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Outline

1 Basic Definitions
2 Paths
3 Distance and Breadth-First Search
4 Approximating Distance Distribution
5 Node Structural Roles
6 Components
7 Node Degrees
8 Clustering
9 Les Miserables: Network Statistics Example
10 Random Graph
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Basic Definitions

Graphs & Networks

Definition
A network is a set of items called nodes and connections between those
items called links.

Terminology clarification:
Mathematics: vertices (vertex) and edges
Physics: sites and bonds
Sociology: actors and ties
Computer science: nodes and links
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Basic Definitions

Graphs & Networks

Definition
A graph (network) is a pair of sets 𝐺 = (𝑉, 𝐸), whereas 𝑉 denotes the set
of nodes and 𝐸 the set of links.

In an undirected graph, the set 𝐸 ⊆ [𝑉]2

[𝑉]𝑘 is the set of all subsets of 𝑉 with 𝑘 elements
In an undirected graph links are pairs of nodes
In a directed graph, the set 𝐸 ⊆ 𝑉 × 𝑉
In a directed graph, links are ordered pairs of nodes
In graph theory literature often 𝑉(𝐺) and 𝐸(𝐺) are used.
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Basic Definitions

Example of a simple undirected graph

Figure: Simple undirected graph

𝑉 = {1, 2, 3, 4, 5}
𝐸 = {{1, 2}, {1, 5}, {2, 3}, {2, 4}, {3, 4}, {3, 5}}
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Basic Definitions

Example of a simple directed graph

Figure: Simple directed graph

𝑉 = {1, 2, 3, 4, 5}
𝐸 = {(1, 3), (2, 1), (2, 3), (2, 5), (3, 2), (4, 1), (4, 5), (5, 2), (5, 3)}
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Basic Definitions

Some further notation

Simple graphs: graphs with no self-links or loops
∀𝑖 ∈ 𝑉, {𝑖} ∉ 𝐸 (undirected graph). By defining that 𝐸 ⊆ [𝑉]2 this
is never the case.
∀𝑖 ∈ 𝑉, (𝑖, 𝑖) ∉ 𝐸 (directed graph)
Number of nodes in 𝐺: 𝑛 = |𝑉|
Number of links in 𝐺: 𝑚 = |𝐸|
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Basic Definitions

Graphs vs. Networks

Mathematical graph theory
Analytical approach to studying of small graphs (typically tens or
hundreds of nodes)
With the emergence of ICT technology we are able to analyze large
graphs that exist in nature, societies, technologies, etc.
Now, we are considering large-scale statistical properties of graphs
Network science deal with the empirical analysis of large graphs
(networks) that occur in different areas
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Basic Definitions

Types of networks

Nodes connected by links is the simplest type of network
Different types of nodes
Different types of links
Nodes and links can carry weights
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Basic Definitions

Types of networks

(b)

(d)

(a)

(c)

Figure: Various types of networks. From: The structure and function of complex
networks, Newman, 2003.
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Basic Definitions

Networks

Social networks. Nodes are people and links are acquaintances,
friendship, and so on.
Communication networks. Internet: nodes are computers and links
are cables connecting computers
Biological networks. Metabolism: nodes are substances and links are
metabolic reactions
Information networks. Web: nodes are Web pages and links are
hyperlinks connecting pages
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Basic Definitions

Networks

Pajek

Figure: Social network of HP Labs constructed out of e-mail communication.
From: How to search a social network, Adamic, 2005.
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Basic Definitions

Networks

Figure: Network of pages and hyperlinks on a Website. From: Networks, Mark
Newman, 2011.
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Paths

Arpanet
2.2. PATHS AND CONNECTIVITY 25

Figure 2.2: A network depicting the sites on the Internet, then known as the Arpanet, in
December 1970. (Image from F. Heart, A. McKenzie, J. McQuillian, and D. Walden [214];
on-line at http://som.csudh.edu/cis/lpress/history/arpamaps/.)

connections such as hyperlinks, citations, or cross-references. The list of areas in which

graphs play a role is of course much broader than what we can enumerate here; Figure 2.4

gives a few further examples, and also shows that many images we encounter on a regular

basis have graphs embedded in them.

2.2 Paths and Connectivity

We now turn to some of the fundamental concepts and definitions surrounding graphs. Per-

haps because graphs are so simple to define and work with, an enormous range of graph-

theoretic notions have been studied; the social scientist John Barnes once described graph

theory as a “terminological jungle, in which any newcomer may plant a tree” [45]. Fortu-

nately, for our purposes, we will be able to get underway with just a brief discussion of some

of the most central concepts.

Figure: Image from:
http://som.csudh.edu/cis/lpress/history/arpamaps/
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Paths

Arpanet

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Paths

Paths

Often things travel across the links of a graph
A passenger taking a sequence of airline flights
A computer user navigating the Web, or Wikipedia
A data packet moving across the computer network, e.g. the Internet
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Paths

Paths

Path: a sequence of nodes such that each consecutive pair in the
sequence is connected by a link
For example, the sequence: (MIT, BBN, RAND, UCLA) is a path in
the Internet graph
Another sequence: (CASE, LINC, MIT, UTAH, SRI, UCSB) is also a
path
But the sequence: LINC, BBN, HARV, CARN is not a path

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Paths

Paths Formally

Definition
Let 𝐺 = (𝑉, 𝐸) be a graph. Given two nodes 𝑠, 𝑡 ∈ 𝑉 we define
𝜋𝑠,𝑡 = (𝑠, 𝑢1, 𝑢2,… , 𝑢𝑙−1, 𝑡) to be a path between 𝑠 and 𝑡 if
{𝑢1, 𝑢2,… , 𝑢𝑙−1} ⊂ 𝑉 and {(𝑠, 𝑢1), (𝑢1, 𝑢2),… , (𝑢𝑙−1, 𝑡)} ⊂ 𝐸. Let Π𝑠,𝑡 be
a set of all paths from 𝑠 to 𝑡.

𝜋𝑆𝑅𝐼,𝑈𝐶𝐿𝐴 = (𝑆𝑅𝐼,𝑈𝐶𝐿𝐴) because {{𝑆𝑅𝐼,𝑈𝐶𝐿𝐴}} ⊂ 𝐸
𝜋𝑆𝑅𝐼,𝑈𝐶𝐿𝐴 = (𝑆𝑅𝐼, 𝑆𝑇𝐴𝑁,𝑈𝐶𝐿𝐴) because
{{𝑆𝑅𝐼, 𝑆𝑇𝐴𝑁}, {𝑆𝑇𝐴𝑁,𝑈𝐶𝐿𝐴}} ⊂ 𝐸
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Paths

Paths

We can repeat nodes in a path
For example, the sequence: (SRI, STAN, UCLA, SRI, UTAH, MIT) is
a path
SRI is repeated
If a path does not repeat nodes: simple path
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Paths

Cycles

An important kind of nonsimple path is a cycle
Cycle: is a path with at least three links, in which the first and the
last node are the same
For example, (SRI, STAN, UCLA, SRI) is a cycle
By design, every link belongs to a cycle to make it robust to failure
(alternative routes)
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Distance and Breadth-First Search

Path length

Very often we want to know how long a path is
In transportation and communication network it is important how
many hops a packet or a person travels
Path length: the number of links in a path

Definition
Let 𝐺 = (𝑉, 𝐸) be a graph. Given two nodes 𝑠, 𝑡 ∈ 𝑉 and a path
𝜋𝑠,𝑡 = (𝑠, 𝑢1, 𝑢2,… , 𝑢𝑙−1, 𝑡) from 𝑠 to 𝑡. We define the length of path 𝜋𝑠,𝑡
as |𝜋𝑠,𝑡| = 𝑙.
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Distance and Breadth-First Search

Path length

(MIT, BBN, RAND, UCL) has length 3; (MIT, UTAH) has length 1
26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN
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SDC

RAND

UTAHSRI
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STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Distance and Breadth-First Search

Distance

Distance: the length of the shortest path between two nodes 𝑠 and 𝑡.
We denote the distance with ℓ𝑠,𝑡.
In other words: ℓ𝑠,𝑡 ≤ |𝜋𝑠,𝑡| for all paths 𝜋𝑠,𝑡 ∈ Π𝑠,𝑡
LINC and SRI have distance 3, i.e. ℓ𝐿𝐼𝑁𝐶,𝑆𝑅𝐼 = 3
UTAH and RAND have distance 2, i.e. ℓ𝑈𝑇𝐴𝐻,𝑅𝐴𝑁𝐷 = 2
UTAH and SRI have distance 1, i.e. ℓ𝑈𝑇𝐴𝐻,𝑆𝑅𝐼 = 1
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Distance and Breadth-First Search

Breadth-First Search

For a small graph we can figure out the distance by looking at the
picture
For larger graphs we need an algorithm
An efficient algorithm is breadth-first search
The algorithm computes the distances from a single starting node to
all other nodes
From now on we assume that starting from an arbitrary node we can
always reach all other nodes
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Distance and Breadth-First Search

Breadth-First Search

We begin at a given node 𝑖 in the network
1 We declare all neighbors of 𝑖 (nodes connected to 𝑖) to be at distance 1
2 Then we find all neighbors of these neighbors (not counting nodes that

are already neighbors of 𝑖) and declare them to be at distance 2
3 Then we find all neighbors of the nodes from the previous step (again,

not counting nodes that we already found at distance 1 and 2) and
declare them to be at distance 3

(…) We continue in this way and search in successive layers each of which is
at the next distance out until we can not discover any new nodes
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Distance and Breadth-First Search

Breadth-First Search
2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer

is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most efficient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you
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Breadth-First Search
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

34 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC RAND

UTAH

SRI

UCLASTANUCSB

distance 1

distance 2

distance 3

Figure 2.9: The layers arising from a breadth-first of the December 1970 Arpanet, starting
at the node mit.

really needed to trace out distances in the global friendship network (and had the unlimited

patience and cooperation of everyone in the world). This is pictured in Figure 2.8:

(1) You first declare all of your actual friends to be at distance 1.

(2) You then find all of their friends (not counting people who are already friends of yours),

and declare these to be at distance 2.

(3) Then you find all of their friends (again, not counting people who you’ve already found

at distances 1 and 2) and declare these to be at distance 3.

(...) Continuing in this way, you search in successive layers, each representing the next

distance out. Each new layer is built from all those nodes that (i) have not already

been discovered in earlier layers, and that (ii) have an edge to some node in the previous

layer.

This technique is called breadth-first search, since it searches the graph outward from a start-

ing node, reaching the closest nodes first. In addition to providing a method of determining

distances, it can also serve as a useful conceptual framework to organize the structure of a

graph, arranging the nodes based on their distances from a fixed starting point.
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Distance and Breadth-First Search

Complexity of Breadth-First Search

Recollect that we denote the number of nodes in a graph with 𝑛 and
a number of links with 𝑚
During a breadth-first search we have to investigate all nodes at least
once and follow all of their links at least once
Thus, we perform 𝑛 + 𝑚 operations
Complexity of the breadth-first search algorithm is 𝑂(𝑛 + 𝑚)
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Distance and Breadth-First Search

Complexity of Breadth-First Search

Using breadth-first search we can compute the distances between all
pairs of nodes in a network (all-pairs-shortest-path)
We iterate over the nodes and start a BFS from each node
The complexity is 𝑂(𝑛(𝑛 + 𝑚)) = 𝑂(𝑛2 + 𝑛𝑚)

In a connected simple graph without selflinks: (𝑛 − 1) ≤ 𝑚 ≤ 𝑛(𝑛−1)
2

The overall complexity 𝑂(𝑛𝑚)
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Distance and Breadth-First Search

Complexity of Breadth-First Search

Using breadth-first search we can compute the distances between all
pairs of nodes in a network (all-pairs-shortest-path)
We iterate over the nodes and start a BFS from each node
The complexity is 𝑂(𝑛(𝑛 + 𝑚)) = 𝑂(𝑛2 + 𝑛𝑚)
In a connected simple graph without selflinks: (𝑛 − 1) ≤ 𝑚 ≤ 𝑛(𝑛−1)

2
The overall complexity 𝑂(𝑛𝑚)
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Distance and Breadth-First Search

Summarizing distances

One interesting quantity with respect to distances is the diameter
Diameter: maximum distance between any pair of nodes in the
graph (we denote it with ℓ𝑚𝑎𝑥)
Another interesting quantity is the average distance
Average distance over all pairs of nodes in a graph:

ℓ = 1
𝑛(𝑛 − 1) ∑

𝑖𝑗
ℓ𝑖𝑗
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Distance and Breadth-First Search

Summarizing distances

In many networks diameter and average distance are close to each
other
In some graphs, however, they can be very different
Can you think of a graph where the diameter is three (or arbitrary
many) times longer than the average distance

You need outliers in the distribution, i.e. a distant node connected by
a chain of nodes to a tightly connected graph core
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Distance and Breadth-First Search

Summarizing distances

In many networks diameter and average distance are close to each
other
In some graphs, however, they can be very different
Can you think of a graph where the diameter is three (or arbitrary
many) times longer than the average distance
You need outliers in the distribution, i.e. a distant node connected by
a chain of nodes to a tightly connected graph core
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Distance and Breadth-First Search

Distribution of distances

Interesting statistics: distribution of distances
How many pairs have a given distance
Typically, we will normalize by the total number of pairs to obtain
probabilities
We can visualize it with a histogram
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Distance and Breadth-First Search

Les Miserables

Les Miserables
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Distance and Breadth-First Search

Distribution of distances

0 1 2 3 4 5 6
`

0.00

0.05

0.10

0.15

0.20
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0.35

0.40

0.45
p
(`

)
Distribution of distances: `=2.641148,`max=5
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Distance and Breadth-First Search

Ipython notebook

IPython Notebook example
http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/websci1.zip

Command Line
ipython notebook –pylab=inline websci1.ipynb
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Approximating Distance Distribution

Complexity of Breadth-First Search

The overall complexity 𝑂(𝑛𝑚)
If we have 𝑚 ∼ 𝑛 this is 𝑂(𝑛2)
If 𝑚 ∼ 𝑛2 this is 𝑂(𝑛3)
However, if 𝑛 is in the order of millions or billions both situations are
prohibitive for breadth-first search
We will need some method for approximating the distances
The basic idea: estimate the distance bounds and make those bounds
tight
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Approximating Distance Distribution

Distance bounds

Definition
Let 𝑆𝑃𝑠,𝑡 ⊆ Π𝑠,𝑡 be the set of paths 𝜋𝑠,𝑡 such that |𝜋𝑠,𝑡| = ℓ𝑠,𝑡.

𝑆𝑃𝑠,𝑡 is the set of shortest paths from 𝑠 to 𝑡
The shortest-path distance or just distance for short is a metric

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 37 / 111



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Approximating Distance Distribution

Distance is a metric

Definition
A metric on a set X is a function 𝑑 ∶ 𝑋 × 𝑋 → [0,∞) and for all
𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions hold:

1 𝑑(𝑥, 𝑦) ≥ 0
2 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦
3 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
4 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) (Triangle inequality)

The triangle inequality can be written as: 𝑑(𝑥, 𝑧) ≥ |𝑑(𝑥, 𝑦) − 𝑑(𝑦, 𝑧)|
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Approximating Distance Distribution

Distance bounds

Given any three nodes 𝑠, 𝑡, and 𝑢

ℓ𝑠,𝑡 ≤ ℓ𝑠,𝑢 + ℓ𝑢,𝑡 (1)
ℓ𝑠,𝑡 ≥ |ℓ𝑠,𝑢 − ℓ𝑢,𝑡| (2)
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Approximating Distance Distribution

Distance bounds

Observation 1
Let 𝑠, 𝑡, 𝑢 ∈ 𝑉. If there exist a path 𝜋𝑠,𝑡 ∈ 𝑆𝑃𝑠,𝑡 such that 𝑢 ∈ 𝜋𝑠,𝑡 then
ℓ𝑠,𝑡 = ℓ𝑠,𝑢 + ℓ𝑢,𝑡.

Observation 2
Let 𝑠, 𝑡, 𝑢 ∈ 𝑉. If there exist a path 𝜋𝑠,𝑢 ∈ 𝑆𝑃𝑠,𝑢 such that 𝑡 ∈ 𝜋𝑠,𝑢 or
there exist a path 𝜋𝑡,𝑢 ∈ 𝑆𝑃𝑡,𝑢 such that 𝑠 ∈ 𝜋𝑡,𝑢 then ℓ𝑠,𝑡 = |ℓ𝑠,𝑢 − ℓ𝑢,𝑡|.

Figure: From “Fast Shortest Path Distance Estimation in Large Networks” by
Potamias et al.
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Approximating Distance Distribution

Landmarks

We will use a set of landmarks 𝐷 = {𝑢1, 𝑢2,… 𝑢𝑑}
Given a graph 𝐺 and a set of 𝑑 landmarks 𝐷 we precompute the
distances between each node in 𝑉 and each landmarks
We perform breadth-first search from all landmarks in 𝑂(𝑚𝑑)
𝑑 is small, e.g. 𝑑 ∼ 𝑙𝑜𝑔(𝑛)
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Approximating Distance Distribution

Landmarks

Due to the triangle inequality we have:

𝑚𝑎𝑥
𝑖

|ℓ𝑠,𝑢𝑖
− ℓ𝑡,𝑢𝑖

| ≤ ℓ𝑠,𝑡 ≤ 𝑚𝑖𝑛
𝑖

{ℓ𝑠,𝑢𝑖
+ ℓ𝑡,𝑢𝑖

} (3)

In other words, with 𝐿 = 𝑚𝑎𝑥
𝑖

|ℓ𝑠,𝑢𝑖
− ℓ𝑡,𝑢𝑖

| and 𝑈 = 𝑚𝑖𝑛
𝑖

{ℓ𝑠,𝑢𝑖
+ ℓ𝑡,𝑢𝑖

}
the true distance ℓ𝑠,𝑡 ∈ [𝐿,𝑈]
Estimation is very fast: 𝑂(𝑑)
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Approximating Distance Distribution

Landmarks

Thus, if we have a “nice” set of landmarks 𝐷 the approximation is
very quick
If we take 𝑈 upper bound as our approximation following the
Observation 1 this approximation is exact if there is a landmark in 𝐷
that is on a shortest path from 𝑠 to 𝑡
If for all pairs of nodes from 𝑉 there exist at least one landmark in 𝐷
that lies on one shortest path from 𝑠 to 𝑡 then our approximation is
exact
In such case we say that landmarks cover all pairs of nodes from 𝑉
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Approximating Distance Distribution

Landmark selection problem

LANDMARKS-COVER
Given a graph 𝐺 = (𝑉, 𝐸) select the minimum number of landmarks
𝐷 ⊆ 𝑉 such that all pairs of nodes (𝑠, 𝑡) ∈ 𝑉 × 𝑉 are covered.

Theorem
LANDMARKS-COVER is NP-hard.
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Approximating Distance Distribution

Landmark selection problem

NODE-COVER
Given a graph 𝐺 = (𝑉, 𝐸) we say 𝑉′ ⊆ 𝑉 covers 𝑉 if every link has at
least one endpoint in 𝑉′.

Figure: Node Cover (Source Wikipedia)

Figure: Minimal Node Cover (Source Wikipedia)
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Approximating Distance Distribution

Landmark selection problem

Proof.
We reduce LANDMARKS-COVER to NODE-COVER by transforming an
instance of NODE-COVER to LANDMARKS-COVER.

1 Consider a solution 𝐷 to LANDMARKS-COVER. 𝐷 covers all pairs of
nodes and thus it covers also pairs at distance 1, which are connected
by a single link. Therefore all links from 𝐸 are covered by 𝐷 and 𝐷 is
the solution to NODE-COVER.

2 Consider a solution 𝑉′ to NODE-COVER. Some nodes from 𝑉′ are
on the links of the shortest path 𝜋𝑠,𝑡 from 𝑠 to 𝑡, and therefore 𝑉′ is
also a solution to LANDMARKS-COVER.
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Approximating Distance Distribution

Landmark selection strategies

We can not select the landmarks optimally so we have to select them
using heuristics
The basic idea: select “central” nodes, which lie on many shortest
paths
Baseline: random selection
Select nodes with many links because the chance is higher that they
are on many shortest paths
Estimate average shortest path for each node and select the nodes
with the smallest average

Average path estimation: select randomly few nodes, perform BFS
from those nodes, calculate averages to those nodes
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Approximating Distance Distribution

Landmark selection strategies

We can not select the landmarks optimally so we have to select them
using heuristics
The basic idea: select “central” nodes, which lie on many shortest
paths
Baseline: random selection
Select nodes with many links because the chance is higher that they
are on many shortest paths
Estimate average shortest path for each node and select the nodes
with the smallest average
Average path estimation: select randomly few nodes, perform BFS
from those nodes, calculate averages to those nodes
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Approximating Distance Distribution

Experimental results

Datasets: Flickr-E ∼ 600𝐾 nodes, Flickr-I ∼ 800𝐾 nods, DBLP
∼ 220𝐾

Figure: From “Fast Shortest Path Distance Estimation in Large Networks” by
Potamias et al.
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Node Structural Roles

Pivotal nodes

We say that a node 𝑘 is pivotal for a pair of distinct nodes 𝑖 and 𝑗 if 𝑘
lies on every shortest path between 𝑖 and 𝑗
𝑘 is not equal to either 𝑖 and 𝑗
B is pivotal for (A,C) and (A,D)
However, it is not pivotal for (D,E)

2.5. EXERCISES 45

B

A

C D

E

F

Figure 2.13: In this example, node B is pivotal for two pairs: the pair consisting of A and
C, and the pair consisting of A and D. On the other hand, node D is not pivotal for any
pairs.

(b) Give an example of a graph in which every node is pivotal for at least two different

pairs of nodes. Explain your answer.

(c) Give an example of a graph having at least four nodes in which there is a single

node X that is pivotal for every pair of nodes (not counting pairs that include

X). Explain your answer.

2. In the next set of questions, we consider a related cluster of definitions, which seek to

formalize the idea that certain nodes can play a “gatekeeping” role in a network. The

first definition is the following: we say that a node X is a gatekeeper if for some other

two nodes Y and Z, every path from Y to Z passes through X. For example, in the

graph in Figure 2.14, node A is a gatekeeper, since it lies for example on every path

from B to E. (It also lies on every path between other pairs of nodes — for example,

the pair D and E, as well as other pairs.)

This definition has a certain “global” flavor, since it requires that we think about paths

in the full graph in order to decide whether a particular node is a gatekeeper. A more

“local” version of this definition might involve only looking at the neighbors of a node.

Here’s a way to make this precise: we say that a node X is a local gatekeeper if there

are two neighbors of X, say Y and Z, that are not connected by an edge. (That is,

for X to be a local gatekeeper, there should be two nodes Y and Z so that Y and Z

each have edges to X, but not to each other.) So for example, in Figure 2.14, node

A is a local gatekeeper as well as being a gatekeeper; node D, on the other hand, is a

local gatekeeper but not a gatekeeper. (Node D has neighbors B and C that are not

connected by an edge; however, every pair of nodes — including B and C — can be

connected by a path that does not go through D.)

So we have two new definitions: gatekeeper, and local gatekeeper. When faced with
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Node Structural Roles

Pivotal nodes

Pivotal nodes play an important role in connecting other nodes
Some nodes are more “important” than the other nodes
Can you think of an example of a graph in which every node is pivotal
for at least one pair of nodes

Can you think of an example of a graph in which every node is pivotal
for at least two different pairs of nodes
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Node Structural Roles

Pivotal nodes

Pivotal nodes play an important role in connecting other nodes
Some nodes are more “important” than the other nodes
Can you think of an example of a graph in which every node is pivotal
for at least one pair of nodes
Can you think of an example of a graph in which every node is pivotal
for at least two different pairs of nodes

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 50 / 111



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Node Structural Roles

Gatekeepers

Similar to pivotal nodes is an idea that some nodes play a
“gatekeeping” role in networks
We say that a node 𝑘 is a gatekeeper if, for some other distinct nodes
𝑖 and 𝑗, 𝑘 lies on every path between 𝑖 and 𝑗
𝑘 is not equal to either 𝑖 and 𝑗
A is a gatekeeper because it lies on every path between B and E, or
D, and E

46 CHAPTER 2. GRAPHS

A

B

D

E

C F

Figure 2.14: Node A is a gatekeeper. Node D is a local gatekeeper but not a gatekeeper.

new mathematical definitions, a strategy that is often useful is to explore them first

through examples, and then to assess them at a more general level and try to relate

them to other ideas and definitions. Let’s try this in the next few questions.

(a) Give an example (together with an explanation) of a graph in which more than

half of all nodes are gatekeepers.

(b) Give an example (together with an explanation) of a graph in which there are no

gatekeepers, but in which every node is a local gatekeeper.

3. When we think about a single aggregate measure to summarize the distances between

the nodes in a given graph, there are two natural quantities that come to mind. One is

the diameter, which we define to be the maximum distance between any pair of nodes

in the graph. Another is the average distance, which — as the term suggests — is the

average distance over all pairs of nodes in the graph.

In many graphs, these two quantities are close to each other in value. But there are

graphs where they can be very different.

(a) Describe an example of a graph where the diameter is more than three times as

large as the average distance.

(b) Describe how you could extend your construction to produce graphs in which the

diameter exceeds the average distance by as large a factor as you’d like. (That is,

for every number c, can you produce a graph in which the diameter is more than

c times as large as the average distance?)
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Node Structural Roles

Gatekeepers

The last definition has a “global” flavor
We have to consider paths in the full graph to decide if a node is a
gatekeeper
We can think also about a “local” version of a gatekeeper
We say that a node 𝑘 is a local gatekeeper if it has two distinct
neighbors 𝑖 and 𝑗 that are not connected to each other
𝑘 is not equal to either 𝑖 and 𝑗
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Node Structural Roles

Gatekeepers

Node A is also a local gatekeeper, e.g. B and E are neighbors but
they are not connected to each other
Node D is a local gatekeeper for B and C but it is not a gatekeeper
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A

B

D

E

C F

Figure 2.14: Node A is a gatekeeper. Node D is a local gatekeeper but not a gatekeeper.

new mathematical definitions, a strategy that is often useful is to explore them first

through examples, and then to assess them at a more general level and try to relate

them to other ideas and definitions. Let’s try this in the next few questions.

(a) Give an example (together with an explanation) of a graph in which more than

half of all nodes are gatekeepers.

(b) Give an example (together with an explanation) of a graph in which there are no

gatekeepers, but in which every node is a local gatekeeper.

3. When we think about a single aggregate measure to summarize the distances between

the nodes in a given graph, there are two natural quantities that come to mind. One is

the diameter, which we define to be the maximum distance between any pair of nodes

in the graph. Another is the average distance, which — as the term suggests — is the

average distance over all pairs of nodes in the graph.

In many graphs, these two quantities are close to each other in value. But there are

graphs where they can be very different.

(a) Describe an example of a graph where the diameter is more than three times as

large as the average distance.

(b) Describe how you could extend your construction to produce graphs in which the

diameter exceeds the average distance by as large a factor as you’d like. (That is,

for every number c, can you produce a graph in which the diameter is more than

c times as large as the average distance?)
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Node Structural Roles

Gatekeepers

Can you think of an example of a graph in which more than half of all
nodes are gatekeepers

Can you think of an example of a graph in which there are no
gatekeepers but in which every node is a local gatekeeper
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Node Structural Roles

Gatekeepers

Can you think of an example of a graph in which more than half of all
nodes are gatekeepers
Can you think of an example of a graph in which there are no
gatekeepers but in which every node is a local gatekeeper
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Components

Connectivity

Given a graph one important question is whether every node can
reach every other node by a path
If that is the case the graph is connected
ARPANET is a connected graph, as it should be always the case with
communication and transportation networks

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Components

Connectivity
But, in e.g. a social network that is not always the case
Then we say that a graph is disconnected

2.2. PATHS AND CONNECTIVITY 29

Figure 2.6: The collaboration graph of the biological research center Structural Genomics of
Pathogenic Protozoa (SGPP) [134], which consists of three distinct connected components.
This graph was part of a comparative study of the collaboration patterns graphs of nine
research centers supported by NIH’s Protein Structure Initiative; SGPP was an intermediate
case between centers whose collaboration graph was connected and those for which it was
fragmented into many small components.

researchers, and there is an edge between two nodes if the researchers appear jointly on a

co-authored publication. (Thus the edges in this second figure represent a particular formal

definition of collaboration — joint authorship of a published paper — and do not attempt to

capture the network of more informal interactions that presumably take place at the research

center.)

Components. Figures 2.5 and 2.6 make visually apparent a basic fact about disconnected

graphs: if a graph is not connected, then it breaks apart naturally into a set of connected

“pieces,” groups of nodes so that each group is connected when considered as a graph in

isolation, and so that no two groups overlap. In Figure 2.5, we see that the graph consists

of three such pieces: one consisting of nodes A and B, one consisting of nodes C, D, and E,

and one consisting of the rest of the nodes. The network in Figure 2.6 also consists of three

pieces: one on three nodes, one on four nodes, and one that is much larger.

To make this notion precise, we we say that a connected component of a graph (often

shortened just to the term “component”) is a subset of the nodes such that: (i) every node

in the subset has a path to every other; and (ii) the subset is not part of some larger set

with the property that every node can reach every other. Notice how both (i) and (ii)

Figure: Collaboration graph of a biological research center
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Components

Components

If a graph is disconnected than it breaks apart into a set of connected
components
Component: a subset of nodes such that

1 every node in the subset has a path to every other node in that subset
(internally connected)

2 the subset is not a part of some larger connected set (stands in
isolation from the rest of the graph)

2.2. PATHS AND CONNECTIVITY 29

Figure 2.6: The collaboration graph of the biological research center Structural Genomics of
Pathogenic Protozoa (SGPP) [134], which consists of three distinct connected components.
This graph was part of a comparative study of the collaboration patterns graphs of nine
research centers supported by NIH’s Protein Structure Initiative; SGPP was an intermediate
case between centers whose collaboration graph was connected and those for which it was
fragmented into many small components.

researchers, and there is an edge between two nodes if the researchers appear jointly on a

co-authored publication. (Thus the edges in this second figure represent a particular formal

definition of collaboration — joint authorship of a published paper — and do not attempt to

capture the network of more informal interactions that presumably take place at the research

center.)

Components. Figures 2.5 and 2.6 make visually apparent a basic fact about disconnected

graphs: if a graph is not connected, then it breaks apart naturally into a set of connected

“pieces,” groups of nodes so that each group is connected when considered as a graph in

isolation, and so that no two groups overlap. In Figure 2.5, we see that the graph consists

of three such pieces: one consisting of nodes A and B, one consisting of nodes C, D, and E,

and one consisting of the rest of the nodes. The network in Figure 2.6 also consists of three

pieces: one on three nodes, one on four nodes, and one that is much larger.

To make this notion precise, we we say that a connected component of a graph (often

shortened just to the term “component”) is a subset of the nodes such that: (i) every node

in the subset has a path to every other; and (ii) the subset is not part of some larger set

with the property that every node can reach every other. Notice how both (i) and (ii)
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Components

Components

Components are a first, global way of describing the structure of a
network
Within a given component there might be a richer structure
The large component: a prominent node at the center and tightly
linked groups at the periphery
This large component would break apart without the central node

2.2. PATHS AND CONNECTIVITY 29

Figure 2.6: The collaboration graph of the biological research center Structural Genomics of
Pathogenic Protozoa (SGPP) [134], which consists of three distinct connected components.
This graph was part of a comparative study of the collaboration patterns graphs of nine
research centers supported by NIH’s Protein Structure Initiative; SGPP was an intermediate
case between centers whose collaboration graph was connected and those for which it was
fragmented into many small components.

researchers, and there is an edge between two nodes if the researchers appear jointly on a

co-authored publication. (Thus the edges in this second figure represent a particular formal

definition of collaboration — joint authorship of a published paper — and do not attempt to

capture the network of more informal interactions that presumably take place at the research

center.)

Components. Figures 2.5 and 2.6 make visually apparent a basic fact about disconnected

graphs: if a graph is not connected, then it breaks apart naturally into a set of connected

“pieces,” groups of nodes so that each group is connected when considered as a graph in

isolation, and so that no two groups overlap. In Figure 2.5, we see that the graph consists

of three such pieces: one consisting of nodes A and B, one consisting of nodes C, D, and E,

and one consisting of the rest of the nodes. The network in Figure 2.6 also consists of three

pieces: one on three nodes, one on four nodes, and one that is much larger.

To make this notion precise, we we say that a connected component of a graph (often

shortened just to the term “component”) is a subset of the nodes such that: (i) every node

in the subset has a path to every other; and (ii) the subset is not part of some larger set

with the property that every node can reach every other. Notice how both (i) and (ii)
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Components

Giant components

Consider the global friendship network, i.e. a social network of the
entire world
Is this network connected?
Probably not, since a single person without friends constitutes a
one-node component
“Remote tropical island”
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Components

Giant components

But, people (you) have friends in other countries
You are in the same component as those friends
As well as their friends, their parents, their parent friends, their
descendants, and so on
You are in the same component with the people that you never heard
of, with totally different experiences, etc.
This component seems likely to contain a significant fraction of the
world’s population, and this is in fact true!
We call such a component a giant component
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Components

Giant components

It is an informal definition: a component that contains a significant
fraction of nodes
Typically, when a network contains a giant component it contains
almost always only one
Why?

If we have two giant components with e.g. 1 billion people in each
It takes only a single link from a node from the first component to a
node from the second to connect those two components
Practically, such a link always exists
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Components

Giant components

It is an informal definition: a component that contains a significant
fraction of nodes
Typically, when a network contains a giant component it contains
almost always only one
Why?
If we have two giant components with e.g. 1 billion people in each
It takes only a single link from a node from the first component to a
node from the second to connect those two components
Practically, such a link always exists
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Node Degrees

Degree

Degree: of a node is the number of links connected to it
Measures how “important” a node is
We denote the degree of node 𝑖 by 𝑘𝑖
Every link has two ends, hence there are 2𝑚 link ends in an
undirected network
The number of link ends is equal to the sum of the degrees of all the
nodes

2𝑚 =
𝑛
∑
𝑖=1

𝑘𝑖

Average degree

𝑘 = 1
𝑛

𝑛
∑
𝑖=1

𝑘𝑖 =
2𝑚
𝑛
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Node Degrees

Degree in directed networks

In directed networks we have in-degree and out-degree
In-degree: 𝑘𝑖𝑛𝑖 is the number of ingoing links
Out-degree: 𝑘𝑜𝑢𝑡𝑗 is the number of outgoing links
The number of links is equal to the sum of in-degrees, and is also
equal to the sum of out-degrees

𝑚 =
𝑛
∑
𝑖=1

𝑘𝑖𝑛𝑖 =
𝑛
∑
𝑖=1

𝑘𝑜𝑢𝑡𝑖

Average in-degree and average out-degree

𝑘𝑖𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑘𝑖
𝑖𝑛 = 1

𝑛
𝑛
∑
𝑖=1

𝑘𝑖
𝑜𝑢𝑡 = 𝑘𝑜𝑢𝑡

𝑘 = 𝑘𝑖𝑛 = 𝑘𝑜𝑢𝑡 = 𝑚
𝑛
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Node Degrees

Degree distribution

Interesting statistics: degree distribution
How many nodes have a given degree
Typically, we will normalize by the total number of nodes to obtain
probabilities
We can visualize it with a histogram
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Node Degrees

Degree distribution

0 5 10 15 20 25 30 35 40
k

0.00

0.05

0.10

0.15

0.20

0.25
p
(k

)
Degree distribution: k=6.597403
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Node Degrees

Ipython notebook

IPython Notebook example
http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/websci1.zip

Command Line
ipython notebook –pylab=inline websci1.ipynb
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Clustering

Clustering coefficient

A special kind of paths are triangles (closed triads)
Three nodes all connected to each other
Closely related to local gatekeepers
Local clustering coefficient of a node is a measure how transitive
connections in a network areas
I.e. a friend of a friend is also a friend
Clustering coefficient: fraction of node 𝑖 neighbors that are
themselves connected (we denote it with 𝐶𝑖, Γ(𝑖) is the set of
neighbors of 𝑖, 𝐸 is the set of all links)

𝐶𝑖 =
2|𝑒𝑗𝑘 |

𝑘𝑖(𝑘𝑖 − 1), 𝑗, 𝑘 ∈ Γ(𝑖), 𝑒𝑗𝑘 ∈ 𝐸
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Clustering

Clustering coefficient

𝐶𝑔𝑟𝑎𝑦 = 1
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Clustering

Clustering coefficient

𝐶𝑔𝑟𝑎𝑦 = 1
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Clustering

Clustering coefficient

𝐶𝑔𝑟𝑎𝑦 = 1
3
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Clustering

Clustering coefficient

𝐶𝑔𝑟𝑎𝑦 = 1
3
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Clustering

Clustering coefficient

𝐶𝑔𝑟𝑎𝑦 = 0
What can you say about the clustering coefficient of a local
gatekeeper?
It is less than 1
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Clustering

Clustering coefficient

𝐶𝑔𝑟𝑎𝑦 = 0
What can you say about the clustering coefficient of a local
gatekeeper?

It is less than 1
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Clustering

Clustering coefficient

𝐶𝑔𝑟𝑎𝑦 = 0
What can you say about the clustering coefficient of a local
gatekeeper?
It is less than 1
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Clustering

Clustering coefficient

Some statistics: average clustering coefficient

𝐶 = 1
𝑁 ∑

𝑖
𝐶𝑖

Clustering coefficient distribution
How many nodes have a clustering coefficient in a certain range
We can visualize it with a histogram
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Clustering

Clustering coefficient distribution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c

0

5

10

15

20

25

30
f(
c)

CC distribution: C=0.573137
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Clustering

Ipython notebook

IPython Notebook example
http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/websci1.zip

Command Line
ipython notebook –pylab=inline websci1.ipynb
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Les Miserables: Network Statistics Example

Les Miserables

Random Graph n=77,m=216
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Les Miserables: Network Statistics Example

Distribution of distances

0 1 2 3 4 5 6
`

0.0

0.1

0.2

0.3

0.4

0.5
p
(`

)

Distribution of distances: `=2.572796,`max=5
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Les Miserables: Network Statistics Example

Degree distribution

0 2 4 6 8 10 12 14
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30
p
(k

)
Degree distribution: k=5.610390
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Les Miserables: Network Statistics Example

Clustering coefficient distribution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c

0

5

10

15

20

25

30

35
f(
c)

CC distribution: C=0.070041
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Les Miserables: Network Statistics Example

Ipython notebook

IPython Notebook example
http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/websci1.zip

Command Line
ipython notebook –pylab=inline websci1.ipynb
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Random Graph

Modeling networks

Observe: e.g. collect data by crawling
Measure: e.g. how many nodes, how many links
Quantify: e.g. distances, degrees, clustering coefficient
Make a model: e.g. how networks are created
Predict with the model and validate: e.g. implement and evaluate
(compare with the real networks)
Apply: engineering approach to implementing the model in the
software
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Random Graph

Random graphs

Random graph: a model network where some properties take fixed
values and other properties are random
The simplest model: we fix 𝑛 and 𝑚 but place links at random
Iterate over links, for each link select a random pair of nodes
Create a simple graph, i.e. no self-links are allowed
We will call this model 𝐺(𝑛,𝑚)
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Random Graph

𝐺(𝑛,𝑚) model

Equivalent definition: we choose a graph uniformly at random among
all graphs with 𝑛 nodes and 𝑚 links
Mathematically, this is a proper definition
A random graph defines an ensemble of networks, i.e. a probability
distribution 𝑃(𝐺) over possible networks:
𝑃(𝐺) = 1

Ω if a network has 𝑛 nodes and 𝑚 links and 0 otherwise
Ω is the total number of such networks

Ω = ((𝑛
2)
𝑚 )
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Random Graph

𝐺(𝑛,𝑚) model

Equivalent definition: we choose a graph uniformly at random among
all graphs with 𝑛 nodes and 𝑚 links
Mathematically, this is a proper definition
A random graph defines an ensemble of networks, i.e. a probability
distribution 𝑃(𝐺) over possible networks:
𝑃(𝐺) = 1

Ω if a network has 𝑛 nodes and 𝑚 links and 0 otherwise
Ω is the total number of such networks
Ω = ((𝑛

2)
𝑚 )
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Random Graph

Random graphs

Properties of random graphs: mean values of the ensemble (typical
behavior)
Calculated as expectations of the probability distribution or a random
variable

Definition
The expectation of a random property 𝑋(𝐺) of a random graph ensemble
𝐺 is

𝐸[𝑋] = ∑
𝐺

𝑋(𝐺)𝑝(𝐺)

when this sum is “well-defined”, otherwise the expectation does not exist.
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Random Graph

𝐺(𝑛,𝑚) vs. 𝐺(𝑛, 𝑝) model

Some mean values are easy to calculate, i.e. the average number of
links is 𝑚
Average degree 𝑘 = 2𝑚

𝑛
Other properties are more difficult to calculate
A better approach is to fix 𝑛 and 𝑝, which is the probability of links
between nodes
This model is 𝐺(𝑛, 𝑝)
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Random Graph

𝐺(𝑛, 𝑝) model

Technical definition is again in terms of an ensemble, i.e. a probability
distribution over all possible networks
What is the total number of possible simple graphs?

Ω = 2(
𝑛
2)

But the 𝑃(𝐺) is not uniform anymore, i.e. in general 𝑃(𝐺) ≠ 1
Ω

Some graphs are more probable then other graphs in case of 𝐺(𝑛, 𝑝)
What is the probability of a graph that has exactly 𝑚 links

𝑃(𝐺) = 𝑝𝑚(1 − 𝑝)(
𝑛
2)−𝑚

Other names for 𝐺(𝑛, 𝑝): Erdős–Rényi, Bernoulli, Poisson
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𝐺(𝑛, 𝑝) model

Technical definition is again in terms of an ensemble, i.e. a probability
distribution over all possible networks
What is the total number of possible simple graphs?

Ω = 2(
𝑛
2)

But the 𝑃(𝐺) is not uniform anymore, i.e. in general 𝑃(𝐺) ≠ 1
Ω

Some graphs are more probable then other graphs in case of 𝐺(𝑛, 𝑝)
What is the probability of a graph that has exactly 𝑚 links

𝑃(𝐺) = 𝑝𝑚(1 − 𝑝)(
𝑛
2)−𝑚

Other names for 𝐺(𝑛, 𝑝): Erdős–Rényi, Bernoulli, Poisson
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Random Graph

𝐺(𝑛, 𝑝) model

Technical definition is again in terms of an ensemble, i.e. a probability
distribution over all possible networks
What is the total number of possible simple graphs?

Ω = 2(
𝑛
2)

But the 𝑃(𝐺) is not uniform anymore, i.e. in general 𝑃(𝐺) ≠ 1
Ω

Some graphs are more probable then other graphs in case of 𝐺(𝑛, 𝑝)
What is the probability of a graph that has exactly 𝑚 links

𝑃(𝐺) = 𝑝𝑚(1 − 𝑝)(
𝑛
2)−𝑚

Other names for 𝐺(𝑛, 𝑝): Erdős–Rényi, Bernoulli, Poisson
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Random Graph

Mean number of links
Probability that a simple graph 𝐺 has 𝑚 links:
𝑃(𝐺) = 𝑝𝑚(1 − 𝑝)(

𝑛
2)−𝑚

The number of graphs with 𝑛 nodes and 𝑚 links: ((𝑛
2)
𝑚 )

The total probability of drawing a graph with 𝑚 links from the
ensemble

𝑃(𝑚) = ((
𝑛
2)
𝑚 )𝑝𝑚(1 − 𝑝)(

𝑛
2)−𝑚 (4)

This is binomial distribution
The expected (mean) number of links:

𝐸[𝑚] =
(𝑛
2)

∑
𝑚=0

𝑚𝑃(𝑚) (5)
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Random Graph

Linearity of expectation

Theorem
Suppose 𝑋 and 𝑌 are discrete r.v. such that 𝐸[𝑋] < ∞ and 𝐸[𝑌] < ∞.
Then,

𝐸[𝑎𝑋] = 𝑎𝐸[𝑋],∀𝑎 ∈ ℝ
𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌]

Proof left for exercise ;)
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Random Graph

Bernoulli random variable

PMF

𝑝(𝑥) =
⎧{
⎨{⎩
1 − 𝑝 if 𝑥 = 0
𝑝 if 𝑥 = 1

Bernoulli r.v. with parameter 𝑝
Models situations with two outcomes
E.g. coin flip
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Random Graph

Binomial random variable

Suppose 𝑋1,… ,𝑋𝑛 are independent and identical Bernoulli r.v.
The Binomial r.v. with parameters (𝑝, 𝑛) is

𝑌 = 𝑋1 +⋯+𝑋𝑛

Models the number of successes in 𝑛 Bernoulli trials
E.g. the number of heads in 𝑛 coin flips

PMF

𝑝(𝑘) = (𝑛𝑘)(1 − 𝑝)𝑛−𝑘𝑝𝑘
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Random Graph

Expectation: Bernoulli r.v.

PMF

𝑝(𝑥) =
⎧{
⎨{⎩
1 − 𝑝 if 𝑥 = 0
𝑝 if 𝑥 = 1

𝐸[𝑋] = (1 − 𝑝) ⋅ 0 + 𝑝 ⋅ 1 = 𝑝
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Random Graph

Expectation: Binomial r.v.

Binomial is the sum of 𝑋1,… ,𝑋𝑛, independent and identical
Bernoulli r.v.

𝑌 = 𝑋1 +⋯+𝑋𝑛

𝐸[𝑌] = 𝐸[𝑋1 + ⋯ + 𝑋𝑛] = 𝐸[𝑋1] + ⋯+ 𝐸[𝑋𝑛] = 𝑛𝑝
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Random Graph

Mean number of links and mean degree

𝐸[𝑚] =
(𝑛
2)

∑
𝑚=0

𝑚𝑃(𝑚) = (𝑛2)𝑝 = 𝑛(𝑛 − 1)
2 𝑝 (6)

𝑘 = 𝐸[𝑘] = 2𝐸[𝑚]
𝑛 = 2

𝑛
𝑛(𝑛 − 1)

2 𝑝 = (𝑛 − 1)𝑝 (7)
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Random Graph

Degree distribution

A given node is connected with independent probability 𝑝 to (𝑛 − 1)
other nodes
Probability of being connected to exactly 𝑘 other nodes:
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘

There are (𝑛−1
𝑘 ) ways of selecting 𝑘 nodes from 𝑛 − 1 nodes

The total probability of having a degree 𝑘:

𝑃(𝑘) = (𝑛 − 1
𝑘 )𝑝𝑘(1 − 𝑝)𝑛−1−𝑘 (8)

This is again binomial distribution
Thus, 𝐺(𝑛, 𝑝) has a binomial degree distribution
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Random Graph

Degree distribution (Binomial)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30
p
(k

)
Degree distribution random graph (n= 21); differing p values

p= 0. 10

p= 0. 40
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Random Graph

Degree distribution

In many cases 𝑛 is large, 𝑝 is small and the average degree, i.e.
(𝑛 − 1)𝑝 is constant
Let us introduce 𝜆 = (𝑛 − 1)𝑝

𝑃(𝑘) = (𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑘)
𝑘!

𝜆𝑘

(𝑛 − 1)𝑘
(1 − 𝜆

𝑛 − 1)
𝑛−1−𝑘

= (𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑘)
(𝑛 − 1)𝑘

𝜆𝑘

𝑘!
(1 − 𝜆

𝑛−1)
𝑛−1

(1 − 𝜆
𝑛−1)𝑘
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Random Graph

Degree distribution

What is lim𝑛→∞𝑃(𝑘)

lim𝑛→∞
(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑘)

(𝑛 − 1)𝑘
= 1

lim𝑛→∞(1 − 𝜆
𝑛 − 1)

𝑘 = 1

lim𝑛→∞(1 − 𝜆
𝑛 − 1)

𝑛−1 = ?

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 95 / 111



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Graph

Degree distribution

The definiton of 𝑒: 𝑒 = lim𝑥→∞(1 + 1
𝑥)

𝑥

Let us substitute: 𝑛 − 1 = −𝑥𝜆

lim𝑛→∞(1 − 𝜆
𝑛 − 1)

𝑛−1 = lim𝑛→∞(1 + 1
𝑥)

−𝑥𝜆

= lim𝑛→∞((1 + 1
𝑥)

𝑥)−𝜆

= 𝑒−𝜆 (9)

Put it all together: 𝑃(𝑘) = 𝜆𝑘

𝑘! 𝑒
−𝜆

Poisson distribution
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Random Graph

Degree distribution (Poisson)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30
p
(k

)
Degree distribution random graph (n= 21); differing λ values

λ= 2. 0

λ= 8. 0
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Random Graph

Degree distribution (Poisson approximation)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
p
(k

)
Degree distribution random graph (n= 21); Poisson approx. binomial

p= 0. 40

λ= 8. 0
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Random Graph

Clustering coefficient

Probability that two neighbors of a node are themselves connected
What is this probability?

𝐶 = 𝑝
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Random Graph

Clustering coefficient

Probability that two neighbors of a node are themselves connected
What is this probability?
𝐶 = 𝑝
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

What is the size of the largest component in 𝐺(𝑛, 𝑝)?
How does it relate to 𝑛 and 𝑝?
Is there a giant component (GC)?
How many nodes does it occupy?
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Two special cases
When 𝑝 = 0 there are no links in the graph and we have 𝑛
components of size 1
The size of the largest component is constant and does not depend
on 𝑛
When 𝑝 = 1 there are links between all pairs (complete graph) and
the largest component is of size 𝑛
There is a GC and its size depends on 𝑛, i.e. it is exactly 𝑛
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Two qualitatively different states (phases)
What needs to happen with the random graph when we start with
𝑝 = 0 and slowly increase 𝑝 until we reach 𝑝 = 1

With increasing 𝑝 the largest component will become bigger until it
turns into a GC
Until it reaches the size of 𝑛
Transition between two extremes, a.k.a. phase transition
There will be a critical value for 𝑝 at which phase transition occurs
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Two qualitatively different states (phases)
What needs to happen with the random graph when we start with
𝑝 = 0 and slowly increase 𝑝 until we reach 𝑝 = 1
With increasing 𝑝 the largest component will become bigger until it
turns into a GC
Until it reaches the size of 𝑛
Transition between two extremes, a.k.a. phase transition
There will be a critical value for 𝑝 at which phase transition occurs
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

In the second case the size of the GC is in proportion to 𝑛, i.e. it is
exactly 𝑛
That will be our definition of a GC
With this definition we can calculate the size of the GC in 𝐺(𝑛, 𝑝)
With 𝑢 we denote the fraction of nodes that do not belong to the GC
The size of the GC: 𝑆 = 1 − 𝑢
𝑢 is the probability that a randomly chosen node does not belong to
the GC
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Probability of 𝑖 ∈ 𝑉 and 𝑖 ∉ 𝐺𝐶 is 𝑢
For the above to hold it must ∀𝑗 ∈ 𝑉:

1 (𝑖, 𝑗) ∉ 𝐸 or
2 (𝑖, 𝑗) ∈ 𝐸 ⟹ 𝑗 ∉ 𝐺𝐶
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Probability of (1): 1 − 𝑝

Probability of (2): 𝑝𝑢
Total prob. of 𝑖 not connected to GC via 𝑗: 1 − 𝑝 + 𝑝𝑢
Total prob. of 𝑖 not connected to GC via any other node:
(1 − 𝑝 + 𝑝𝑢)𝑛−1

𝑢 = (1 − 𝑝 + 𝑝𝑢)𝑛−1 = (1 − 𝑝(1 − 𝑢))𝑛−1 (10)
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Probability of (1): 1 − 𝑝
Probability of (2): 𝑝𝑢

Total prob. of 𝑖 not connected to GC via 𝑗: 1 − 𝑝 + 𝑝𝑢
Total prob. of 𝑖 not connected to GC via any other node:
(1 − 𝑝 + 𝑝𝑢)𝑛−1

𝑢 = (1 − 𝑝 + 𝑝𝑢)𝑛−1 = (1 − 𝑝(1 − 𝑢))𝑛−1 (10)

Denis Helic (ISDS, TU Graz) Networks March 28, 2020 105 / 111



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Probability of (1): 1 − 𝑝
Probability of (2): 𝑝𝑢
Total prob. of 𝑖 not connected to GC via 𝑗: 1 − 𝑝 + 𝑝𝑢

Total prob. of 𝑖 not connected to GC via any other node:
(1 − 𝑝 + 𝑝𝑢)𝑛−1

𝑢 = (1 − 𝑝 + 𝑝𝑢)𝑛−1 = (1 − 𝑝(1 − 𝑢))𝑛−1 (10)
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Probability of (1): 1 − 𝑝
Probability of (2): 𝑝𝑢
Total prob. of 𝑖 not connected to GC via 𝑗: 1 − 𝑝 + 𝑝𝑢
Total prob. of 𝑖 not connected to GC via any other node:
(1 − 𝑝 + 𝑝𝑢)𝑛−1

𝑢 = (1 − 𝑝 + 𝑝𝑢)𝑛−1 = (1 − 𝑝(1 − 𝑢))𝑛−1 (10)
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

With 𝑘 = 𝑝(𝑛 − 1):

𝑢 = (1 − 𝑘
𝑛 − 1(1 − 𝑢))𝑛−1

𝑙𝑛(𝑢) = (𝑛 − 1)𝑙𝑛(1 − 𝑘
𝑛 − 1(1 − 𝑢))

What happens in the limit of large network size, i.e. when 𝑛 → ∞
𝑘

𝑛−1(1 − 𝑢) → 0
Taylor’s expansion about 1: 𝑙𝑛(1 − 𝑥) ≈ −𝑥 for small 𝑥
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

𝑙𝑛(𝑢) ≈ −(𝑛 − 1) 𝑘
𝑛 − 1(1 − 𝑢)

𝑙𝑛(𝑢) ≈ −𝑘(1 − 𝑢)
𝑢 ≈ 𝑒−𝑘(1−𝑢)

With 𝑆 = 1 − 𝑢:

1 − 𝑆 = 𝑒−𝑘𝑆

𝑆 = 1 − 𝑒−𝑘𝑆
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)
Expression for the size og GC in the limit of large network size
No close form solution but we can solve it graphically

0.0 0.2 0.4 0.6 0.8 1.0
S

0.0

0.2

0.4

0.6

0.8

1.0

y

y=S

y= 1− e−kS, k= 2. 0

y= 1− e−kS, k= 0. 5

y= 1− e−kS, k= ?

Figure: Giant component in a random graph
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Random Graph

Giant component in 𝐺(𝑛, 𝑝)

Phase transition occurs when gradients are equal for 𝑆 = 0
Take derivatives of both sides and substitute 𝑆 = 0:

1 = 𝑘𝑒−𝑘𝑆

𝑘 = 1

Recollect 𝑘 = 𝑝(𝑛 − 1)
For 𝑘 < 1 no GC
For 𝑘 > 1 GC
For 𝑘 = 1 phase transition
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Random Graph

Giant components demo

NetLogo Example
http://www.netlogoweb.org/launch#http:
//www.netlogoweb.org/assets/modelslib/SampleModels/
Networks/GiantComponent.nlogo
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Random Graph

Diameter of 𝐺(𝑛, 𝑝)

Average degree: 𝑘
Starting at a random 𝑖
At distance 1 we have 𝑘 other nodes
At distance 2 we have 𝑘 ⋅ 𝑘 other nodes
At distance 𝑠 we 𝑘

𝑠
other nodes

We can repeat this until 𝑘
𝑠
≈ 𝑛

Or equivallently 𝑠 ≈ 𝑙𝑛(𝑛)
𝑙𝑛(𝑘)

Diameter grows as a logarithm of the number of nodes
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