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Repetition

Information Networks

Shape of the Web

Hubs and Authorities
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PageRank

Intuition from last time: links as votes (HITS algorithm)

Page more important if it has many in-links
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PageRank Algorithm

Method to determine link popularity of a page

The more links point to a page, the higher its weight (i.e., its
PageRank)

If page linked from page with high PageRank, the higher the
PageRank of page

Aim of algorithm: sort links according to PageRank to derive ranking

Intuition: random surfer
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The basic definition of PageRank

We compute PageRank in the following way:

1 Given a Web graph with n nodes assign each node initial PageRank 1/n

2 Choose a number of steps k

3 Perform a sequence of k updates where we calculate rank of each node:
each page divides and passes its current PageRank equally across its
out-going links. Each page updates its new PageRank to be the sum of
the shares it receives.
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PageRank Example: First two steps
14.3. PAGERANK 407

B

A

C

FD E

H

G

Figure 14.6: A collection of eight pages: A has the largest PageRank, followed by B and C
(which collect endorsements from A).

endorsements.

The basic definition of PageRank. Intuitively, we can think of PageRank as a kind of

“fluid” that circulates through the network, passing from node to node across edges, and

pooling at the nodes that are the most important. Specifically, PageRank is computed as

follows.

• In a network with n nodes, we assign all nodes the same initial PageRank, set to be

1/n.

• We choose a number of steps k.

• We then perform a sequence of k updates to the PageRank values, using the following

rule for each update:

Basic PageRank Update Rule: Each page divides its current PageRank equally

across its out-going links, and passes these equal shares to the pages it points

to. (If a page has no out-going links, it passes all its current PageRank to

itself.) Each page updates its new PageRank to be the sum of the shares it

receives.

All pages start out with a PageRank of 1/8. PR(A) =1/2. It gets all of F,
G, H and half of D and E. What about B and C?
PR(B) and PR(C): get half of A’s PR, so only 1/16

Step
Page A B C D E F G H

1 1/2 1/16 1/16 1/16 1/16 1/16 1/16 1/8
2 5/16 1/4 1/4 1/32 1/32 1/32 1/32 1/16

Careful: error in book, page 408!
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Example for PageRank Scores
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PageRank vs HITS

Can you think of the major difference between PageRank and HITS?

Unlike HITS, PageRank is independent of the search query!
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Equilibrium Values of PageRank

Similarly as with hub-authority computation if we increase the
number of iteration steps k the values will become stable and will not
change anymore

The calculation converges and we reach an equilibrium

One can prove this convergence

One can also prove that for a strongly connected network the
equilibrium values are unique

Elisabeth Lex (ISDS, TU Graz) Links June 4, 2020 9 / 34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A basic problem with PageRank: Example

Now, F and G point to each
other and not to A
PageRank that flows from C to
F and G can never flow back to
the network
Links out of C - “slow leak”, all
the PageRank ends up at F and
G

410 CHAPTER 14. LINK ANALYSIS AND WEB SEARCH

B

A

C

FD E

H

G

Figure 14.8: The same collection of eight pages, but F and G have changed their links to
point to each other instead of to A. Without a smoothing effect, all the PageRank would go
to F and G.

And it becomes a problem in almost any real network to which PageRank is applied: as

long as there are small sets of nodes that can be reached from the rest of the graph, but

have no paths back, then PageRank will build up there.1 Fortunately, there is a simple and

natural way to modify the definition of PageRank to get around this problem, and it follows

from the “fluid” intuition for PageRank. Specifically, if we think about the (admittedly

simplistic) question of why all the water on earth doesn’t inexorably run downhill and reside

exclusively at the lowest points, it’s because there’s a counter-balancing process at work:

water also evaporates and gets rained back down at higher elevations.

We can use this idea here. We pick a scaling factor s that should be strictly between 0

and 1. We then replace the Basic PageRank Update Rule with the following:

Scaled PageRank Update Rule: First apply the Basic PageRank Update Rule.

Then scale down all PageRank values by a factor of s. This means that the total

PageRank in the network has shrunk from 1 to s. We divide the residual 1 − s

units of PageRank equally over all nodes, giving (1− s)/n to each.

1If we think back to the bow-tie structure of the Web from Chapter 13, there is a way to describe the

problem in those terms as well: there are many “slow leaks” out of the giant SCC, and so in the limit, all

nodes in the giant SCC will get PageRank values of 0; instead, all the PageRank will end up in the set OUT

of downstream nodes.

Results in convergence to PageRank of 1/2 for each of F and G
Others have PageRank of 0
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A basic problem with PageRank

Wrong nodes may end up with “all” the PageRank

If graph is not strongly connected - complete PageRank will leak to
nodes in OUT

Therefore: scale down all values by a scaling factor s (strictly between
0 and 1)

Divide the residual 1− s equally over all nodes giving (1− s)/n to each

Preserves the total PageRank in the network - based on redistribution

Can be shown that this rule converges and that no PageRank is
leaking
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Limit of the Scaled Update

Repeated application converges to set of limiting PageRank values as
number of updates k goes to infinity

These limiting values form the unique equilibrium: unique set of
values that remains unchanged under application of update rule

Depend on choice of scaling factor s

In practice: scaling factor s usually between 0.8 and 0.9
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The “Flow” model of PageRank

Remember: page important if linked from other important pages

Plus, a “vote” (via in-link) from an important page is worth more

Based on that, we can define the rank” rj for a page j

rj =
∑
i→j

ri
di

(1)

where di is the out-degree of node i

Intuitively, we can think of PageRank as a kind of fluid that “flows”
through the network

The fluid passes from node to node across links

It pools at the nodes that are the most important
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Example

ry = ry/2 + ra/2
ra = ry/2 + rm/1

rm = ra/2

These are called “flow” equations
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Solving the equations

In the last example: 3 equations, 3 unknowns, no constants
This means, there is no unique solution to them
We need an additional constraint to enforce unique solution
Ranks need to sum up to 1, i.e.
This means that for our small graph:
ry = ry/2 + ra/2
ra = ry/2 + rm/1
rm = ra/2
ry + ra + rm = 1
So we have 3 unknowns and 4 equations - solvable through
elimination
Solution: ry = 2/5, ra = 2/4, rm = 1/5
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Matrix Formulation

Elimination does not apply to large scale graphs
We need a different formulation of the problem
Matrix formulation: Stochastic adjacency matrix M

Let page i have di out-links
if i → j, then Mji =

1
di

else Mji = 0 where M is a column stochastic
matrix, i.e., columns sum up to 1

Rank vector r: vector with an entry per page
Length of r is the number of pages in our sample

ri corresponds to pagerank score of page i∑
i ri = 1 due to constraint of flow equations

Thus, we can write the flow equations from before as vector-matrix
product:
r = M · r
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Matrix Formulation: Example

Flow equation as sum: rj =
∑

i→j
ri
di

Flow equations in matrix form as vector-matrix product: r = M · r
Let’s assume page i, which has links to 3 pages, i.e. di = 3. One of
the pages it links to is page j.
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Matrix Formulation

Recursive maxtrix equation r = M · r resembles an eigenvalue problem

Eigenvalue problem definition:

Definition
Vector x is an eigenvector with the corresponding eigenvalue λ if they are
a solution to the following problem: Ax = λx

Note that A is given, and we aim to compute x and λ
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Matrix Formulation

Equation r = M · r looks similar to Ax = λx
In other words: rank vector r is an eigenvector of stochastic web
matrix M
What is the value of λ?
Rank vector r is not any eigenvector, but its principal eigenvector, i.e.,
its corresponding eigenvalue is 1, ergo λ = 1
Reason: vector r has unit length (its coordinates are nonnegative and
sum to 1, also called “stochastic vector”)
Plus, each column of M sums up to 1 (M is “column stochastic”)
This means: M · r ≤ 1
Hence, largest eigenvalue of M = 1

This can be efficiently solved for r using Power iteration method
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Example:

ry = ry/2 + ra/2
ra = ry/2 + rm/1
rm = ra/2
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Random Walks Interpretation: An equivalent definition of
PageRank

So far, we computed PageRank using flow equations and in terms of
matrix formulation

Now, we will look at an interpretation what PageRank scores reflect

Random Walk Interpretation

PageRank scores equivalent to probability distribution of a random
walker on the graph
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Random Walk Interpretation: An equivalent definition of
PageRank

Consider someone who is randomly browsing a network of Web pages - a
“random web surfer”

Surfer starts at any time t by choosing a page i at random, picking
each page with equal probability

At time t+ 1, surfer picks uniformly at random an out-going link from
page i and follows it

Ends up on some page j linked from i

Process repeats indefinitely

If page j has no out-going links, surfer stays

This is called a Random Walk on the network
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Random Walk Interpretation

With what probability is a random walker at time t at a given page?

Let p(t) be a vector whose coordinate i denote the probability that
the surfer is at page i at time t

Thus, p(t) gives us a probability distribution over pages
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Random Walk Interpretation

Where is the random walker going to be at time t + 1?

Random walker follows an out-going link uniformly at random

Thus: p(t + 1) = M · p(t)

Suppose random walk reaches a state p(t + 1) = M · p(t) = p(t), then
p(t) is called stationary distribution of a random walk

Remember: rank vector r = M · p(t)

In other words: r is a stationary distribution for the random walk
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What does that mean?

PageRank scores correspond to probability is at a given node at a
given time step

A side note: random walks are effectively Markov processes

Why is that important? Because for graphs that satisfy certain
conditions, the stationary distribution is unique and will be reached at
some point regardless of the initial probability distribution at time
t = 0

This means that there are conditions under which PageRank vector r
is unique and will be achieved regardless of initialization
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Problems with real web graphs

Spider traps: a group of one or more pages that have no links out of
the group will eventually accumulate all the importance of the Web

Problem: eventually, group absorbs all the PageRank scores

Dead ends: some pages have no out-links

Problem: dead ends make PageRank “leak out”
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Random Teleports as solution

At each step, random surfer has 2 options:

With probability β, follow a link at random

With probability 1 − β, jump to some random page

In practice, β = 0.8, 0.9

This enables random walker to teleport out of dead end within few
time steps
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Problem with dead ends

Problem: Pages with 0 out-degree - their PageRank does not get
distributed (“leaks out”)
What is apparent if we look at matrix M?

It is not stochastic anymore! Why? Node m has 0 out-degree
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Solution: Teleports

Teleports help us make matrix M stochastic

Whenever all the entries for a column in M are 0, we can replace them
with 1/di where di is the out-degree of node i

Teleports help us make matrix M aperiodic

Random walker can teleport out of loops

Teleports help us make matrix M irreducible1

Teleports help us add random jumps to matrix M

1Irreducability: from any state, there is a non-zero probability of going from any one
state to any other
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Google’s Solution: Random Jumps

Idea: combines all of this:

Make matrix M stochastic, aperiodic, irreducible

At each step, random surfer has 2 options:

With probability β, follow a link at random

With probability 1 − β, jump to some random page

PageRank equation [Brin-Page, 1998]

rj =
∑
i→j

β
ri
di

+ (1 − β)
1
n (2)
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Limitations of PageRank

PageRank measures general popularity / importance of a page - Why
a problem?

Neglects topic-specific authorities

Topic-specific PageRank

Susceptible to Link spam

Link structures created to boost PageRank

Solution: TrustRank
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Some Practical Examples for PageRank

PageRank on protein interaction graphs2

Social Media Analysis3

Altmetrics and Analysis of Readership Data on Mendeley4

2http://rsos.royalsocietypublishing.org/content/2/4/140252.abstract
3http://www.cs.columbia.edu/~ecj2122/research/social_higgs/jubb_

facheris_discovery_of_the_higgs.pdf
4http://arxiv.org/abs/1504.07482
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Summary

We have learned about:

PageRank

Random Walks

Problems with PageRank: dead ends

Teleportation as solution

Some applications beyond web search and ranking
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Thanks for your attention

elisabeth.lex@tugraz.at

Slides use figures and content from Mining of Massive Datasets by Jure
Leskovec, Anand Rajaraman, Jeff Ullman. See http://www.mmds.org/

Elisabeth Lex (ISDS, TU Graz) Links June 4, 2020 34 / 34

http://www.mmds.org/

