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Outline

1 Popularity

2 A Simple Hypothesis

3 Log-normal Distributions

4 Power Laws

5 Rich-Get-Richer Models

6 Preferential Attachment

7 Multiplicative Random Processes
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Popularity
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Popularity

Popularity

Popularity is a phenomenon characterized by extreme imbalances
Almost everyone is known only to people in their immediate social
circles
A few people achieve wider visibility
A very few attain global name recognition
Analogy with books, movies, scientific papers
Everything that requires an audience
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Popularity

Popularity: questions

How can we quantify imbalances?

Analyze distributions
Why do these imbalances arise?
What are the mechanisms and processes that cause them?
Are they intrinsic (generalizable, universal) to popularity?
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Popularity

Web as an example

To begin the analysis we take the Web as an example
On the Web it is easy to measure popularity very accurately
E.g. it is difficult to estimate the number of people worldwide who
have heard of Bill Gates
How can we achieve this on the Web?

Take a snapshot of the Web and count the number of in-links to Bill
Gates homepage
Calculate the authority score of Bill Gates homepage
Calculate the PageRank of Bill Gates homepage
We will learn how to calculate these quantities later in the course
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Popularity

The popularity question: a basic version

As a function of 𝑘, what fraction of pages on the Web have 𝑘 in-links
Larger values of 𝑘 indicate greater popularity
Technically, what is the question about?

Distribution of the number of in-links (in-degree distribution) over a
set of Web pages
What is the interpretation of this question/answer?
Distribution of popularity over a set of Web pages
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As a function of 𝑘, what fraction of pages on the Web have 𝑘 in-links
Larger values of 𝑘 indicate greater popularity
Technically, what is the question about?
Distribution of the number of in-links (in-degree distribution) over a
set of Web pages
What is the interpretation of this question/answer?

Distribution of popularity over a set of Web pages
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A Simple Hypothesis

A Simple Hypothesis
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A Simple Hypothesis

A simple hypothesis

Before trying to resolve the question
What do we expect the answer to be?
What distribution do we expect?
What was the degree distribution in the random graph 𝐺(𝑛, 𝑝)?

Binomial and approximation was Poisson
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A Simple Hypothesis

A simple hypothesis

𝑃(𝑘) = (𝑛 − 1
𝑘 )𝑝𝑘(1 − 𝑝)𝑛−1−𝑘

𝑃(𝑘) = 𝜆𝑘

𝑘! 𝑒−𝜆
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A Simple Hypothesis

Degree distribution (Binomial)
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Degree distribution random graph (n= 21); differing p values

p= 0. 10

p= 0. 40
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A Simple Hypothesis

Degree distribution (Poisson)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30
p
(k

)
Degree distribution random graph (n= 21); differing λ values

λ= 2. 0

λ= 8. 0

Denis Helic (KTI, TU Graz) PL-PA April 15, 2020 12 / 78



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Simple Hypothesis

Degree distribution (Poisson approximation)
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A Simple Hypothesis

A simple hypothesis

From our experience how are some typical quantities distributed in
our world?
People’s height, weight, and strength
In engineering and natural sciences
Errors of measurement, position and velocities of particles in various
physical processes, etc.
Continuous approximation of Binomial and Poisson: Normal
Distribution
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A Simple Hypothesis

Normal (Gaussian) distribution

It occurs so often in nature, engineering and society: Normal
Characterized by a mean value 𝜇 and a standard deviation around the
mean 𝜎

PDF

𝑓(𝑥) = 1√
2𝜋𝜎2 𝑒− (𝑥−𝜇)2

2𝜎2

CDF

𝐹(𝑥) = Φ(𝑥 − 𝜇
𝜎 ), Φ(𝑥) = 1√

2𝜋 ∫
𝑥

−∞
𝑒− 𝑥′2

2 𝑑𝑥′
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A Simple Hypothesis

Normal (Gaussian) distribution
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PDF of a Normal random variable; differing µ and σ values

µ=0.0,σ=1.0

µ=−2.0,σ=2.0
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A Simple Hypothesis

Standard normal distribution

If 𝜇 = 0 and 𝜎 = 1 we talk about standard normal distribution

PDF

𝑓(𝑥) = 1√
2𝜋𝑒− 𝑥2

2

Please note, that you can always standardize a random variable 𝑋
with:

Standardizing

𝑍 = 𝑋 − 𝜇
𝜎
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A Simple Hypothesis

Normal (Gaussian) distribution

The basic fact: the density for a value that exceed mean by more
than 𝑐 times the standard deviation decreases exponentially in 𝑐

𝑟(1) = 𝑓(1)
𝑓(0) = �

��1√
2𝜋 𝑒−1/2

�
��1√
2𝜋

= 1√𝑒 ≈ 0.6

𝑟(𝑐𝜎) = 𝑟(𝑐) = 𝑓(𝑐)
𝑓(0) = �

��1√
2𝜋 𝑒−𝑐2/2

�
��1√
2𝜋

= 𝑒−𝑐2/2 = 𝑂(𝑒−𝑐2)
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A Simple Hypothesis

Normal (Gaussian) distribution

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

f(x
)

Prob. of value more than x times exceeding the mean: N(0, 1)
P(|X| > x)
1
2e x

Denis Helic (KTI, TU Graz) PL-PA April 15, 2020 19 / 78



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Simple Hypothesis

Normal (Gaussian) distribution

Why is normal distribution so ubiquitous
Theoretical result: Central Limit Theorem provides an explanation
Informally, we take any sequence of small independent and identically
distributed (i.i.d) random quantities
In the limit of infinitely long sequences their sum (or their average)
are distributed normally
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A Simple Hypothesis

Central Limit Theorem

Theorem
Suppose 𝑋1, … , 𝑋𝑛 are independent and identical r.v. with the
expectation 𝜇 and variance 𝜎2. Let 𝑆𝑛 be the 𝑛-th partial sum of 𝑋𝑖:
𝑆𝑛 = ∑𝑛

𝑖=1 𝑋𝑖.
Let 𝑍𝑛 be a r.v. defined as (standardized 𝑆𝑛):

𝑍𝑛 = 𝑆𝑛 − 𝑛𝜇√𝑛𝜎

The CDF 𝐹𝑛(𝑧) tends to CDF of a standard normal r.v. for 𝑛 → ∞:

lim
𝑛→∞

𝐹𝑛(𝑧) = 1√
2𝜋 ∫

𝑧

−∞
𝑒− 𝑥2

2
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A Simple Hypothesis

Central Limit Theorem

10 5 0 5 10
0.00
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0.10
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0.30

0.35
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0.45

µ= 0. 0, σ= 1. 0

Z30

Central limit theorem with unif. dist. and Z30: µ= − 0. 007, σ2 = 1. 00474
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A Simple Hypothesis

Central Limit Theorem

10 5 0 5 10
0.00
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0.10
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0.45

µ= 0. 0, σ= 1. 0

Z100

Central limit theorem with unif. dist. and Z100: µ= 0. 001, σ2 = 0. 99159
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A Simple Hypothesis

Central Limit Theorem: Proof

Now we present a proof sketch (to better understand the assumptions
that CLT makes)
For the proof we need some preliminaries

Definition
Characteristic function of a real valued r.v. 𝑋 is defined as expectation of
the complex function 𝑒𝑖𝑡𝑋:

𝜑𝑋(𝑡) = 𝐸[𝑒𝑖𝑡𝑋] = ∫
∞

−∞
𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥,

where 𝑡 is the parameter and 𝑓(𝑥) is PDF of r.v. 𝑋.

A characteristic function completely defines PDF of a r.v.
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A Simple Hypothesis

Central Limit Theorem: Proof

To calculate characteristic function we typically apply Taylor
expansion:

𝑒𝑖𝑡𝑋 =
∞

∑
𝑛=0

(𝑖𝑡𝑥)𝑛

𝑛!

= 1 + 𝑖𝑡𝑥 − (𝑡𝑥)2

2 + 𝑂(𝑡3)

Denis Helic (KTI, TU Graz) PL-PA April 15, 2020 25 / 78



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Simple Hypothesis

Central Limit Theorem: Proof

Substituting the expansion into the integral:

𝜑𝑋(𝑡) = ∫
∞

−∞
𝑓(𝑥)𝑑𝑥 + ∫

∞

−∞
𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥 − ∫

∞

−∞

(𝑡𝑥)2

2 𝑓(𝑥)𝑑𝑥 + 𝑂(𝑡3)

= 1 + 𝑖𝑡𝐸[𝑋] − 𝑡2

2 𝐸[𝑋2] + 𝑂(𝑡3)

Now suppose that we have a r.v. 𝑋 with 0 mean and variance 1
(which can be always achieved by standardizing a r.v. with finite
mean and variance):

𝜑𝑋(𝑡) = 1 − 𝑡2

2 + 𝑂(𝑡3)
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A Simple Hypothesis

Central Limit Theorem: Proof

Another important fact of the characteristic functions
Suppose 𝑋 and 𝑌 are two independent r.v.
We want to calculate the characteristic function of r.v. 𝑍 = 𝑋 + 𝑌 :

𝜑𝑋+𝑌 (𝑡) = 𝐸[𝑒𝑖𝑡(𝑋+𝑌 )] = 𝐸[𝑒𝑖𝑡𝑋𝑒𝑖𝑡𝑌 ] = 𝐸[𝑒𝑖𝑡𝑋]𝐸[𝑒𝑖𝑡𝑌 ]
= 𝜑𝑋(𝑡)𝜑𝑌 (𝑡)

Last equality in the first row follows from the independence
The last fact that we need: if 𝑍 ∼ 𝑁(0, 1) then 𝜑𝑍(𝑡) = 𝑒−𝑡2/2
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A Simple Hypothesis

Central Limit Theorem: Proof

Suppose now we have a set of random variables with individual
𝑋𝑖 ∼ (𝜇, 𝜎2) which are all independent and identically distributed
(i.i.d.)
Note that we do not make assumptions on the distribution of 𝑋𝑖 just
that they have finite 𝜇 and 𝜎2

We build a new r.v. 𝑆𝑛 = ∑𝑛
𝑖=1 𝑋𝑖 as the 𝑛-th partial sum

𝐸[𝑆𝑛] =
𝑛

∑
𝑖=1

𝐸[𝑋𝑖] =
𝑛

∑
𝑖=1

𝜇 = 𝑛𝜇

𝑉 𝑎𝑟(𝑆𝑛) =
𝑛

∑
𝑖=1

𝑉 𝑎𝑟(𝑋𝑖) =
𝑛

∑
𝑖=1

𝜎2 = 𝑛𝜎2
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A Simple Hypothesis

Central Limit Theorem: Proof

Now we standardize 𝑆𝑛 to obtain 𝑍𝑛:

𝑍𝑛 = 𝑆𝑛 − 𝐸[𝑆𝑛]
√𝑉 𝑎𝑟(𝑆𝑛)

= 𝑆𝑛 − 𝑛𝜇√𝑛𝜎 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝜇)√𝑛𝜎

By introducing 𝑌𝑖 = 𝑋𝑖−𝜇
𝜎 (please note that 𝑌𝑖 is standardization of

𝑋𝑖, i.e. 𝑌𝑖 ∼ (0, 1):

𝑍𝑛 = ∑𝑛
𝑖=1 𝑌𝑖√𝑛
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A Simple Hypothesis

Central Limit Theorem: Proof

Now let us calculate 𝜑𝑍𝑛
(𝑡) (where we use the fact that characteristic

function of the sum equals to the product of characteristic functions
if r.v. are independent and we scale the parameter 𝑡 with 1/√𝑛):

𝜑𝑍𝑛
=

𝑛
∏
𝑖=1

𝜑𝑌𝑖
(𝑡/√𝑛) = [𝜑𝑌 (𝑡/√𝑛)]𝑛

= [1 − 𝑡2

2𝑛 + 𝑂((𝑡/√𝑛)3)]𝑛
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A Simple Hypothesis

Central Limit Theorem: Proof

Now we are interested what happens when 𝑛 → ∞
Obviously 𝑂((𝑡/√𝑛)3) → 0
Thus, we have:

lim
𝑛→∞

𝜑𝑍𝑛
= lim

𝑛→∞
[1 − 𝑡2

2𝑛]𝑛 = 𝑒−𝑡2/2

We obtain the characteristic function of standard normal and thus
lim𝑛→∞ 𝑍𝑛 ∼ 𝑁(0, 1)
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A Simple Hypothesis

Central Limit Theorem

How can we interpret this result?

Any quantity that can be viewed as a sum of many small independent
random effects will have a normal distribution
E.g. we take a lot of measurements of a fixed physical quantity
Variations in the measurements across trials are cumulative results of
many independent sources of errors
E.g. errors in the equipment, human errors, changes in external
factors
Then the distribution of measured values is normally distributed
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A Simple Hypothesis

Central Limit Theorem

How can we interpret this result?
Any quantity that can be viewed as a sum of many small independent
random effects will have a normal distribution
E.g. we take a lot of measurements of a fixed physical quantity
Variations in the measurements across trials are cumulative results of
many independent sources of errors
E.g. errors in the equipment, human errors, changes in external
factors
Then the distribution of measured values is normally distributed
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A Simple Hypothesis

Central Limit Theorem

Can you explain why examination grades tend to be normally
distributed?

Each student is a small “random factor”
The points for each question are a random variable, which are i.i.d
Then the sum (average) of the points will be according to CLT
normally distributed
If the distribution of exam grades for a course is not normal what can
be going on?
Too strict, too loose, discrimination, independence is broken, not
identically distributed, etc.
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A Simple Hypothesis

Central Limit Theorem

Can you explain why examination grades tend to be normally
distributed?
Each student is a small “random factor”
The points for each question are a random variable, which are i.i.d
Then the sum (average) of the points will be according to CLT
normally distributed
If the distribution of exam grades for a course is not normal what can
be going on?

Too strict, too loose, discrimination, independence is broken, not
identically distributed, etc.
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A Simple Hypothesis

Central Limit Theorem

Can you explain why examination grades tend to be normally
distributed?
Each student is a small “random factor”
The points for each question are a random variable, which are i.i.d
Then the sum (average) of the points will be according to CLT
normally distributed
If the distribution of exam grades for a course is not normal what can
be going on?
Too strict, too loose, discrimination, independence is broken, not
identically distributed, etc.
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A Simple Hypothesis

How to apply this on the Web?

If we model the link structure by assuming that each page decides
independently at random to which page to link to
Then the number of in-links for any given page is the sum of many
i.i.d quantities
Hence, we expect it to be normally distributed
If we believe that this model is correct:
Then the number of pages with 𝑘 in-links should decrease
exponentially in 𝑘 as 𝑘 grows
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Log-normal Distributions

Log-Normal Distribution
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Log-normal Distributions

Log-Normal Distribution

If 𝑋 is log-normally distributed ⇔ 𝑌 = 𝑙𝑛(𝑋) is normally distributed
If 𝑌 is normally distributed ⇔ 𝑋 = 𝑒𝑌 is log-normally distributed
Characterized by a mean value 𝜇 and a standard deviation around the
mean 𝜎

PDF

𝑓(𝑥) = 1
𝑥𝜎

√
2𝜋𝑒− (𝑙𝑛(𝑥)−𝜇)2

2𝜎2
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Log-normal Distributions

Log-Normal Distribution

0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
p
(x

)
PDF of a Log-Normal random variable; differing µ and σ values

µ= 0. 00, σ= 0. 25

µ= 0. 00, σ= 1. 00
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Log-normal Distributions

Multiplicative random processes

Multiplicative random processes lead to log-normal distributions
Suppose we have a set of random variables with individual
𝑋𝑖 ∼ (𝜇, 𝜎2) which are all independent and identically distributed
(i.i.d.)
Note that we do not make assumptions on the distribution of 𝑋𝑖 just
that they have finite 𝜇 and 𝜎2

We build a new r.v. 𝑃𝑛 = ∏𝑛
𝑖=1 𝑋𝑖 as the 𝑛-th partial product

We claim that lim𝑛→∞ 𝑃𝑛 is log-normally distributed
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Log-normal Distributions

Multiplicative random processes

𝑃𝑛 =
𝑛

∏
𝑖=1

𝑋𝑖

𝑙𝑛(𝑃𝑛) =
𝑛

∑
𝑖=1

𝑙𝑛(𝑋𝑖)

From the CLT we now that 𝑙𝑛(𝑃𝑛) tends to standard normal
Thus, 𝑃𝑛 tends to log-normal distribution
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Power Laws

Power Laws
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Power Laws

Power Laws

When people measured the distribution of links on the Web they
found something very different to Normal distribution
In all studies over many different Web snapshots:
The fraction of Web pages that have 𝑘 in-links is approximately
proportional to 1/𝑘2

More precisely the exponent on 𝑘 is slightly larger than 2
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Power Laws

Power Laws

What is the difference to the normal distribution?
1/𝑘2 decreases much more slowly as 𝑘 increases
Pages with large number of in-links are much more common than we
would expect with a normal distribution
E.g. 1/𝑘2 for 𝑘 = 1000 is one in million
One page in million will have 1000 in-links
For a function like 𝑒−𝑘 or 2−𝑘 this is unimaginably small
No page will have 1000 in-links
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Power Laws

Power Laws

A function that decreases as 𝑘 to some fixed power 1/𝑘𝑐, e.g. 1/𝑘2 is
called power law
The basic property: it is possible to see very large values of 𝑘
This is a quantitative explanation of popularity imbalance
It accords to our intuition for the Web: there is a reasonable large
number of extremely popular Web pages
We observe similar power laws in many other domains
The fraction of books that are bought by 𝑘 people: 1/𝑘3

The fraction of scientific papers that receive 𝑘 citations: 1/𝑘3, etc.
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Power Laws

Power Laws

The normal distribution is widespread in natural sciences and
engineering
Power laws seem to dominate whenever popularity is involved, i.e.
(informally) in social sciences and/or e.g. psychology
Conclusion: if you analyze the user data of any kind
E.g. the number of downloads, the number of emails, the number of
tweets
Expect to see a power law
Test for power law: histogram + test if 1/𝑘𝑐 for some 𝑐
If yes estimate 𝑐
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Power Laws

Power Law Histogram

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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PMF of a power law r. v.; differing c values
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Power Laws

Power Law check: a simple method

A simple visual method
Let 𝑓(𝑘) be the fraction of items that have value 𝑘
We want to know id 𝑓(𝑘) = 𝑎/𝑘𝑐 approximately holds for some
exponent 𝑐 and some proportion constant 𝑎
Let us take the logarithms of both sides

𝑙𝑛(𝑓(𝑘)) = 𝑙𝑛(𝑎) − 𝑐 ⋅ 𝑙𝑛(𝑘)
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Power Laws

Power Law Log-Log Plot
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k
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PMF of a power law r. v.; differing c values
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Power Laws

Power Law check: a simple method

If we plot 𝑓(𝑘) on a log-log scale we expect to see a straight line
−𝑐 is the slop and 𝑙𝑛(𝑎) will be the 𝑦-intercept
This is only a simple check to see if there is an apparent power law
behavior
Do not use this method to estimate the parameters!
There are statistically sound methods to that
We discuss them in some other courses e.g. Network Science

Denis Helic (KTI, TU Graz) PL-PA April 15, 2020 48 / 78



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Power Laws

Power Law check: a simple method
546 CHAPTER 18. POWER LAWS AND RICH-GET-RICHER PHENOMENA

Figure 18.2: A power law distribution (such as this one for the number of Web page in-links,
from Broder et al. [80]) shows up as a straight line on a log-log plot.

in total is roughly proportional to 1/k3; and there are many related examples [10, 320].

Indeed, just as the normal distribution is widespread in a family of settings in the natural

sciences, power laws seem to dominate in cases where the quantity being measured can be

viewed as a type of popularity. Hence, if you are handed data of this sort — say, for example,

that someone gives you a table showing the number of monthly downloads for each song at

a large on-line music site that they’re hosting — one of the first things that’s worth doing

is to test whether it’s approximately a power law 1/kc for some c, and if so, to estimate the

exponent c.

There’s a simple method that provides at least a quick test for whether a dataset exhibits

a power-law distribution. Let f(k) be the fraction of items that have value k, and suppose you

want to know whether the equation f(k) = a/kc approximately holds, for some exponent

c and constant of proportionality a. Then, if we write this as f(k) = ak−c and take the

logarithms of both sides of this equation, we get

log f(k) = log a− c log k.

This says that if we have a power-law relationship, and we plot log f(k) as a function of log k,

then we should see a straight line: −c will be the slope, and log a will be the y-intercept.

Such a “log-log” plot thus provides a quick way to see if one’s data exhibits an approximate

power-law: it is easy to see if one has an approximately straight line, and one can read off

the exponent from the slope. For example, Figure 18.2 does this for the fraction of Web

pages with k in-links [80].

But if we are going to accept that power laws are so widespread, we also need a simple

explanation for what is causing them: just as the Central Limit Theorem gave us a very

Figure: From Broder et al. (Graph Structure in the Web)
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Power Laws

Why Power Law?

We need a simple explanation for what causes Power Laws?
Central Limit Theorem gives us a basic reason to expect the normal
distribution
Technically, we also need to find out why CLT does not apply in this
case
Which of its assumptions are broken?
Sum of independent random effects
What is broken?

Independence assumption
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Power Laws

Why Power Law?

We need a simple explanation for what causes Power Laws?
Central Limit Theorem gives us a basic reason to expect the normal
distribution
Technically, we also need to find out why CLT does not apply in this
case
Which of its assumptions are broken?
Sum of independent random effects
What is broken?
Independence assumption
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Power Laws

Why Power Law?

Power Laws arise from the feedback introduced by correlated
decisions across a population
In networks person’s decisions depend on the choices of other people
E.g. peer influence/pressure
E.g. success, activity, but also examples of bad influence
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Power Laws

Why Power Law?

In an information network you are exposed to the information by the
others, not necessarily only peers
E.g. reply, retweet, post, etc.
An assumption: people tend to copy the decisions of people who act
before them
E.g. people tend to copy their friends when they buy books, go to
movies, etc.
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Power Laws

Why Power Law?

Many different possibilities to generate power laws such as:
1 Rich-get-richer models, aka preferential attachment, aka correlated

models
2 Multiplicative random processes
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Rich-Get-Richer Models
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Rich-Get-Richer Models

Simple copying model

Creation of links among Web pages
1 Pages are created in order and named 1, 2, 3, … , 𝑁
2 When page 𝑗 is created it produces a link to an earlier Web page

(𝑖 < 𝑗) with 𝑝 being a number between 0 and 1:
(a) With probability 𝑝, page 𝑗 chooses a page 𝑖 uniformly at random and

links to 𝑖
(b) With probability 1 − 𝑝, page 𝑗 chooses a page 𝑖 uniformly at random

and creates a link to the page that 𝑖 points to
(c) The step number 2 may be repeated multiple times to create multiple

links
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Rich-Get-Richer Models

Simple copying model

Part 2(b) is the key
After finding a random page 𝑖 in the population the author of page 𝑗
does not link to 𝑖
Instead the author copies the decision made by the author of 𝑖
The main result about this model is that if you run it for many pages
The fraction of pages with 𝑘 in-links will be distributed approximately
as a 1/𝑘𝑐

The exponent 𝑐 depends on the choice of 𝑝
Intuition: if 𝑝 gets smaller what do you expect

More copying makes seeing extremely popular pages more likely
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Rich-Get-Richer Models

Simple copying model

Part 2(b) is the key
After finding a random page 𝑖 in the population the author of page 𝑗
does not link to 𝑖
Instead the author copies the decision made by the author of 𝑖
The main result about this model is that if you run it for many pages
The fraction of pages with 𝑘 in-links will be distributed approximately
as a 1/𝑘𝑐

The exponent 𝑐 depends on the choice of 𝑝
Intuition: if 𝑝 gets smaller what do you expect
More copying makes seeing extremely popular pages more likely
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Rich-Get-Richer Models

Rich-get-richer dynamics

The copying mechanism in 2(b) is an implementation of the following
“rich-get-richer” mechanism
When you copy the decision of a random earlier page what is the
probability of linking to a page ℓ

It is proportional to the total number of pages that currently link to ℓ

(a) …
(b) With probability 1 − 𝑝, page 𝑗 chooses a page ℓ with probability

proportional to ℓ’s current number of in-links and links to ℓ
(c) ...
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Rich-get-richer dynamics

The copying mechanism in 2(b) is an implementation of the following
“rich-get-richer” mechanism
When you copy the decision of a random earlier page what is the
probability of linking to a page ℓ
It is proportional to the total number of pages that currently link to ℓ

(a) …
(b) With probability 1 − 𝑝, page 𝑗 chooses a page ℓ with probability

proportional to ℓ’s current number of in-links and links to ℓ
(c) ...
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Preferential Attachment

Preferential Attachment

Denis Helic (KTI, TU Graz) PL-PA April 15, 2020 58 / 78



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preferential Attachment

Preferential attachment

Why do we call this “rich-get-richer” rule?
The probability that page ℓ increases its popularity is directly
proportional to ℓ’s current popularity
This phenomenon is also known as preferential attachment
E.g. the more well known someone is, the more likely likely you are to
hear their name in conversations
A page that gets a small lead over others tends to extend that lead
On contrary, the idea behind CLT is that small independent random
values tend to cancel each other out
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Preferential Attachment

Arguments for simple models

The goal of simple models is not to capture all the reasons why
people create links on the Web
The goal is to show that a simple principle leads directly to observable
properties, e.g. Power Laws
Thus, they are not as surprising as they might first appear
“Rich-get-richer” models suggest also a basis for Power Laws in other
areas as well
E.g. the populations of cities
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Preferential Attachment

Analytic handling of simple models

Simple models can be sometimes handled analytically
This allows also for prediction of how networks may evolve
We can also easily cover extensions of the model
Predict consequences of these extensions
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Preferential Attachment

Simple “rich-get-richer” model

Creation of links among Web pages
1 Pages are created in order and named 1, 2, 3, … , 𝑁
2 When page 𝑗 is created it produces a link to an earlier Web page

(𝑖 < 𝑗) with 𝑝 being a number between 0 and 1:
(a) With probability 𝑝, page 𝑗 chooses a page 𝑖 uniformly at random and

links to 𝑖
(b) With probability 1 − 𝑝, page 𝑗 chooses a page ℓ with probability

proportional to ℓ’s current number of in-links and links to ℓ
(c) The step number 2 may be repeated multiple times to create multiple

links
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Preferential Attachment

Analysis of the simple “rich-get-richer” model

We have specified a randomized process that runs for 𝑁 steps
We want to determine the expected number of pages with 𝑘 in-links
at the end of the process
In other words, we want to analyze the distribution of the in-degree
Many possibilities to approach this
We will make a continuous approximation to be able to use
introductory calculus
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Preferential Attachment

Properties of the original model

The number of in-links to a node 𝑗 at time 𝑡 ≥ 𝑗 is a random variable
𝑋𝑗(𝑡)
Two facts that we know about 𝑋𝑗(𝑡):

1 The initial condition: node 𝑗 starts with no in-links when it is created,
i.e. 𝑋𝑗(𝑗) = 0

2 The expected change to 𝑋𝑗(𝑡) over time, i.e. probability that node 𝑗
gains an in-link at time 𝑡 + 1:

(a) With probability 𝑝 the new node links to a random node – probability
to choose 𝑗 is 1/𝑡, i.e. altogether 𝑝/𝑡

(b) With probability 1 − 𝑝 the new node links proportionally to the current
number of in-links – probability to choose 𝑗 is 𝑋𝑗(𝑡)/𝑡, i.e. altogether
(1 − 𝑝)𝑋𝑗(𝑡)/𝑡

3 The overall probability that node 𝑡 + 1 links to 𝑗: 𝑝
𝑡 + (1−𝑝)𝑋𝑗(𝑡)

𝑡
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Preferential Attachment

Approximation

We have now an equation which tells us how the expected number of
in-links evolves in discrete time
We will approximate this function by a continuous function of time
𝑥𝑗(𝑡) (to be able to use calculus)
The two properties of 𝑋𝑗(𝑡) now translate into:

1 The initial condition: 𝑥𝑗(𝑗) = 0 since 𝑋𝑗(𝑗) = 0
2 The expected gain in the number of in-links now becomes the growth

equation (which is a differential equation):

𝑑𝑥𝑗
𝑑𝑡 = 𝑝

𝑡 + (1 − 𝑝)𝑥𝑗
𝑡

Now by solving the differential equation we can explore the
consequences
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Preferential Attachment

Solution

For notational simplicity, let 𝑞 = 1 − 𝑝
The differential equation becomes:

𝑑𝑥𝑗
𝑑𝑡 = 𝑝 + 𝑞𝑥𝑗

𝑡
Separate variables (𝑥 on the left side, 𝑡 on the right side):

𝑑𝑥𝑗
𝑝 + 𝑞𝑥𝑗

= 𝑑𝑡
𝑡
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Preferential Attachment

Solution

Integrate both sides:

∫ 𝑑𝑥𝑗
𝑝 + 𝑞𝑥𝑗

= ∫ 𝑑𝑡
𝑡

We obtain:

𝑙𝑛(𝑝 + 𝑞𝑥𝑗) = 𝑞𝑙𝑛(𝑡) + 𝑐
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Preferential Attachment

Solution

Exponentiating both sides (and writing 𝐶 = 𝑒𝑐):

𝑝 + 𝑞𝑥𝑗 = 𝐶𝑡𝑞

Rearranging:

𝑥𝑗(𝑡) = 1
𝑞 (𝐶𝑡𝑞 − 𝑝)
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Preferential Attachment

Solution

We can determine 𝐶 from the initial condition (𝑥𝑗(𝑗) = 0):

0 = 1
𝑞 (𝐶𝑗𝑞 − 𝑝)

𝐶 = 𝑝
𝑗𝑞

Final solution:

𝑥𝑗(𝑡) = 1
𝑞 ( 𝑝

𝑗𝑞 𝑡𝑞 − 𝑝) = 𝑝
𝑞 [( 𝑡

𝑗)
𝑞

− 1]
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Preferential Attachment

Identifying a power law

Now we know how 𝑥𝑗 evolves in time
We want to answer question: for a given value of 𝑘 and a time 𝑡 what
fraction of nodes have at least 𝑘 in-links at time 𝑡
In other words what fraction of functions 𝑥𝑗(𝑡) satisfies: 𝑥𝑗(𝑡) ≥ 𝑘

𝑥𝑗(𝑡) = 𝑝
𝑞 [( 𝑡

𝑗)
𝑞

− 1] ≥ 𝑘

Rewriting in terms of 𝑗:

𝑗 ≤ 𝑡 [𝑞
𝑝𝑘 + 1]

−1/𝑞
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Preferential Attachment

Identifying a power law

The fraction of values 𝑗 that satisfy the condition is simply:

1
𝑡 𝑡 [𝑞

𝑝𝑘 + 1]
−1/𝑞

= [𝑞
𝑝𝑘 + 1]

−1/𝑞

This is the fraction of nodes that have at least 𝑘 in-links
In probability this is complementary cumulative distribution function
(CCDF) 𝐹(𝑘)
The probability density 𝑓(𝑘) (the fraction of nodes that has exactly 𝑘
in-links) is then 𝑓(𝑘) = −𝑑𝐹(𝑘)

𝑑𝑘
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Preferential Attachment

Identifying a power law

Differentiating:

𝑓(𝑘) = −𝑑𝐹(𝑘)
𝑑𝑘 = 1

𝑞
𝑞
𝑝 [𝑞

𝑝𝑘 + 1]
−1−1/𝑞

= 1
𝑝 [𝑞

𝑝𝑘 + 1]
−1−1/𝑞

The fraction of nodes with 𝑘 in-links is proportional to 𝑘−(1+1/𝑞)

It is a power law with exponent:

1 + 1
𝑞 = 1 + 1

1 − 𝑝
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Preferential Attachment

Discussion of the results

What happens with the exponent when we vary 𝑝
When 𝑝 is close to 1 the links creation is mainly random
The power law exponent tends to infinity and nodes with large
number of in-links are increasingly rare
When 𝑝 is close to 0 the growth of the network is strongly governed
by “rich-get-richer” behavior
The exponent decreases towards 2 allowing for many nodes with large
number of in-links
2 is natural limit for the exponent and this fits very well in what has
been observed on the Web (exponents are slightly over 2)
Simple model but extensions are possible
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Multiplicative Random Processes
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Multiplicative Random Processes

Multiplicative random processes

Multiplicative random processes lead to log-normal distributions
With a small modification of the process we can also obtain power
law distributions
Suppose we have a set of random variables with individual
𝑋𝑖 ∼ (𝜇, 𝜎2) which are all independent and identically distributed
(i.i.d.)
Note that we do not make assumptions on the distribution of 𝑋𝑖 just
that they have finite 𝜇 and 𝜎2

We build a new r.v. 𝑃𝑛 = ∏𝑛
𝑖=1 𝑋𝑖 as the 𝑛-th partial product

We also introduce a threshold that defines a minimal value for the
product
If the product falls below the threshold we reset it to the threshold
This results in a power law distribution
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Multiplicative Random Processes

Summary

We have learned about:
Popularity as a network phenomenon
CLT and sums of independent random quantities
Power Laws
“Rich-get-richer” and preferential attachment
Multiplicative random processes
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Multiplicative Random Processes

Some Practical Examples

The long tail in the media industry
Selling “blockbusters” vs. selling “niche products”
Various strategies in recommender systems
E.g. recommend “niche products” to make money from the long tail
We can either reduce or amplify “rich-get-richer” effects
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Multiplicative Random Processes

Thanks for your attention - Questions?

Slides use figures from Chapter 18, Crowds and Markets by Easley and
Kleinberg (2010)
http://www.cs.cornell.edu/home/kleinberg/networks-book/
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