more data we observe, the more amenable we are
towards more complex models—i.e., higher order Markov chain
models. Hence, if the underlying process actually accords to a
higher order Markov chain process, we need a certain amount of
data for a given complexity, to be able to properly detect this
order. With insufficient data, lower orders might be identified as
being appropriate as the goodness of fit cannot compensate the
complexity. Hence, it is also necessary to have large change-logs
available in order to have the opportunity to detect higher order
Markov chain models.

The required total number of available observations, that is the
number of performed changes, for detecting potential higher
orders is directly related to the number of unique states that are
extracted. For example, if all changes are mapped on two unique
states (e.g., structural changes and property changes), smaller
change-logs might already yield satisfying results, whereas higher
numbers of unique states might require exponentially larger
change-logs for the detection of higher orders.

In this work (see Table 1), we study a dataset with around
440,000 changes and with a limited number of distinct states.
Also, our results highlight several higher order models as being
more plausible compared to lower order models. Thus, we can be
confident that we have sufficient data to detect higher order
Markov chain models as being appropriate, if they actually are. If
a zero order Markov chain model would be suggested each time,
we would need to rethink our data base.

5.7. Step 7: interpretation

After determining the best fitting Markov chain order we can
start interpreting the results. For example, when investigating the
next, most likely change type to be performed by a user, we can
look at the transition probabilities and given n previous changes,
where n equals the order of the best fitting Markov chain model,
infer a ranked list of most probable transitions.

6. Demonstration and evaluation

In this section, we investigate the qualitative analysis that we
can do using sequential pattern analyses. We present the types of5 Alternatively, one could also use measures such as perplexity.
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questions that we can ask and provide the example analysis based
on the change logs for the editing process of ICD-11 (Table 1).

In Section 6.1, we investigate if and to what extent sequential
patterns of performed change types can be detected.

To see where and how users contribute to the ontology and if
they exhibit sequential patterns when doing so, we analyze edit
strategy patterns, such as bottom-up or top-down editing behavior
(Section 6.2).

In Section 6.3, we report on our investigation on whether users
have to switch frequently between different sections of the user-
interface while contributing to ICD-11 and how often (and in
which order) do they use the different sections of the user-
interface in order to add information for a concept.

Step 1; mapping and Step 2; model separation are the same for
all types of analyses that we present in this section. We describe
these steps in Sections 5.1 and 5.2. In the remainder of this section
we focus on the remaining steps, which differ from one type of
paths to the other. Step 7; Interpretation is mainly focusing on the
implications of the best fitting order of Markov chains, rather than
an in-depth investigation of the transition probabilities. A detailed
interpretation of the transition probabilities for the change-type
paths analysis can be found in Section 7.

6.1. Change-type paths

Step 3� State selection: The analysis of change types provides
information about the type of a change that a user will most likely
conduct next. The information of what kind of change a user is
most likely to perform next could be used by, for example, user-
interface designers and ontology-engineering tool developers to
automatically adapt the interface. Additionally, knowing if users
primarily concentrate their efforts on the same change types or
engage in multiple diverse actions while editing the content of the
ontology can also be used by project administrators for curation
purposes. Furthermore, when investigating the transition prob-
abilities between the different change types, it is possible to
identify certain pairs of changes that “usually” occur together,
providing again information for automatic user-interface
adaptions.

Step 4� path extraction: We aggregated the change types into
more abstract change-classes to minimize the necessary state
space for detecting Markov chains, which still provide useful
information for curation and work-delegation purposes. Note that
these change types only represent an abstracted fraction of all
available change types in ChAO. In general, these change-type
classes are CREATE and MOVE, which include all changes that have
a corresponding effect on classes in the ontology. Note that classes
in ICD-11 are not deleted, but are moved to specific areas in the
ontology, hence the omission of the DELETE type. Furthermore, we
have created the classes EDIT_ADD, EDIT_IMPORT, EDIT_REMOVE
and EDIT_REPLACE, which are used when values of properties are
either added, imported, removed or replaced. There are two
special cases for ICD-11, namely BOT and OTHER. The first
change-type is used for automatically performed changes while
the latter is used to mark changes that are not included in the
other listed change-type classes, such as addition of direct types or
adding and removing sub- and superclasses (see Table 2 for a short
description of all change types).

In general, all types of changes with the “EDIT_” prefix are
changes performed on the properties of a class. As the different
properties in ICD-11 have been determined very early on in the
development process and new properties are rarely introduced—
which can only be done by administrators—we have neglected
these types of changes (i.e., are aggregated as part of OTHER) and
concentrated our analysis on the different edit actions that can be
performed on existing properties.

For creating the sequential paths, we first mapped all the
changes of each user in our datasets to the different aggregated
change-classes. In a second step we stored them as chronologically
ordered lists for each user and each dataset individually. Multiple
consecutive identical change types of the same user on the same
concept were merged into one self-loop.

Step 5�model fitting and Step 6 : model selection: We used the
extracted paths to calculate the transition probabilities between
the different change-type classes in the model fitting step. We then
calculated AIC and BIC for the extracted Markov chain models of
varying order (Fig. 6) to identify the appropriate order that reflects
to what extent contributors exhibit memory patterns when chan-
ging concepts.

AIC and BIC suggest the usage of a third- and second-order
Markov chain respectively. The likelihood ratio tests strengthen
this observation as a second-order Markov chain for ICD-11 is
significantly different from a first-order Markov chain, thus sug-
gesting the selection of a second-order Markov chain model for
predicting the next change type.

To determine which order of a Markov chain contains the
highest predictive power, we conducted a stratified cross-fold
validation prediction task (see Section 5.6 for a detailed explana-
tion). As depicted in Fig. 6, the stratified cross-fold validation
encourages the usage of a third-order Markov chain for ICD-11.

The combined results of the model selection tasks indicate the
best performance with the usage of a third-order Markov chain for
ICD-11 for the task of predicting the change type a user is most
likely to conduct next.

Step 7� interpretation: A Markov chain of third order indicates
that the last three change types a user has performed provide the
best amount of information on the change type that is most likely
to be performed next by that user. This information can (poten-
tially) be used by programmers and designers of ontology devel-
opment tools to automatically adjust parts of the interface
according to the change-action a user is most likely to perform
next. For example, if the next change will most likely involve
deleting a concept the user-interface could already present and/or
highlight specific parts that correspond to the anticipated action or
display additional information, such as recently deleted concepts
by the corresponding user. Note that these results are specific for
ICD-11 and iCAT and might differ for other collaborative ontology-
engineering projects.

Table 2
Change types. The table depicts all types of changes that are used in the change-type
analysis in Section 6.1 The change types MOVE and CREATE represent the
corresponding changes performed on the classes. Note that classes in ICD-11 are
not deleted, but are moved to specific areas in the ontology, hence the omission of
the DELETE type. As the different properties in ICD-11 have been determined very
early on in the development process and additional properties are very rarely
introduced—which can only be done by administrators—we have neglected these
types of changes and concentrated our analysis on the different edit actions that
can be performed on properties.

Change type Description

MOVE Changes that move a class
CREATE Changes that create a new class
BOT Changes that were automatically performed by bots
OTHER Any change that does not fit any other change type
EDIT_REPLACE Changes that replace the value of a property
EDIT_REMOVE Changes that remove the value of a property
EDIT_IMPORT Changes that import the value of a property
EDIT_ADD Changes that add a value to a property
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6.2. Edit-strategy paths

Step 3� state selection: The analysis of edit strategy paths
focuses on the investigation of relative movement along the
ontological structure. Using the gathered data we can identify if
users who are contributing to the ontology are more likely to
follow a bottom-up or top-down editing strategy. For example, if
users would create or edit an ontology in a bottom-up manner,
they would first model very specific concepts and continue to
devote their work on more abstract concepts, while a top-down
approach would work the opposite way. Note that this analysis can
identify edit-strategy tendencies, however it could lead to wrong
conclusions without manual verification of the change-logs. For
example, if users generally tend to work on concepts in an
alphabetical order, it is possible that this analysis could yield
either, a bottom-up, a top-down or a non-apparent or random edit
strategy, even though users do not purposely move along the
semantic structure of the underlying ontology when contributing
to the system. To make sure that our dataset does not exhibit such
a behavior we have manually investigated the structured log of
changes of ICD-11 to verify that the mentioned kind of contribu-
tion behavior is not present.

Furthermore, we were not able to recreate the exact class
hierarchy of ICD-11 for every single change. This limitation is
partly due to a lack of detail in the change-logs (e.g., some changes
were conducted by the administrators of iCAT in the database,
circumventing iCAT and ChAO. Hence, no change-logs are available
of these actions, preventing a complete reconstruction of the
ontology at every point in time). Thus, we decided to use the
ontology as is at the latest point in time for our analysis. This
basically means that if a class was changed by a user and
afterwards moved, we would assume that this class has always
been at the new location. To measure the extent of the potential
bias, we counted all changes that were performed on a class before
it was moved within in the ontology resulting in a total of 116,204
of 439,229 changes representing about 1/4 of all changes for ICD-
11. In particular, this analysis allows us to predict if the concept a

user is going to contribute to next is on the same, a lower (more
abstract) or a higher (more specialized) hierarchy level of the
ontology. Using the gathered information we can infer if users
follow a top-down or bottom-up edit strategy while contributing to
ICD-11.

Step 4� path extraction: The states in this analysis indicate if a
user, when contributing to the ontology, moved either closer to
(state UP), further away (state DOWN) or kept the same distance
(state SAME) from the root concept of the ontology.

We gathered the sequences for this analysis by calculating the
shortest paths between all the concepts in the ontology and the
root node, following isA6 relationships. For ICD-11 the root
category is ICDCategory, which is an equivalent of owl:Thing. Again,
we merged multiple self-loops, represented by consecutive
changes performed by the same user on the same concept, into
one single transition. We have removed the data on users who
contributed fewer than two changes from the analysis, as we
require at least two changes to infer transitions between concepts.

A sample path is depicted in Fig. 1. When following the
annotations A�C, which represent the changes performed by
one user, we can extract the following path: DOWN, SAME, DOWN.
Note that for the creation of the first state we have to look at the
first two classes that were changed by the corresponding user.

Step 5� model fitting and Step 6 : model selection: We used
the extracted paths to calculate the transition probabilities
between the different change-type classes in the Model Fitting
step. We then calculated AIC and BIC for the extracted Markov
chain models (Fig. 7) to identify the appropriate Markov chain
order when modeling edit-strategy patterns of contributors chan-
ging concepts. For ICD-11 both AIC and BIC suggest a fourth- and
third-order Markov chain respectively. Our likelihood ratio tests
show that a third-order Markov chain for ICD-11 is still signifi-
cantly different from a fifth-order Markov chain, indicating that
either a third, fourth- or fifth-order Markov chain provides the
best balance between model complexity and predictive power.

To determine the best-fitting Markov chain model orders to
predict the next relative depth-level we conducted a stratified
cross-fold validation prediction task (see Fig. 7). The results of our
prediction experiment suggest the usage of a fourth-order Markov
chain for ICD-11.

As the differences between the higher-order Markov chains and
the third-order Markov chain are very small, yet different, we
agree with BIC and the significance test on the usage of a third-
order Markov model for predictive tasks, due to the high increase
in complexity of the higher-order models.

Step 7� interpretation: A Markov chain of first order indicates
that the last relative depth-level of a change performed by a user
provides better information on where the user is going to change a
concept next (as relative depth-level) than randomly selecting
either UP, DOWN or SAME. After inspecting the resulting transition
probabilities between the different states, we can conclude that
users in ICD-11 exhibit a top-down edit strategy. Particularly, they
are likelier to stay on the same or switch to a lower level of the
ontology than they are, changing a class on a higher level of the
ontology. In particular, this information could be exploited by
project administrators to adjust milestones (i.e., first completing
branches of the ontology, rather than adding properties to all
concepts of the ontology). Note that these results are specific for
ICD-11 and iCAT and might differ for other collaborative ontology-
engineering projects.
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Fig. 6. Change type paths model selection and evaluation. This plot depicts the
results of the AIC and BIC model selection criteria as well as the stratified cross-fold
evaluation for the change type paths analysis. The x-axis represents the different
Markov chain orders. The left y-axis lists the AIC and BIC values of our model
selection, while the right y-axis shows the average position values for the
prediction task. The filled elements represent the corresponding Markov chain
models, which achieved the best (lowest) average position score in the prediction
task or lowest AIC and BIC values for the model selection. The information criteria,
AIC and BIC, suggest the usage of a third- and second-order Markov chain
respectively. The prediction task performed best relying on the predictive informa-
tion extracted from a third-order Markov chain.

6 For our analysis we only consider isA relationships with regards to the rdfs:
subClassOf property. In particular, classes connected via (directed) isA relationships
specify that all the instances of one class (source) are also instances of the other
class (target).
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6.3. User-interface sections paths

Step 3� state selection: The goal of this analysis is to investi-
gate if we can map changes that occur in the ontology to actual
areas and sections of the user-interface of iCAT, the collaborative
ontology-engineering tool used to develop ICD-11. The user-
interface of iCAT is divided into several sections, thematically
grouping properties of concepts. For example, as depicted in Fig. 1,
the user-interface section Title and Definition groups the properties
ICD-10 Code, Sorting label, ICD Title, Fully Specified Name and Short
Definition. Other user-interface sections, grouping different prop-
erties, are for example, Classification Properties, Terms or Clinical
Description. We investigate two different approaches: first, the
user-based approach, where we analyze the sections of the user-
interface used by contributors when editing the ontology. Second,
the concept-based approach, where we investigate which sections
of the user-interface are used when concepts are populated with
data. If patterns can be detected, ontology-engineering tool
developers can use this information to minimize the necessary
effort for users to be able to contribute. It is important to note that
not all properties and sections of iCAT are already actively used as
ICD-11 is still under active development. Hence, the results of the
presented analysis are limited by the properties and sections that
are already available and actively used in iCAT. Rather than
focusing on the results, this specific analysis was selected to
demonstrate the feasibility and potential of the Markov chain
analysis.

Step 4� path extraction: The states for this analysis are repre-
sented by the different user-interface sections of iCAT. An excerpt
of all different user-interface sections of iCAT can be seen in Fig. 1.

To be able to analyze sequential patterns of different user-
interface sections we extracted the chronologically ordered list of
changed properties for (i) each user and (ii) each concept. We then
continued by mapping the extracted properties to sections in the
user-interface of iCAT. Whenever a change did not affect a

property (e.g., because the change-action dealt with moving or
creating a concept) and thus did not affect a user-interface section,
the no property state was used. Analogously to the previous
analyses, we merged consecutive changes of the same user on
the same concept on the same property into one self-loop for the
user-based analysis. For the concept-based analysis consecutive
changes on the same concept and property have been merged into
one self-loop.

A sample path is depicted in Fig. 1. When following the
annotations I–III, which represent consecutive changes performed
by one user, using the highlighted sections of the user-interface,
the following path can be extracted: Title and Definition, Terms,
Causal Properties.

Step 5� model fitting and Step 6 �model selection: We calcu-
lated AIC and BIC for the extracted Markov chain models (see
Fig. 8(a) and (b)) to determine the appropriate Markov chain order
when modeling how users switch between sections of the inter-
face when contributing to the ontology. For both approaches AIC
and BIC suggest a second- and first-order Markov chain respec-
tively. The conducted significant tests show that a second-order
Markov chain for both approaches is significantly different from a
first-order Markov chain, indicating that either a second-order or
first-order Markov chain provide the best balance between model
complexity and predictive power.

To determine the predictive power of the investigated Markov
chain models of varying orders for predicting the section most
probably used to edit a property next, a stratified cross-fold
validation prediction task (see Fig. 8) was conducted. For the
user-based approach a first-order and the concept-based approach
a second-order Markov chain yielded the best predictions.

Due to the fact that the determined second-order Markov chain
performed nearly as well as a first-order Markov chain, it is best to
use a first-order Markov chain to predict the next user-interface
section, that a user is going to use, as it provides the best balance
between model complexity (and thus computation time) and
predictive power.

Step 7� interpretation: A first-order Markov chain indicates
that the last user-interface section, used to conduct a change by
a specific user, contains information about the user-interface
section that this specific user is most likely to use for the next
change. If we would observe high transition probabilities
between a fraction and frequently used sections of the user-
interface, this could indicate that users have to visit many
different sections while following their normal work-flow. If
our inherent goal was to increase activity and contributions, a
first potential approach could involve the restructuring of the
user-interface to better accommodate this inherent edit-process
by reducing or even minimizing the required clicks (and hence
time) to contribute. Note that the proposed applications and
implications of our analyses are of theoretic nature, to highlight
the potential of the Markov chain analysis process. For future
work we plan on further analyzing, validating and evaluating
the recommendations and predictions generated via our Markov
chain analysis in live-lab studies for multiple different ontology-
development tools.

7. Discussion

In Section 6 we have shown that the presented and adapted
Markov chain model selection framework can be used to extract
sequential patterns in the form of first and higher order Markov
chains.

As shown in Table 3, Markov chains of third or higher order
yield the best results in our prediction tasks. The information
criteria AIC and BIC, putting a negative bias on model
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Fig. 7. Edit strategy paths model selection and evaluation. This plot depicts the
results of the AIC and BIC model selection criteria as well as the stratified cross-fold
evaluation for the edit-strategy paths analysis. The x-axis represents the different
Markov chain orders. The left y-axis lists the AIC and BIC values of our model
selection, while the right y-axis shows the average position values for the
prediction task. The filled elements represent the corresponding Markov chain
models, which achieved the best (lowest) average position score in the prediction
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AIC and BIC, were able to detect a fourth- and third-order Markov chain
respectively. The prediction task yielded the best results with a fourth-order
Markov chain model.
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complexity, tend to suggest minimally lower Markov chain
orders. After manually inspecting and comparing the perfor-
mance of the different Markov chain models, the conducted
significance tests and the model complexity, we identified that a
third-order Markov chain provided the best balance between
said attributes for the change-type paths analysis and the edit-
strategy paths analysis. For both approaches of the user-interface
sections paths analyses a first-order Markov chain constitutes
the best tradeoff between model complexity and performance.
The identification of at least one higher-order Markov chain in
our model selection tasks indicates that the Markovian assump-
tion is not universally true for all features of the collaborative
ontology-engineering change-logs. However, even if models of
higher order are identified and, theoretically, provide better
results than models of lower order, for the majority of the
investigated change-log features a first-order Markov chain still
represents the best tradeoff between model complexity and
predictive power.

This result means that the previous three changes of a user
contain predictive information about the change action that is
most likely conducted next by that user in ICD-11. Analogously, the
last change conducted by a user contains predictive information
about the section of the user-interface that this user is most likely
to use for the next change and if the user will stay on the same
depth-level or moves up or down.

To expand further on the usefulness of Markov chains for
analyzing change-logs of collaborative ontology-engineering pro-
jects we will provide an exemplary investigation of the structure
of the extracted Markov chain model for the user-interface paths
(user-based) analysis, including information about potential use-
cases in productive environments.

Markov chain structure of the user-interface paths (user-based)
analysis: Fig. 9 depicts the transition probabilities of a first-order
Markov chain for the user-interface section sequences for proper-
ties changed by users in ICD-11. The figure clearly shows that the
sections of the user-interface frequently receive consecutive
changes with minimal transition probabilities to different sections
of the user-interface. Note that we removed all rarely used
sections from Fig. 9 as they do not contain valuable information,

however, their removal drastically increases the readability and
ease of interpretability of Fig. 9.

iCAT provides a special export functionality, which allows users
to export parts of the ontology into a spreadsheet for quick local
editing. However, no such automatic import functionality is
present. To insert the edited values into the ontology, contributors
have to manually add the changed properties in iCAT. This is
usually done by selecting one property, changing its value and
then cycling through all changed concepts where that property
stays selected in the interface, allowing for easy and fast editing
sessions.

The majority of changes were concentrated on a few selected
sections—Title and Definition, Classification Properties and Terms—as
depicted in the histogram of Fig. 9.

Contributors to ICD-11 also exhibit a very high tendency either
to change no property or a property of the Title and Definition
section when resuming work after a BREAK. The state no property
refers to all changes that do not affect the value of a property (e.g.,
moving a concept). Hence, these changes cannot be directly

Table 3
This Table depicts a summary of all gathered results for ICD-11 and the performed
analyses of Section 5. The numbers in this table represent the calculated and
suggested Markov chain orders from our model selection (AIC and BIC), significance
tests (Significant Diff.) and evaluation tasks (Prediction Task). Best Balance indicates
the manually selected best-fitting order of a Markov chain, which represents the
best trade-off between complexity of the Markov chain (and thus calculations) and
the average position in our evaluation task.

Markov chain orders for

AIC BIC Significant
diff.

Prediction
task

Best
balance

Change-type paths (cf. Section
6.1)

3 2 1η3 3 3

Edit-strategy paths (cf. Section
6.2)

4 3 3η5 4 3

User-interface sections paths
(user) (cf. Section 6.3)

2 1 1η2 1 1

User-interface sections paths
(concept) (cf. Section 6.3)

2 1 1η2 2 1
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Fig. 8. User-interface sections path model selection and evaluation. This plot depicts the results of the AIC and BIC model selection criteria as well as the stratified cross-fold
evaluation prediction task for the user- and concept-based approaches of the user-interface sections paths analyses. The x-axes represent the different Markov chain orders.
The left y-axes list the AIC and BIC values of our model selection, while the right y-axes show the average position values for the prediction task. The filled elements
represent the corresponding Markov chain models, which achieved the best (lowest) average position score in the prediction task or best (lowest) AIC and BIC values for the
model selection. For both approaches, AIC and BIC suggest a second- and first-order Markov chain respectively, while the prediction task produced the best average position
with a Markov chain of first-order for the user-based and second-order for the concept-based approach.
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mapped to properties and sections of the user-interface. Further,
the high number of no property changes warrants further inspec-
tion in future work. In this paper, we have concentrated our
analysis on properties, which can be mapped to specific parts of
the user interface and provide potential actionable information for
ontology-tool developers.

Interpretation and practical implications: When looking at the
results of this analysis, we can see that the functionality of the
ontology-development tool might be a deciding factor on how
users interact with the ontology when contributing. This is
especially evident when considering the very high self-loop count
for ICD-11, which is most likely supported and emphasized by the
export functionality present in iCAT, which allows users to export
parts of the ontology into a spreadsheet, which later-on has to be
manually re-inserted. Conveniently, when switching concepts, the
previously selected/edited property remains selected/active in
iCAT, allowing for quick edit-workflows when inserting data for
the same property (and thus same section) from external
resources for multiple concepts.

Furthermore, it is of no surprise that users exhibit a very high
probability to consecutively change properties in the Title and
Definition section, given that it (i) contains the most basic proper-
ties with the highest priority to be added/completed and (ii) is the
default section that is displayed once a user logs into the system.

The information collected with this analysis is of potential
interest for project administrators, as they can adapt the engineer-
ing process to the needs of either the community or the project

itself. For example, if active collaboration for different parts of the
ontology is of utmost importance, the export functionality could
be restricted, only allowing an export for certain parts of the
ontology. Ontology-editor developers can use the transition prob-
abilities between different sections of the user-interface to adapt,
maybe even dynamically adapt the interface towards the inherent
contribution processes of the community creating the ontology in
question. In particular, by further expanding the User-Interface
analysis we could potentially use the results to create adaptive
user interfaces that reflect and augment the personal edit-styles of
contributors. For example, parts of the interface could automati-
cally adapt towards the processes of the users, relying on the
transition probabilities of the extracted Markov chains, to allow for
an easy transition between the current and the next, most
probable, user-interface section used by a contributor. Different
types of sequential paths can be used for a variety of applications.
For example, we could use the chronologically ordered list of users
conducting changes per class to predict which user is most likely
going to change a specific class next.

8. Summary and conclusions

The detailed description of the process for applying Markov
chains on the change-logs of collaborative ontology-engineering
projects represents a first step towards a broader methodology to
gather new insights into the ongoing processes when collabora-
tively engineering an ontology. The main contributions of this
paper are as follows: (i) we provide the description of the process
for applying Markov chains of varying order on collaborative
ontology-engineering projects to extract and analyze sequential
patterns. (ii) We categorize the types of qualitative analyses of
collaborative ontology-engineering processes that Markov chains
enable us to perform. (iii) Finally, we demonstrate the usefulness
of such analyses on collaborative ontology-engineering change-
logs using ICD-11.

We have made the Markov chain framework publicly available,7

hence the only requirement for replicating the analysis for other
datasets is a structured change-log of the required granularity of
detail (depending on the desired analyses). Results of the same
analyses may differ for different datasets, depending on a multi-
tude of factors. For example, the used ontology editor potentially
influences the way users edit the ontology (i.e., changes the edit
strategy).

In the conducted prediction experiment, several Markov chains
of orders Z1 have been retrieved, indicating that the Markovian
assumption does not hold for all aspects of the development
processes in collaborative ontology-engineering projects. To
further expand on the usefulness of Markov chains, we have
provided an example of investigation of the structure of a first-
order Markov chain and its implications and use-cases for pro-
ductive environments. Note that for some of our analyses we
assume the administrators and contributors to have full control
over the used tools (e.g., can freely adapt, change and extend parts
of the User-Interface). We are aware that this might not be the
case for all collaborative ontology-engineering projects. However,
we argue that the presented analyses can still provide valuable
and actionable information, without having to directly edit the
used tools. For example, by closely inspecting change-types and
changed properties. Further, it is possible that due to restrictions
in the ontology-engineering tool, users might not be able to
deviate from certain paths. Hence, it is important to manually
investigate and interpret the obtained patterns and avoid
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Fig. 9. Results for the user-interface sections paths (user-based) analysis. The states
for these analyses are represented by the different sections of the user-interfaces of
the ontology-engineering tool iCAT (see Fig. 1). The transition probabilities for the
first-order Markov chains are depicted in the transition map. Columns and rows
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changes are performed consecutively within the same sections of the user inter-
face. The histogram depicts the absolute number of occurrences for each section for
ICD-11 in alphabetical order. Sections with very low numbers of observations have
been removed from the plots for reasons of readability.

7 https://github.com/psinger/PathTools
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imposing “one specific way“of how to use the ontology-editing
tool on users.

For future work we plan on using the presented Markov chain
analysis process to study sequential action patterns in collabora-
tive ontology-engineering projects. As a first step, we plan on
acquiring the complete change-logs for multiple (4100) projects
created with WebProtégé and MoKi,8 to analyze commonalities
and differences over different collaborative ontology-engineering
editors.

Further, we plan on applying the presented Markov chain
analysis on these datasets to identify and investigate known and
established ontology-engineering methods (e.g., HCOME, GOSPL or
NeOn) and best practices “in the wild”.

As change-tracking and even click-tracking data will become
available more broadly, we believe that the mapped analysis
process, presented in this paper, and the potential benefits of
applying Markov chains on change-logs of collaborative ontology-
engineering projects, represent an important step towards even
better (and simpler) ontology editors. Using sequential edit
information it is possible to dynamically anticipate the editing-
style of the community. Even project administrators can augment
the results of the analysis, for example by allowing for easier
delegation of work to the most qualified users.

We hope that the presented approach will help project admin-
istrators, ontology-engineering tool developers and, most impor-
tant, the community which is developing an ontology
collaboratively, to devise new approaches, tools, mechanisms or
even full methodologies to increase the quality of the resulting
ontology and make contributing to the projects as easy as possible.
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