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Basic Definitions

Graphs & Networks

Definition
A network is a set of items called nodes and connections between those
items called links.

Terminology clarification:
e Mathematics: vertices (vertex) and edges
@ Physics: sites and bonds
@ Sociology: actors and ties
o Computer science: nodes and links
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Basic Definitions

Graphs & Networks

Definition
A graph (network) is a pair of sets G = (V, E), whereas V denotes the set
of nodes and E the set of links.

In an undirected graph, the set E C [V]?

[V1¥ is the set of all subsets of V with k elements
In an undirected graph links are pairs of nodes

In a directed graph, theset EC V xV

In a directed graph, links are ordered pairs of nodes

In graph theory literature often V(G) and E(G) are used.
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Basic Definitions

Example of a simple undirected graph

5

Figure: Simple undirected graph

o V=1{1,23,45}
o E={{1,2},{1,5},{2,3},{2,4},{3,4},{3,5}}
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Basic Definitions

Example of a simple directed graph

5
Figure: Simple directed graph

o V=1{1,23,45}
o E={(1,3),(21),(3),(2,5),3,2),41),45),(5,2),(5,3)}
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Basic Definitions

Some further notation

Simple graphs: graphs with no self-links or loops

Vi € V, {i} & E (undirected graph). By defining that E C [V']? this
is never the case.

VieV, (i,i) & E (directed graph)
Number of nodes in G: n = |V|
Number of links in G: m = |E|
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Basic Definitions

Graphs vs. Networks

Mathematical graph theory

Analytical approach to studying of small graphs (typically tens or
hundreds of nodes)

e With the emergence of ICT technology we are able to analyze large
graphs that exist in nature, societies, technologies, etc.

Now, we are considering large-scale statistical properties of graphs

Network science deal with the empirical analysis of large graphs
(networks) that occur in different areas
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Basic Definitions

Types of networks

Nodes connected by links is the simplest type of network
Different types of nodes
Different types of links

Nodes and links can carry weights
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Basic Definitions

Types of networks

Figure: Various types of networks. From: The structure and function of complex
networks, Newman, 2003.
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Basic Definitions

Networks

@ Social networks. Nodes are people and links are acquaintances,
friendship, and so on.

o Communication networks. Internet: nodes are computers and links
are cables connecting computers

@ Biological networks. Metabolism: nodes are substances and links are
metabolic reactions

@ Information networks. Web: nodes are Web pages and links are
hyperlinks connecting pages

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 11/111



Networks

Basic Definitions

Figure: Social network of HP Labs constructed out of e-mail communication.
From: How to search a social network, Adamic, 2005.
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Basic Definitions

Networks

Figure: Network of pages and hyperlinks on a Website. From: Networks, Mark
Newman, 2011.

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 13 /111



Paths

Arpanet

Figure: Image from:
http://som.csudh.edu/cis/lpress/history/arpamaps/
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Arpanet

Paths

Denis Helic (ISDS, TU Graz)

Networks

March 28, 2020 15/111



Paths

Paths

Often things travel across the links of a graph
A passenger taking a sequence of airline flights

A computer user navigating the Web, or Wikipedia

A data packet moving across the computer network, e.g. the Internet
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Paths

Paths

@ Path: a sequence of nodes such that each consecutive pair in the
sequence is connected by a link

e For example, the sequence: (MIT, BBN, RAND, UCLA) is a path in
the Internet graph

@ Another sequence: (CASE, LINC, MIT, UTAH, SRI, UCSB) is also a
path

@ But the sequence: LINC, BBN, HARV, CARN is not a path
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Paths

Paths Formally

Definition

Let G = (V,E) be a graph. Given two nodes s,t € V we define
Tt = (S,U1,Up, ..., Uj_1,t) to be a path between s and ¢ if

{uq,up, ..., u;_1} CV and {(s,uy), (uy,up), ..., (u_1,t)} C E. Let I, be
a set of all paths from s to t.

4 nSRI,UCLA = (SRI, UCLA) because {{SRI, UCLA}} CE

o nSRI,UCLA = (SRI, STAN, UCLA) because
{{SRI,STAN},{STAN,UCLA}} C E
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Paths

Paths

@ We can repeat nodes in a path

@ For example, the sequence: (SRI, STAN, UCLA, SRI, UTAH, MIT) is
a path

@ SRI is repeated

@ If a path does not repeat nodes: simple path
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Paths

Cycles

@ An important kind of nonsimple path is a cycle

@ Cycle: is a path with at least three links, in which the first and the
last node are the same

e For example, (SRI, STAN, UCLA, SRI) is a cycle

o By design, every link belongs to a cycle to make it robust to failure
(alternative routes)
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Distance and Breadth-First Search

Path length

@ Very often we want to know how long a path is
@ In transportation and communication network it is important how
many hops a packet or a person travels

e Path length: the number of links in a path

Definition
Let G = (V,E) be a graph. Given two nodes s,t € V and a path
st = (S,Uq,Up, ..., Uj_1,t) from s to t. We define the length of path 7,

as |74l = L.

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 21/111



Distance and Breadth-First Search

Path length

e (MIT, BBN, RAND, UCL) has length 3; (MIT, UTAH) has length 1
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Distance and Breadth-First Search

Distance

Distance: the length of the shortest path between two nodes s and ¢.
We denote the distance with {; ;.

In other words: £, < |7, ,| for all paths 77, , € I,

LINC and SRI have distance 3, i.e. {;;ncsrr =3

UTAH and RAND have distance 2, i.e. {yray raND = 2
UTAH and SRI have distance 1, i.e. {yrapysrr =1
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Distance and Breadth-First Search

Breadth-First Search

@ For a small graph we can figure out the distance by looking at the
picture

@ For larger graphs we need an algorithm
@ An efficient algorithm is breadth-first search

@ The algorithm computes the distances from a single starting node to
all other nodes

@ From now on we assume that starting from an arbitrary node we can
always reach all other nodes
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Distance and Breadth-First Search

Breadth-First Search

@ We begin at a given node i in the network

Denis Helic

We declare all neighbors of i (nodes connected to i) to be at distance 1
Then we find all neighbors of these neighbors (not counting nodes that
are already neighbors of i) and declare them to be at distance 2

Then we find all neighbors of the nodes from the previous step (again,
not counting nodes that we already found at distance 1 and 2) and
declare them to be at distance 3

We continue in this way and search in successive layers each of which is
at the next distance out until we can not discover any new nodes
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Distance and Breadth-First Search

Breadth-First Search

distance 1 your friends
distance 2 friends of friends
distance 3 friends of friends
of friends

all nodes, not already discovered, that have an
edge to some node in the previous layer
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Distance and Breadth-First Search

Breadth-First Search

distance 1
distance 2

distance 3
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Distance and Breadth-First Search

Complexity of Breadth-First Search

@ Recollect that we denote the number of nodes in a graph with n and
a number of links with m

@ During a breadth-first search we have to investigate all nodes at least
once and follow all of their links at least once

@ Thus, we perform n + m operations

o Complexity of the breadth-first search algorithm is O(n + m)
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Distance and Breadth-First Search

Complexity of Breadth-First Search

@ Using breadth-first search we can compute the distances between all
pairs of nodes in a network (all-pairs-shortest-path)

@ We iterate over the nodes and start a BFS from each node
@ The complexity is O(n(n + m)) = O(n? + nm)
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Distance and Breadth-First Search

Complexity of Breadth-First Search

Using breadth-first search we can compute the distances between all
pairs of nodes in a network (all-pairs-shortest-path)

We iterate over the nodes and start a BFS from each node

The complexity is O(n(n + m)) = O(n? + nm)

In a connected simple graph without selflinks: (n —1) <m < ”(nT_l)

The overall complexity O(nm)
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Distance and Breadth-First Search

Summarizing distances

One interesting quantity with respect to distances is the diameter

Diameter: maximum distance between any pair of nodes in the
graph (we denote it with ¢,,,,,)

Another interesting quantity is the average distance

Average distance over all pairs of nodes in a graph:

_ 1
t= nn—1) I.Zj‘eij
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Distance and Breadth-First Search

Summarizing distances

@ In many networks diameter and average distance are close to each
other

@ In some graphs, however, they can be very different

@ Can you think of a graph where the diameter is three (or arbitrary
many) times longer than the average distance

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 31/111



Distance and Breadth-First Search

Summarizing distances

@ In many networks diameter and average distance are close to each
other

@ In some graphs, however, they can be very different

@ Can you think of a graph where the diameter is three (or arbitrary
many) times longer than the average distance

@ You need outliers in the distribution, i.e. a distant node connected by
a chain of nodes to a tightly connected graph core
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Distance and Breadth-First Search

Distribution of distances

@ Interesting statistics: distribution of distances
@ How many pairs have a given distance

o Typically, we will normalize by the total number of pairs to obtain
probabilities

o We can visualize it with a histogram
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Distance and Breadth-First Search

Les Miserables

Les Miserables

Y
A
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Distance and Breadth-First Search

Distribution of distances

-5
maz =9

Distribution of distances: 7=2.641148,/,

0.45

»(6)
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Ipython notebook

@ |IPython Notebook example

@ http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/webscil.zip

ipython notebook —pylab=inline webscil.ipynb l
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Approximating Distance Distribution

Complexity of Breadth-First Search

The overall complexity O(nm)
If we have m ~ n this is O(n?)
If m ~ n? this is O(n3)

However, if 11 is in the order of millions or billions both situations are
prohibitive for breadth-first search

We will need some method for approximating the distances

The basic idea: estimate the distance bounds and make those bounds
tight
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Approximating Distance Distribution

Distance bounds

Definition
Let SP,; C Il ; be the set of paths 71, ; such that |7, ;| = { ;.

@ SP,, is the set of shortest paths from s to ¢

@ The shortest-path distance or just distance for short is a metric
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Approximating Distance Distribution

Distance is a metric

Definition
A metric on a set X is a function d : X x X — [0, c0) and for all
x,Y,z € X the following conditions hold:

Q dix,y) >0

Qdxy) =0 = x=y

Q d(x,y) =d(y,x)

Q d(x,z) <d(x,y) +d(y,z) (Triangle inequality)

@ The triangle inequality can be written as: d(x,z) > |d(x,y) —d(y,z)|
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Approximating Distance Distribution

Distance bounds

@ Given any three nodes s, t, and u

es,t S es,u + eu,t
es,t > |Bs,u - eu,t'
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Approximating Distance Distribution

Distance bounds

Observation 1

Let s, t,u € V. If there exist a path 71, € SP;; such that u € 71, then
Es,i,‘ = es,u + eu,t-

Observation 2

Let s, t,u € V. If there exist a path 71, € SP, , such that t € 775, or
there exist a path 71, , € SP, , such that s € 7, ,, then £, = |€;,, — €, 4|.

Figure: From “Fast Shortest Path Distance Estimation in Large Networks” by
Potamias et al.
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Approximating Distance Distribution

Landmarks

o We will use a set of landmarks D = {uq, u,, ... uy}

@ Given a graph G and a set of d landmarks D we precompute the
distances between each node in V and each landmarks

@ We perform breadth-first search from all landmarks in O(md)

o dissmall, eg. d ~ log(n)
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Approximating Distance Distribution

Landmarks

@ Due to the triangle inequality we have:

m?st,u,» - et,uil < Qs,t < miin{es,u,» + Qt,u,»} (3)

e In other words, with L = max|t;,, — ¥, , | and U = min{l;, + ¥, , }
i 1 771 i 771 771
the true distance {;; € [L, U]
@ Estimation is very fast: O(d)
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Approximating Distance Distribution

Landmarks

@ Thus, if we have a “nice” set of landmarks D the approximation is
very quick

o If we take U upper bound as our approximation following the
Observation 1 this approximation is exact if there is a landmark in D
that is on a shortest path from s to ¢

o If for all pairs of nodes from V there exist at least one landmark in D
that lies on one shortest path from s to t then our approximation is
exact

@ In such case we say that landmarks cover all pairs of nodes from V
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I el 00
Landmark selection problem

Given a graph G = (V,E) select the minimum number of landmarks

D C V such that all pairs of nodes (s,t) € V x V are covered.
LANDMARKS-COVER is NP-hard. '
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Approximating Distance Distribution

Landmark selection problem

NODE-COVER

Given a graph G = (V,E) we say V' C V covers V if every link has at
least one endpoint in V',

IS 4T

Figure: Node Cover (Source Wikipedia)

LS 417

Figure: Minimal Node Cover (Source Wikipedia)
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Approximating Distance Distribution

Landmark selection problem

Proof.

We reduce LANDMARKS-COVER to NODE-COVER by transforming an
instance of NODE-COVER to LANDMARKS-COVER.

@ Consider a solution D to LANDMARKS-COVER. D covers all pairs of
nodes and thus it covers also pairs at distance 1, which are connected
by a single link. Therefore all links from E are covered by D and D is
the solution to NODE-COVER.

@ Consider a solution V' to NODE-COVER. Some nodes from V' are

on the links of the shortest path 77, ; from s to t, and therefore V" is
also a solution to LANDMARKS-COVER.

Ol
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Approximating Distance Distribution

Landmark selection strategies

@ We can not select the landmarks optimally so we have to select them
using heuristics

@ The basic idea: select “central” nodes, which lie on many shortest
paths

@ Baseline: random selection

@ Select nodes with many links because the chance is higher that they
are on many shortest paths

@ Estimate average shortest path for each node and select the nodes
with the smallest average

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 47 /111



Approximating Distance Distribution

Landmark selection strategies

@ We can not select the landmarks optimally so we have to select them
using heuristics

@ The basic idea: select “central” nodes, which lie on many shortest
paths

@ Baseline: random selection

@ Select nodes with many links because the chance is higher that they
are on many shortest paths

@ Estimate average shortest path for each node and select the nodes
with the smallest average

@ Average path estimation: select randomly few nodes, perform BFS
from those nodes, calculate averages to those nodes

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 47 /111



Approximating Distance Distribution

Experimental results

@ Datasets: Flickr-E ~ 600K nodes, Flickr-1 ~ 800K nods, DBLP
~ 220K

Fllcke Explict daasst Flicks Implicit dstasel

DBLP dataset

e

10°

10' 107 10' 10"
size of Indmarks set sizmollandmarks sel

Figure: From “Fast Shortest Path Distance Estimation

in Large Networks” by
Potamias et al.

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 48 /111



Node Structural Roles

Pivotal nodes

e We say that a node k is pivotal for a pair of distinct nodes 7 and j if k

lies on every shortest path between i and j
@ k is not equal to either i and j
e B is pivotal for (A,C) and (A,D)

@ However, it is not pivotal for (D,E)

O
()
o
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Node Structural Roles

Pivotal nodes

@ Pivotal nodes play an important role in connecting other nodes
@ Some nodes are more “important” than the other nodes

@ Can you think of an example of a graph in which every node is pivotal
for at least one pair of nodes

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 50/111



Node Structural Roles

Pivotal nodes

Pivotal nodes play an important role in connecting other nodes

Some nodes are more “important” than the other nodes

Can you think of an example of a graph in which every node is pivotal
for at least one pair of nodes

Can you think of an example of a graph in which every node is pivotal
for at least two different pairs of nodes
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Node Structural Roles

Gatekeepers

@ Similar to pivotal nodes is an idea that some nodes play a
“gatekeeping” role in networks

@ We say that a node k is a gatekeeper if, for some other distinct nodes
i and j, k lies on every path between i and j

@ k is not equal to either i and j

o A is a gatekeeper because it lies on every path between B and E, or
D, and E
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Node Structural Roles

Gatekeepers

@ The last definition has a “global” flavor

@ We have to consider paths in the full graph to decide if a node is a
gatekeeper

@ We can think also about a “local” version of a gatekeeper

@ We say that a node k is a local gatekeeper if it has two distinct
neighbors 7 and j that are not connected to each other

@ k is not equal to either i and j
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Node Structural Roles

Gatekeepers

@ Node A is also a local gatekeeper, e.g. B and E are neighbors but
they are not connected to each other

@ Node D is a local gatekeeper for B and C but it is not a gatekeeper
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Node Structural Roles

Gatekeepers

@ Can you think of an example of a graph in which more than half of all
nodes are gatekeepers
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Node Structural Roles

Gatekeepers

@ Can you think of an example of a graph in which more than half of all
nodes are gatekeepers

@ Can you think of an example of a graph in which there are no
gatekeepers but in which every node is a local gatekeeper
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Components

Connectivity

@ Given a graph one important question is whether every node can
reach every other node by a path

o If that is the case the graph is connected

o ARPANET is a connected graph, as it should be always the case with
communication and transportation networks
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Components

Connectivity

@ But, in e.g. a social network that is not always the case
@ Then we say that a graph is disconnected

A

Figure: Collaboration graph of a biological research center
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Components

Components

o If a graph is disconnected than it breaks apart into a set of connected
components
o Component: a subset of nodes such that

© every node in the subset has a path to every other node in that subset
(internally connected)

@ the subset is not a part of some larger connected set (stands in
isolation from the rest of the graph)

\
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Components

Components

@ Components are a first, global way of describing the structure of a
network

@ Within a given component there might be a richer structure

@ The large component: a prominent node at the center and tightly
linked groups at the periphery

@ This large component would break apart without the central node

\
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Components

Giant components

o Consider the global friendship network, i.e. a social network of the
entire world

@ Is this network connected?

@ Probably not, since a single person without friends constitutes a
one-node component

@ “Remote tropical island”
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Components

Giant components

But, people (you) have friends in other countries

You are in the same component as those friends

As well as their friends, their parents, their parent friends, their
descendants, and so on

@ You are in the same component with the people that you never heard
of, with totally different experiences, etc.

This component seems likely to contain a significant fraction of the
world’s population, and this is in fact true!

@ We call such a component a giant component
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Components

Giant components

@ It is an informal definition: a component that contains a significant
fraction of nodes

o Typically, when a network contains a giant component it contains
almost always only one

o Why?
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Components

Giant components

@ It is an informal definition: a component that contains a significant
fraction of nodes

o Typically, when a network contains a giant component it contains
almost always only one

e Why?
o If we have two giant components with e.g. 1 billion people in each

o It takes only a single link from a node from the first component to a
node from the second to connect those two components

@ Practically, such a link always exists
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Node Degrees

Degree

Degree: of a node is the number of links connected to it
Measures how “important” a node is
We denote the degree of node i by k;

Every link has two ends, hence there are 2m link ends in an
undirected network

@ The number of link ends is equal to the sum of the degrees of all the
nodes

o Average degree

=
Il
Q|-

1 2m
ki = —
= n
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Node Degrees

Degree in directed networks

@ In directed networks we have in-degree and out-degree

o In-degree: kll-'” is the number of ingoing links

o Out-degree: k]‘?”t is the number of outgoing links

@ The number of links is equal to the sum of in-degrees, and is also
equal to the sum of out-degrees

n

m= ikf" = keut
i=1

i=1

Average in-degree and average out-degree
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Node Degrees

Degree distribution

@ Interesting statistics: degree distribution
@ How many nodes have a given degree

o Typically, we will normalize by the total number of nodes to obtain
probabilities

o We can visualize it with a histogram
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Node Degrees

Degree distribution

Degree distribution: & =6.597403

p(k)
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Ipython notebook

@ |IPython Notebook example

@ http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/webscil.zip

ipython notebook —pylab=inline webscil.ipynb I
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Clustering

Clustering coefficient

A special kind of paths are triangles (closed triads)
Three nodes all connected to each other
Closely related to local gatekeepers

Local clustering coefficient of a node is a measure how transitive
connections in a network areas

@ |l.e. a friend of a friend is also a friend

o Clustering coefficient: fraction of node i neighbors that are
themselves connected (we denote it with C;, T'(i) is the set of
neighbors of i, E is the set of all links)

2|6’jk|

i = ki<ki—_1),],k & r(l),ejk (& E
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Clustering coefficient
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Clustering

Clustering coefficient

° Cgray =0
@ What can you say about the clustering coefficient of a local

gatekeeper?
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Clustering

Clustering coefficient

® Coray =0

@ What can you say about the clustering coefficient of a local
gatekeeper?

@ It is less than 1
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Clustering

Clustering coefficient

@ Some statistics: average clustering coefficient

1
czﬁgq

o Clustering coefficient distribution
@ How many nodes have a clustering coefficient in a certain range

@ We can visualize it with a histogram
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Clustering

Clustering coefficient distribution

CC distribution: C'=0.573137

30 T T
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G
Ipython notebook

@ |IPython Notebook example

@ http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/webscil.zip

ipython notebook —pylab=inline webscil.ipynb I
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Les Miserables: Network Statistics Example

Les Miserables

Random Graph n=77,m =216
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Les Miserables: Network Statistics Example

Distribution of distances

Distribution of distances: 7 =2.572796,

2 5

“maz

p(0)
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Les Miserables: Network Statistics Example

Degree distribution

Degree distribution: & =5.610390

p(k)
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Les Miserables: Network Statistics Example

Clustering coefficient distribution

35 CC distribution: C'=0.070041

30

0.4 0.5 0.6 0.7 0.8 0.9
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Ipython notebook

@ |IPython Notebook example

@ http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/webscil.zip

ipython notebook —pylab=inline webscil.ipynb l
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Random Graph

Modeling networks

Observe: e.g. collect data by crawling

Measure: e.g. how many nodes, how many links

°
°
e Quantify: e.g. distances, degrees, clustering coefficient
@ Make a model: e.g. how networks are created

°

Predict with the model and validate: e.g. implement and evaluate
(compare with the real networks)

Apply: engineering approach to implementing the model in the
software
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Random Graph

Random graphs

Random graph: a model network where some properties take fixed
values and other properties are random

The simplest model: we fix 7 and m but place links at random
Iterate over links, for each link select a random pair of nodes
Create a simple graph, i.e. no self-links are allowed

We will call this model G(n, m)
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Random Graph

G(n,m) model

@ Equivalent definition: we choose a graph uniformly at random among
all graphs with n nodes and m links

@ Mathematically, this is a proper definition

@ A random graph defines an ensemble of networks, i.e. a probability
distribution P(G) over possible networks:

e P(G) = % if a network has 7 nodes and m links and O otherwise

@ () is the total number of such networks
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Random Graph

G(n,m) model

Equivalent definition: we choose a graph uniformly at random among
all graphs with n nodes and m links

Mathematically, this is a proper definition

A random graph defines an ensemble of networks, i.e. a probability
distribution P(G) over possible networks:

PG) = % if a network has 7 nodes and m links and O otherwise
@ () is the total number of such networks

0= ((9)

m
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Random Graph

Random graphs

@ Properties of random graphs: mean values of the ensemble (typical
behavior)

o Calculated as expectations of the probability distribution or a random
variable

Definition
The expectation of a random property X(G) of a random graph ensemble
Gis
E[X]=) X(G)p(G)
G

when this sum is “well-defined”, otherwise the expectation does not exist.
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Random Graph

G(n,m) vs. G(n,p) model

@ Some mean values are easy to calculate, i.e. the average number of

links is m

2m

Average degree k= =

Other properties are more difficult to calculate

A better approach is to fix n and p, which is the probability of links
between nodes

This model is G(n, p)
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Random Graph

G(n,p) model

@ Technical definition is again in terms of an ensemble, i.e. a probability
distribution over all possible networks

@ What is the total number of possible simple graphs?
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Random Graph

G(n,p) model

@ Technical definition is again in terms of an ensemble, i.e. a probability
distribution over all possible networks

What is the total number of possible simple graphs?

a =20
But the P(G) is not uniform anymore, i.e. in general P(G) # %

Some graphs are more probable then other graphs in case of G(1,p)

What is the probability of a graph that has exactly m links
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Random Graph

G(n,p) model

@ Technical definition is again in terms of an ensemble, i.e. a probability
distribution over all possible networks

What is the total number of possible simple graphs?

a =20
But the P(G) is not uniform anymore, i.e. in general P(G) # %

Some graphs are more probable then other graphs in case of G(1,p)

What is the probability of a graph that has exactly m links
PGy = p (1 —py B

Other names for G(n,p): Erdés—Rényi, Bernoulli, Poisson
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Random Graph

Mean number of links

@ Probability that a simple graph G has m links:
PG) = p (1 =)
The number of graphs with 7 nodes and m links: (g))

The total probability of drawing a graph with m links from the
ensemble

P(m) = (Q) mel — p)( £)-m (4)

This is binomial distribution
The expected (mean) number of links:

(2)
= Y mP(m) (5)
m=0
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B e,
Linearity of expectation
Then,

@ E[aX] =aE[X],Vae R

o E[X + Y] = E[X] + E[Y]

@ Proof left for exercise ;)

«AO> A« F>r «=)r « =) = o>

Suppose X and Y are discrete r.v. such that E[X] < oo and E[Y] < o




Bernoulli random variable

T ReemGreh |
1—-pifx=0
p(x) = { P
pifx=
@ Bernoulli r.v. with parameter p

@ Models situations with two outcomes
e E.g. coin flip

«AO> A« F>r «=)r « =) = o>




Random Graph

Binomial random variable

Suppose Xq, ..., X,, are independent and identical Bernoulli r.v.

The Binomial r.v. with parameters (p,n) is

Y=X; ++X,

Models the number of successes in n Bernoulli trials

E.g. the number of heads in n coin flips
PMF

n
p(k) = ()@ —p)"Hp*
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o o 0000
Expectation: Bernoulli r.v.

_|1=-pifx=0
p(x)_{pifx=1

o E[X]=(1—p)-0+p-1=p

«O> «Fr «=>» <« o>

it
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Random Graph

Expectation: Binomial r.v.

@ Binomial is the sum of X, ..., X,,, independent and identical
Bernoulli r.v.

Y=X; ++X,

E[Y] =E[X; + -+ X,] =E[Xq]+ - +E[X,]=np
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Random Graph

Mean number of links and mean degree

(2) _
Etm) = Y mpom) = (3)p = 22,
m=0

2E[m] _ 2nn—-1)
non 2

k= E[k] = p=m-1p
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Random Graph

Degree distribution

@ A given node is connected with independent probability p to (n —1)
other nodes

@ Probability of being connected to exactly k other nodes:

pk(l _ p)n—l—k

There are (”;1) ways of selecting k nodes from n — 1 nodes

The total probability of having a degree k:

~1
P(k) = (n L )p"(l —p)r-i-k (8)

This is again binomial distribution

Thus, G(n,p) has a binomial degree distribution
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Random Graph

Degree distribution (Binomial)

0.30

0.25

0.20

p(k)
o
a
w

0.10

0.05

Denis Helic (ISDS, TU Graz) Networks

Degree distribution random graph (n =21); differing p values

== p-0.10
B p=0.40

01234567 8 91011121314151617181920
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Random Graph

Degree distribution

@ In many cases 7 is large, p is small and the average degree, i.e.
(n —1)p is constant

@ Let us introduce A = (n —1)p

_ m=Dm=-2)..(n—k) A Ak
P = k! (n—l)k(l_n—l)

D=2 =k A (1= A

- (n— 1k K- Ak
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Random Graph

Degree distribution

o What is nh_g.lo Pk)

n—1)n-=2)...(n—k)

lim =1
n1—>oo (n_1>k
A k
hm(l——l) =1
A
hm(l——)nl = ?
n—oo n
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Random Graph

Degree distribution

1
@ The definiton of e: e = xli_)n(r)lo(l + ;)x

@ Let us substitute: n—1 = —xA
lim (1 - ——)"1 = mnu+1rm
) n— 1 n—-00 X

1
= lim ((1+ =)™
n—oo x

= e_/\
k
e Put it all together: P(k) = %e_A
@ Poisson distribution
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Random Graph

Degree distribution (Poisson)

0.30 Degree distribution random graph (n=21); differing A values
Bl A=2.0
0.25
0.20

B A=38.0

<015
a

0.10

0.05

01234567 8 91011121314151617181920
k
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Random Graph

Degree distribution (Poisson approximation)

0I?Egree distribution random graph (n =21); Poisson approx. binomial

B p-040
0.16 I A=8.0 [{

0.14 - 1

0.12 1

0.10 - 1

p(k)

0.06 - 1

0.04 - 1

0.02 - 1

01234567 8 91011121314151617181920
k

=] F = = DA

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 98 /111



Random Graph

Clustering coefficient

@ Probability that two neighbors of a node are themselves connected
@ What is this probability?
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Random Graph

Clustering coefficient

@ Probability that two neighbors of a node are themselves connected
@ What is this probability?
e C=p
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Random Graph

Giant component in G(n, p)

@ What is the size of the largest component in G(n,p)?
@ How does it relate to n and p?
e Is there a giant component (GC)?

@ How many nodes does it occupy?
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Random Graph

Giant component in G(n, p)

@ Two special cases

@ When p = 0 there are no links in the graph and we have n
components of size 1

@ The size of the largest component is constant and does not depend
onn

@ When p =1 there are links between all pairs (complete graph) and
the largest component is of size n

@ There is a GC and its size depends on #, i.e. it is exactly n
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Random Graph

Giant component in G(n, p)

e Two qualitatively different states (phases)

@ What needs to happen with the random graph when we start with
p = 0 and slowly increase p until we reach p =1
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Random Graph

Giant component in G(n, p)

e Two qualitatively different states (phases)

@ What needs to happen with the random graph when we start with
p = 0 and slowly increase p until we reach p =1

@ With increasing p the largest component will become bigger until it
turns into a GC

@ Until it reaches the size of n
@ Transition between two extremes, a.k.a. phase transition

@ There will be a critical value for p at which phase transition occurs
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Random Graph

Giant component in G(n, p)

In the second case the size of the GC is in proportion to n, i.e. it is
exactly n

That will be our definition of a GC

With this definition we can calculate the size of the GC in G(n,p)
With u we denote the fraction of nodes that do not belong to the GC
The size of the GC: S=1—u

u is the probability that a randomly chosen node does not belong to
the GC
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Random Graph

Giant component in G(n, p)

@ Probability of i€ V and i & GC is u
@ For the above to hold it must Vj € V:

Q (,j)¢Eor
Q@ (i) EE = j&GC
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Giant component in G(n, p)
e Probability of (1): 1 —p
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Giant component in G(n, p)
e Probability of (1): 1 —p
e Probability of (2): pu
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Random Graph

Giant component in G(n, p)

@ Probability of (1): 1 —p
e Probability of (2): pu
@ Total prob. of i not connected to GC viaj: 1 —p + pu
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Random Graph

Giant component in G(n, p)

@ Probability of (1): 1 —p
e Probability of (2): pu
@ Total prob. of i not connected to GC viaj: 1 —p +pu
@ Total prob. of i not connected to GC via any other node:
(1—p+pu)!
u=A-p+pu)" =1 -pd—u)*! (10)
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Random Graph

Giant component in G(n, p)

o With k = p(n —1):

k -1
u = (11— ——A—-u)"
n-—1

In(u)

k
n—1In(1 - ——>1A —u))
n-—1

@ What happens in the limit of large network size, i.e. when n — oo
k
o m(l - u) -0

@ Taylor's expansion about 1: In(1 — x) ~ —x for small x
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Random Graph

Giant component in G(n, p)

In(u)

Q

k
—-(n—1)——=1 —u)
n—1
In(u) = —E(l —u)

U o~ e—ka-w
o WithS=1—-u:
1-S = %5
S 1—ekS
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Random Graph

Giant component in G(n, p)

@ Expression for the size og GC in the limit of large network size
@ No close form solution but we can solve it graphically

1.0 ‘ ‘ ‘ ‘
y==5
y=1-e",%=20

0.8} y=1-—e",%=0.5 4
y=1— e, k=1

0.6} ]

/////
= ////'
////
0.4} // |
/
0.2} .
0.0 ; ; ; ;
0.0 0.2 0.4 0.6 0.8 1.0

Figure: Giant component in a random eraph
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Random Graph

Giant component in G(n, p)

Recollect k = p(n—1)
For k <1 no GC
For k> 1 GC

Fork =1 phase transition

Denis Helic (ISDS, TU Graz)

Phase transition occurs when gradients are equal for S =0
Take derivatives of both sides and substitute S = 0:

= ke*S
=1

Networks March 28, 2020
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Random Graph

Giant components demo

o NetlLogo Example

@ http://www.netlogoweb.org/launch#http:
//www.netlogoweb.org/assets/modelslib/SampleModels/
Networks/GiantComponent.nlogo
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Random Graph

Diameter of G(n,p)

Average degree: k

Starting at a random i

At distance 1 we have k other nodes
At distance 2 we have k - k other nodes
At distance s we ES other nodes

—S
We can repeat this until k = n
In(m)
In(k)
Diameter grows as a logarithm of the number of nodes

Or equivallently s ~
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