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Introduction

Do I know somebody in...?
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Introduction

The Kevin Bacon Game
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Introduction

The Erdös Number

Who was Erdös?
http://www.oakland.edu/enp/
A famous Hungarian Mathematician, 1913-1996
Erdös posed and solved problems in number theory and other areas
and founded the field of discrete mathematics
511 co-authors (Erdös number 1)
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Introduction

The Erdös Number

The Erdös Number
Through how many research collaboration links is an arbitrary
scientist connected to Paul Erdös?
What is a research collaboration link?
Per definition: Co-authorship on a scientific paper
What is my Erdös Number? 4
me → H. Maurer → W. Kuich → N. Sauer → P. Erdös
http:
//www.ams.org/mathscinet/collaborationDistance.html
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Introduction

Erdös network
38 CHAPTER 2. GRAPHS

Figure 2.12: Ron Graham’s hand-drawn picture of a part of the mathematics collaboration
graph, centered on Paul Erdös [189]. (Image from http://www.oakland.edu/enp/cgraph.jpg)

distances look like.

One of the largest such computational studies was performed by Jure Leskovec and Eric

Horvitz [273]. They analyzed the 240 million active user accounts on Microsoft Instant

Messenger, building a graph in which each node corresponds to a user, and there is an

edge between two users if they engaged in a two-way conversation at any point during a

month-long observation period. As employees of Microsoft at the time, they had access to

a complete snapshot of the system for the month under study, so there were no concerns

about missing data. This graph turned out to have a giant component containing almost

all of the nodes, and the distances within this giant component were very small. Indeed,

the distances in the Instant Messenger network closely corresponded to the numbers from

Milgram’s experiment, with an estimated average distance of 6.6, and an estimated median
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Small World Experiment

Stanley Milgram

A social psychologist
Yale and Harvard University
Study on the Small World Problem
Controversial: The Obedience Study
What we will discuss today: “An Experimental Study of the Small
World Problem”
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Small World Experiment

Small world problem

Small world
The simplest way of formulating the small-world problem is: Starting with
any two people in the world, what is the likelihood that they will know
each other?
A somewhat more sophisticated formulation, however, takes account of
the fact that while person X and Z may not know each other directly, they
may share a mutual acquaintance - that is, a person who knows both of
them. One can then think of an acquaintance chain with X knowing Y and
Y knowing Z. Moreover, one can imagine circumstances in which X is
linked to Z not by a single link, but by a series of links, X-A-B-C-D…Y-Z.
That is to say, person X knows person A who in turn knows person B, who
knows C… who knows Y, who knows Z.
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Small World Experiment

Small world experiment

A Social Network Experiment tailored towards demonstrating,
defining, and measuring inter-connectedness in a large society (USA)
A test of the modern idea of “six degrees of separation”
Which states that: every person on earth is connected to any other
person through a chain of acquaintances not longer than 6
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Small World Experiment

Experiment

Goal
1 Define a single target person and a group of starting persons
2 Generate an acquaintance chain from each starter to the target

Experimental Set Up
1 Each starter receives a document
2 Each starter was asked to begin moving it by mail toward the target
3 Information about the target: name, address, occupation, company,

college, year of graduation, wife’s name and hometown
4 Information about relationship (friend/acquaintance)
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Small World Experiment

Experiment

Constraints
1 Starter group was only allowed to send the document to people they

know and
2 Starter group was urged to choose the next recipient in a way as to

advance the progress of the document toward the target
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Small World Experiment

Questions

How many of the starters would be able to establish contact with the
target?
How many intermediaries would be required to link starters with the
target?
What form would the distribution of chain lengths take?
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Small World Experiment

Set Up

Target person
1 A Boston stockbroker

Three starting populations
1 100 “Nebraska stockholders”
2 96 “Nebraska random”
3 100 “Boston random”
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Small World Experiment

Set Up

Nebraska 
stockholders

Nebraska 
random

Boston
 random

Boston
stockbroker

Target
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Small World Experiment

Results

How many of the starters would be able to establish contact with the
target?

1 64 out of 296 reached the target
How many intermediaries would be required to link starters with the
target?

1 Well, that depends: the overall mean 5.2 links
2 Through hometown: 6.1 links
3 Through business: 4.6 links
4 Boston group faster than Nebraska groups
5 Nebraska stockholders not faster than Nebraska random

What form would the distribution of chain lengths take?

Denis Helic (ISDS, TU Graz) Small-World March 28, 2020 18 / 96



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Small World Experiment

Chain length distribution
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Small World Experiment

Results

What have been common strategies?
1 Geography
2 Profession

What are the common paths?
1 See e.g. Gladwell’s “Law of the few”
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Small World Experiment

Common paths and gatekeepers
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Small World Experiment

Conclusions and 6 degrees of separation

So is there an upper bound of six degrees of separation in social
networks?

1 Extremely hard to test
2 In Milgram’s study, 2/3 of the chains did not reach the target
3 1/3 random, 1/3 blue chip owners, 1/3 from Boston
4 Danger of loops (mitigated in Milgram’s study through chain records)
5 Target had a “high social status”
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Small World Experiment

Follow up work
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Small World Experiment

Follow up work

Horvitz and Leskovec study 2008
30 billion conversations among 240 million people of Microsoft
Messenger
Communication graph with 180 million nodes and 1.3 billion
undirected edges
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Small World Experiment

Follow up work

Approximation of “Degrees of separation”
Random sample of 1000 nodes
For each node the shortest paths to all other nodes was calculated.
The average path length is 6.6, median at 7
Result: a random pair of nodes is 6.6 hops apart on the average,
which is half a link longer than the length reported by
Travers/Milgram

Denis Helic (ISDS, TU Graz) Small-World March 28, 2020 25 / 96



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Small World Experiment

Follow up work

The 90th percentile (effective diameter (16)) of the distribution is 7.8.
48% of nodes can be reached within 6 hops and 78% within 7 hops.
Finding that there are about “7 degrees of separation” among people
Long paths exist in the network; paths up to a length of 29
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Small World Experiment

Chain length distribution
2.3. DISTANCE AND BREADTH-FIRST SEARCH 37

Figure 2.11: The distribution of distances in the graph of all active Microsoft Instant Mes-
senger user accounts, with an edge joining two users if they communicated at least once
during a month-long observation period [273].

step connections to CEOs and political leaders don’t yield immediate payoffs on an everyday

basis, the existence of all these short paths has substantial consequences for the potential

speed with which information, diseases, and other kinds of contagion can spread through

society, as well as for the potential access that the social network provides to opportunities

and to people with very different characteristics from one’s own. All these issues — and

their implications for the processes that take place in social networks — are rich enough

that we will devote Chapter 20 to a more detailed study of the small-world phenomenon and

its consequences.

Instant Messaging, Paul Erdös, and Kevin Bacon. One reason for the current em-

pirical consensus that social networks generally are “small worlds” is that this has been

increasingly confirmed in settings where we do have full data on the network structure. Mil-

gram was forced to resort to an experiment in which letters served as “tracers” through a

global friendship network that he had no hope of fully mapping on his own; but for other

kinds of social network data where the full graph structure is known, one can just load it

into a computer and perform the breadth-first search procedure to determine what typical
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Small World Experiment

Follow up work at Facebook

Facebook study: February 2016
https://research.facebook.com/blog/
three-and-a-half-degrees-of-separation/
1.5 billion users
∼ 3.5 degrees of separation
Approximative algorithms for calculating average distance
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Small world networks

Small world networks

Every pair of nodes is connected by a path with an extremely small
number of steps
Low diameter ℓ𝑚𝑎𝑥
Low average distance ℓ
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Small world networks

Small world networks

Small world networks
The small-world effect exists, if the number of nodes within a distance 𝑠 of
a typical central vertex grows exponentially with 𝑠. In other words,
networks are said to show the small-world effect if the value of ℓ scales
logarithmically or slower with network size for a fixed average degree 𝑘.

According to this definition a random graph is a small-world network
since ℓ𝑟𝑎𝑛𝑑𝑜𝑚 ≈ 𝑙𝑛(𝑛)

𝑙𝑛(𝑘)
However, there are other properties that a (realistic) small-world
network must possess
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Small world networks

Small world networks

When we would perceive a network as small:
1 ℓ scales maximally logarithmically with 𝑛 for a fixed 𝑘
2 The network itself is large in the sense that it contains 𝑛 ≫ 1 nodes
3 The network is sparse, i.e. 𝑛 ≫ 𝑘
4 The network is decentralized, i.e. there is no central node that

connects to almost every other node
5 The network is highly clustered, i.e. many of our friends are also friends

of each other
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Small world networks

Small world networks

Explanations to the criteria:
1 If ℓ scales e.g. linearly then for e.g. 𝑛 = 106 the network is clearly not

small
2 If 𝑛 is small as in e.g. a social network of a small town then there is a

high chance that everyone knows each other and therefore ℓ is small,
i.e. (1) is trivially satisfied

3 A person has on average a couple hundreds of friends among e.g.
8 ⋅ 109 people in the world, i.e. it is a sparsely connected network
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Small world networks

Small world networks

Explanations to the criteria:
4 Even if some people are better connected than the others, there are

physical constraints on the number of (mutual) connections (this
criteria can be expressed as 𝑛 ≫ 𝑘𝑚𝑎𝑥

5 Fraction of friends who are also friends of each other is significantly
higher than in a random network. Otherwise our friends will be equally
likely to come from a different country, occupation, etc. (this
eliminates a random network from being a small-world network)

We are looking for networks where local clustering is high and global
path lengths are small
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Small World Networks: Intuition

The Cavemen World: highly clustered social connections
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Small World Networks: Intuition

The Solaris World: random social connections
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Small World Networks: Intuition

Small world networks

Two seemingly contradictory requirements for the Small World
Phenomenon:

1 Network should display a large clustering coefficient, so that a node‘s
friends will know each other (as in Caveman world)

2 It should be possible to connect two people chosen at random via chain
of only a few intermediaries (as in Solaria world)
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Small World Networks: Formalization

A random graph model

Now we will analyze an ensemble of networks, i.e. a special random
graph model
Recollect that an ensemble defines a probability distribution over all
possible graphs
We will characterize networks in terms of ℓ and 𝐶
In order to decide if a network is ”‘small”’ or ”‘large”’ we need to
determine the ranges over which ℓ and 𝐶 vary

Duncan Watts
This part of the slides is based on the paper ”‘Networks, Dynamics, and
the Small-World Phenomenon”’ by D. Watts
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Small World Networks: Formalization

Constraints for the model

All networks need to satisfy the following constraints:
1 We fix 𝑛
2 Graph is sparse but sufficiently dense, i.e. 1 ≪ 𝑘 ≪ 𝑛. Wide range of

structures are possible
3 The graphs are connected
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Small World Networks: Formalization

Extremal properties

What is the largest value for 𝐶 and in what kind of a graph we
observe such 𝐶?

𝐶 = 1 in a complete graph (𝑘 = 𝑛 − 1)
What is the minimal value for 𝐶 and which graph has that?
𝐶 = 0 in an empty graph (𝑘 = 0)
What is ℓ in those two graphs?
Complete graph: ℓ = 1, empty graph ℓ = ∞
These are theoretical extremal points
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Extremal properties
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Extremal properties

What is the largest value for 𝐶 and in what kind of a graph we
observe such 𝐶?
𝐶 = 1 in a complete graph (𝑘 = 𝑛 − 1)
What is the minimal value for 𝐶 and which graph has that?
𝐶 = 0 in an empty graph (𝑘 = 0)
What is ℓ in those two graphs?

Complete graph: ℓ = 1, empty graph ℓ = ∞
These are theoretical extremal points
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Extremal properties

What is the largest value for 𝐶 and in what kind of a graph we
observe such 𝐶?
𝐶 = 1 in a complete graph (𝑘 = 𝑛 − 1)
What is the minimal value for 𝐶 and which graph has that?
𝐶 = 0 in an empty graph (𝑘 = 0)
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Small World Networks: Formalization

Extremal properties

However, it is obvious how ℓ and 𝐶 will change when we start with an
empty graph and add more links

ℓ will go down and 𝐶 will increase
A more interesting question is how these statistics change when we
rearrange a fixed number of links 𝑚
We arrive at the last constraint for our model:

4 𝑚 is fixed
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Small World Networks: Formalization

Extremal properties

However, it is obvious how ℓ and 𝐶 will change when we start with an
empty graph and add more links
ℓ will go down and 𝐶 will increase
A more interesting question is how these statistics change when we
rearrange a fixed number of links 𝑚
We arrive at the last constraint for our model:

4 𝑚 is fixed
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Small World Networks: Formalization

Small world networks

For such graphs, we will now try to answer these questions:
1 What is the most clustered graph and what are its 𝐶 and ℓ?
2 What graph has the smallest ℓ and what are its 𝐶 and ℓ?
3 What is the relation between 𝐶 and ℓ in sparse graphs?
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Small World Networks: Formalization

Sparse graph with the largest 𝐶

We construct a caveman world
It consists of 𝑛

𝑘+1 isolated caves (cliques)
All 𝑘 + 1 nodes in each cave are connected to all other nodes in that
cave
This graph has 𝐶 = 1
But it is not connected!
We rewire a single link from each clique and connect it to a
neighboring clique
We form a loop
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Small World Networks: Formalization

Sparse graph with the largest 𝐶
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Small World Networks: Formalization

𝐶 in caveman world

We first calculate the clustering coefficient of a single cave
Later, we will use that result to obtain the total clustering coefficient
by taking into account the number of caves

Dienstag, 9. Mai 2017 14:23
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Small World Networks: Formalization

𝐶 in caveman world

Each cave has (𝑘 + 1) nodes, there are 𝑛
𝑘+1 caves altogether

We have 4 types of nodes in each cave
We have (𝑘 − 2) of nodes of type 1, and one node each of types 2, 3,
and 4
We recollect that the number of possible links between neighbors of a
node with degree 𝑘 is 𝑘(𝑘−1)

2

𝐶1 =
𝑘(𝑘−1)

2 − 1
𝑘(𝑘−1)

2
=

𝑘(𝑘−1)−2
�2𝑘(𝑘−1)
�2

= 1 − 2
𝑘(𝑘 − 1)

𝐶2 = 1

𝐶3 =
(𝑘−1)(𝑘−2)

2
𝑘(𝑘−1)

2
=

���(𝑘−1)(𝑘−2)
�2𝑘���(𝑘−1)
�2

= 1 − 2
𝑘
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Small World Networks: Formalization

𝐶 in caveman world

𝐶4 =
𝑘(𝑘−1)−2

�2(𝑘+1)𝑘
�2

= 𝑘2 − 𝑘 − 2
(𝑘 + 1)𝑘 = 𝑘2 + 𝑘 − 2𝑘 − 2

(𝑘 + 1)𝑘

= 𝑘(𝑘 + 1) − 2(𝑘 + 1)
(𝑘 + 1)𝑘 = ����(𝑘 + 1)(𝑘 − 2)

����(𝑘 + 1)𝑘 = 1 − 2
𝑘
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Small World Networks: Formalization

𝐶 in caveman world
Now we sum clustering coefficients of all nodes in a single cave

∑
𝑐𝑎𝑣𝑒

𝐶𝑖 = (1 − 2
𝑘(𝑘 − 1)) (𝑘 − 2) + 2 (1 − 2

𝑘) + 1

= 𝑘 − 2 − (𝑘 − 2) 2
𝑘(𝑘 − 1) + 3 − 4

𝑘
= (𝑘 + 1) − 2

𝑘 − 1 + 4
𝑘(𝑘 − 1) − 4

𝑘

= (𝑘 + 1) + −2𝑘 + 4 − 4(𝑘 − 1)
𝑘(𝑘 − 1) = (𝑘 + 1) + −6𝑘 + 8

𝑘(𝑘 − 1)

= (𝑘 + 1) − 6�𝑘
�𝑘(𝑘 − 1) + 8

𝑘(𝑘 − 1)
= (𝑘 + 1) − 6

𝑘 − 1 + 8
𝑘(𝑘 − 1)
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Small World Networks: Formalization

𝐶 in caveman world

The third term is 𝑂(𝑘−2) and under the assumption that 𝑘 ≫ 1 can
be ignored
Thus, the approximated sum of clustering coefficients over a cave:

∑
𝑐𝑎𝑣𝑒

𝐶𝑖 ≈ (𝑘 + 1) − 6
𝑘 − 1
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Small World Networks: Formalization

𝐶 in caveman world

The total clustering coefficient is then sum over all caves divided by
the number of nodes

𝐶𝑐𝑎𝑣𝑒𝑚𝑎𝑛 ≈ �𝑛
𝑘 + 1((𝑘 + 1) − 6

𝑘 − 1) 1
�𝑛

= 1 − 6
𝑘2 − 1

Again, assuming 𝑘 ≫ 1 the clustering coefficient is close to 1 as we
expected
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Small World Networks: Formalization

ℓ in caveman world

The average distance in a caveman world is composed of a local
distance within the caves and a global distance between the caves
We first calculate ℓ𝑙𝑜𝑐𝑎𝑙
One link is missing and therefore we have 1 pair of nodes at distance
2 and the remaining (𝑘(𝑘+1)

2 − 1) pairs at distance 1:

ℓ𝑙𝑜𝑐𝑎𝑙 = 2
𝑘(𝑘 + 1) [(𝑘(𝑘 + 1)

2 − 1) ⋅ 1 + 1 ⋅ 2]

= 2
𝑘(𝑘 + 1) [(𝑘(𝑘 + 1)

2 + 1]

= 1 + 2
𝑘(𝑘 + 1)

Assuming 𝑘 ≫ 1 we have ℓ𝑙𝑜𝑐𝑎𝑙 ≈ 1
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Small World Networks: Formalization

ℓ in caveman world

To calculate ℓ𝑔𝑙𝑜𝑏𝑎𝑙 we first abstract caves as simple nodes
In this way 𝑛′ = 𝑛

𝑘+1 caves are ordered into a topological ring
For simplicity (without loss of generality) we assume that 𝑛′ is even
Then ℓ𝑔𝑙𝑜𝑏𝑎𝑙 determines average distance between caves
We start by calculating sum of distances of a single node 𝑖 from the
ring
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Small World Networks: Formalization

ℓ in caveman world

∑
𝑗

ℓ𝑖𝑗 = 2 ⋅ 1 + 2 ⋅ 2 + 2 ⋅ 3 + ⋯ + 2(𝑛′

2 − 1) + 1 ⋅ 𝑛′

2

= 2(1 + 2 + 3 + ⋯ + 𝑛′

2 ) − 𝑛′

2

= �2
(𝑛′

2 + 1)𝑛′
2

�2
− 𝑛′

2
= 𝑛′

2 (𝑛′

2 + �1 − �1)

= 𝑛′2

4
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Small World Networks: Formalization

ℓ in caveman world

Then, we sum over all nodes and divide by the total number of pairs
(in both directions):

ℓ𝑔𝑙𝑜𝑏𝑎𝑙 = ��𝑛′ 𝑛′2

4
1

��𝑛′ (𝑛′ − 1)
= 𝑛′2

4(𝑛′ − 1)

= ( 𝑛
𝑘+1)2

4 ( 𝑛
𝑘+1 − 1)

Assuming 1 ≪ 𝑘 ≪ 𝑛 we have ( 𝑛
𝑘+1 − 1) ≈ 𝑛

𝑘+1
This gives ℓ𝑔𝑙𝑜𝑏𝑎𝑙 ≈ 𝑛

4(𝑘+1)
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Small World Networks: Formalization

ℓ in caveman world

Now we want to calculate average distance for nodes 𝑖 and 𝑗 from
two different caves
Starting at 𝑖 we first need to go outside its cave: for this we need
ℓ𝑙𝑜𝑐𝑎𝑙 steps on average
To reach the cave in which 𝑗 is situated we need to make 2ℓ𝑔𝑙𝑜𝑏𝑎𝑙 − 1
steps (one step to reach a cave and another to go through and −1
because we do not go through the last cave)
To reach 𝑗 in the last cave we need another ℓ𝑙𝑜𝑐𝑎𝑙 steps on average
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Small World Networks: Formalization

ℓ in caveman world

Altogether we have:

ℓ𝑖𝑗 = 2ℓ𝑙𝑜𝑐𝑎𝑙 + 2ℓ𝑔𝑙𝑜𝑏𝑎𝑙 − 1
≈ 2 + 2 𝑛

4(𝑘 + 1) − 1 = 𝑛
2(𝑘 + 1) + 1

Assuming 1 ≪ 𝑘 ≪ 𝑛 we have ℓ𝑖𝑗 ≈ 𝑛
2(𝑘+1)
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Small World Networks: Formalization

ℓ in caveman world

Now we need to count how many pairs of nodes are from the same
cave and how many from different caves

#(𝑙𝑜𝑐𝑎𝑙 − 𝑝𝑎𝑖𝑟𝑠) = 𝑘����(𝑘 + 1)
2

𝑛
���𝑘 + 1 = 𝑛𝑘

2

Then #(𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑝𝑎𝑖𝑟𝑠) is the total number of pairs minus
#(𝑙𝑜𝑐𝑎𝑙 − 𝑝𝑎𝑖𝑟𝑠):

#(𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑝𝑎𝑖𝑟𝑠) = 𝑛(𝑛 − 1)
2 − 𝑛𝑘

2 = 𝑛(𝑛 − 𝑘 − 1)
2

Denis Helic (ISDS, TU Graz) Small-World March 28, 2020 56 / 96



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Small World Networks: Formalization

ℓ in caveman world

Finally, we have all terms to calculate ℓ𝑐𝑎𝑣𝑒𝑚𝑎𝑛:

ℓ𝑐𝑎𝑣𝑒𝑚𝑎𝑛 ≈ �2
�𝑛 (𝑛 − 1) [�𝑛 𝑘

�2
⋅ 1 + �𝑛 (𝑛 − 𝑘 − 1)

�2
𝑛

2(𝑘 + 1)]

= 𝑘
𝑛 − 1 + 𝑛(𝑛 − 𝑘 − 1)

2(𝑘 + 1)(𝑛 − 1)

Assuming 𝑘 ≪ 𝑛 we have (𝑛 − 1) ≈ 𝑛, (𝑛 − 𝑘 − 1) ≈ 𝑛 and 𝑘
𝑛−1 ≈ 0

After canceling: ℓ𝑐𝑎𝑣𝑒𝑚𝑎𝑛 ≈ 𝑛
2(𝑘+1)
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Small World Networks: Formalization

Sparse graph with the largest 𝐶

Thus, for the connected caveman graph we have:

𝐶𝑐𝑎𝑣𝑒𝑚𝑎𝑛 ≈ 1 − 6
(𝑘)2 − 1

ℓ𝑐𝑎𝑣𝑒𝑚𝑒𝑛 ≈ 𝑛
2(𝑘 + 1)

𝐶𝑐𝑎𝑣𝑒𝑚𝑎𝑛 tends to 1 for sufficiently large 𝑘 ≪ 𝑛
ℓ𝑐𝑎𝑣𝑒𝑚𝑒𝑛 scales linearly with 𝑛
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Small World Networks: Formalization

Sparse graph with the smallest ℓ

Studies have shown that no general structure possesses the smallest ℓ
Cerf et al. ”‘A lower bound on the average shortest path length in
regular graphs”’
A good approximation can be achieved by a random graph 𝐺(𝑛, 𝑝)
Bolobas, Bela. ”‘Random Graphs”’
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Small World Networks: Formalization

Sparse graph with the smallest ℓ

ℓ𝑟𝑎𝑛𝑑𝑜𝑚 ≈ 𝑙𝑛(𝑛)
𝑙𝑛(𝑘)

𝐶𝑟𝑎𝑛𝑑𝑜𝑚 ≈ 𝑘
𝑛−1

For large 𝑛
Scaling of ℓ𝑟𝑎𝑛𝑑𝑜𝑚 is logarithmic in 𝑛
Sparsity: 𝑘 ≪ 𝑛 ⟹ 𝐶𝑟𝑎𝑛𝑑𝑜𝑚 is very small
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Small World Networks: Formalization

Conclusions from extreme cases

𝐶 is a simple measure of local order in a graph
Large 𝐶 as in caveman graphs indicates a strong local order
On the other hand, a random graph is locally disordered
Intuition 1: Highly clustered (locally ordered) graphs will have long
average distances (linear scaling)
Intuition 2: Graphs with small average distances will have also a small
clustering coefficient (no clustering)
No small-worlds after all?
But many studies observed them!
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Small World Networks: Formalization

Modeling the real world

Both extreme cases are not very realistic
One extreme case: total order, in which two people become friends
only if they share a common friend
Another extreme case: randomness, in which two people become
friends regardless of connections that they already have
The real world is somewhere between those two extreme cases
But we do not know exactly where is the reality: it has both of these
mechanisms but we do not know to what extents
Let us model all the situations in between
Keep the model simple: we will introduce a single parameter
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Distance Contraction in Sparse Networks

Probability of becoming friends

The question is: how already existing links influence creation of new
links
We want to model all intermediate stages between order and
randomness with a single parameter
Total order: new friends only if mutual friends (Caveman world)
Randomness: new friends completely autonomously (Solaria World)
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Distance Contraction in Sparse Networks

Probability of becoming friends
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Distance Contraction in Sparse Networks

Probability of becoming friends

Order:
1 Probability of becoming friends if no mutual friends is almost zero
2 With one friend in common, probability of becoming friend jumps to

almost one and stays there
Randomness:

1 No preference to become friends to anybody in particular
2 If all friends are mutual, friends probability climbs to one
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Distance Contraction in Sparse Networks

Probability of becoming friends

In between the curve can take any of the infinite numbers of possible
forms
It needs to remain smooth and monotonically increasing
Single tunable parameter 𝛼 ∈ [0, ∞]

𝑅𝑖𝑗 =
⎧{
⎨{⎩

1 𝑚𝑖𝑗 ≥ 𝑘
(𝑚𝑖𝑗

𝑘 )𝛼 (1 − 𝑝) + 𝑝 𝑘 > 𝑚𝑖𝑗 > 0
𝑝 𝑚𝑖𝑗 = 0

(1)

𝑅𝑖𝑗 probability of node 𝑖 connecting to node 𝑗, 𝑚𝑖𝑗 the number of
mutual friends, 𝑘 is the average degree, and 𝑝 is a baseline probability
for a link (𝑖, 𝑗)
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Distance Contraction in Sparse Networks

Probability of becoming friends

What do we have for a small 𝛼 or 𝛼 = 0

Total order
What do we have for 𝛼 → ∞
Random graph
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Distance Contraction in Sparse Networks

Probability of becoming friends

What do we have for a small 𝛼 or 𝛼 = 0
Total order
What do we have for 𝛼 → ∞

Random graph
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Distance Contraction in Sparse Networks

Probability of becoming friends

What do we have for a small 𝛼 or 𝛼 = 0
Total order
What do we have for 𝛼 → ∞
Random graph
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Distance Contraction in Sparse Networks

Numerical simulation

We can not derive much analytically
Thus, we construct a large number of graphs by fixing 𝑛 and 𝑘 and
varying 𝛼
For each 𝛼 we create a number of graphs and calculate ℓ and 𝐶
We then plot averages of these experiments against 𝛼
Another problem: if we start from an empty graph we will end up
with an unconnected graph for small 𝛼
We start with a ring
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Distance Contraction in Sparse Networks

Numerical simulation
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Distance Contraction in Sparse Networks

Numerical simulation
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Distance Contraction in Sparse Networks

Numerical simulation

For large 𝛼 both statistics approach their expected random graph limit
At 𝛼 = 0 both statistics are large and increase quickly to their
maximum at small 𝛼
Both statistics exhibit a sharp transition (phase transition) from their
maximum values to their limits for large 𝛼
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Distance Contraction in Sparse Networks

Numerical simulation
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Distance Contraction in Sparse Networks

Numerical simulation

Phase transitions of 𝐶 and ℓ are shifted with 𝛼
The transition of 𝐶 occurs with larger values of 𝛼
Thus, there exists a class of graphs in a specific region of 𝛼 for which
ℓ is small and 𝐶 is large
The region is limited by a smaller 𝛼 for which phase transition in ℓ
occurs and a larger value of 𝛼 for which phase transition for 𝐶 occurs
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Distance Contraction in Sparse Networks

Small world networks

Small world networks
The small-world phenomenon is present when:

ℓ ≈ ℓ𝑟𝑎𝑛𝑑𝑜𝑚
𝐶 ≫ 𝐶𝑟𝑎𝑛𝑑𝑜𝑚
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Distance Contraction in Sparse Networks

Short Recap

Now we know that small networks exist
We also understand something about ratio of order and randomness
But we still do not know why there is a distance contraction
While simultaneously clustering coefficient remains large
Any ideas?
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Distance Contraction in Sparse Networks

Theory of distance contraction

Let us investigate how a newly created link contributes to the
contraction of the average distance
We start with 𝛼 = 0
𝑅𝑖𝑗 = 1 if 𝑚𝑖𝑗 > 0, i.e. if 𝑖 and 𝑗 share mutual friends they will be
connected (triadic closure)
Before the ℓ𝑖𝑗 = 2, after ℓ𝑖𝑗 = 1
Little to no distance contraction globally
In a random graph 𝑖 and 𝑗 that are close have the same chance to be
connected by a new link as 𝑘 and 𝑙 that are far apart
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Distance Contraction in Sparse Networks

Theory of distance contraction

Now we define a range 𝑟 of a link (𝑖, 𝑗) as the distance ℓ𝑖𝑗 between 𝑖
and 𝑗 when the link has been deleted
We define a link as a shortcut if its range 𝑟 > 2
Finally, we define Φ as the fraction of links that are shortcuts, i.e.
Φ = #𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡𝑠

𝑚
Now we plot the evolution of 𝐶 and ℓ as the function of Φ
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Distance Contraction in Sparse Networks

Theory of distance contraction

Denis Helic (ISDS, TU Graz) Small-World March 28, 2020 78 / 96



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Distance Contraction in Sparse Networks

Theory of distance contraction

We see that the distance contraction occurs already for a very small
fraction of shortcuts
Intuition is that for small Φ the average distance is large
Introduction of even a single shortcut brings nodes close that were
previously widely separated
This shortcut reduces the distance not only between two nodes that
are connected
But also between their friends, friends of friends, etc.
On the other hand, clustering coefficient does not drop dramatically
since only a couple of triads are not closed
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Distance Contraction in Sparse Networks

Theory of distance contraction

Shortcuts are sufficient but not necessary
Any link that brings two nodes closer together will do the job
A contraction occurs when the second shortest path length between
two nodes (sharing a common neighbor) is greater than two
In other words, a contraction is a pair of nodes that share one and
only one common friend
We define Ψ as the fraction of contractions
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Distance Contraction in Sparse Networks

Theory of distance contraction
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Distance Contraction in Sparse Networks

Theory of distance contraction
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Distance Contraction in Sparse Networks

Theory of distance contraction

Common friend in a contraction ⟹ common friend is pivotal
Common friend in a contraction ⟹ common friend is a local
gatekeeper
The other direction does not hold
E.g. a pivotal node that is not a common friend
Pair of nodes having more than one local gatekeepers
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Small World Phenomenon in Empirical Networks

Small world in empirical networks
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Small World Phenomenon in Empirical Networks

Small world in empirical networks
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Small World Phenomenon in Empirical Networks

Small world in empirical networks
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Alternative Small World Models

Watts’ 𝛽-model
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Alternative Small World Models

Watts’ 𝛽-model
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Alternative Small World Models

Watts’ 𝛽-model

NetLogo Example
http://ccl.northwestern.edu/netlogo/models/SmallWorlds
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Emergence of Small World Networks

Affiliation networks and small world

Separate social and network structure
Social structure implies two types of nodes, e.g. actors and movies
Actors are connected to movies they acted in, and vice versa
Co-Acting network is then constructed in the following way

1 A given actor is connected to all actors from a given movie
2 We repeat this procedure for all movies

Denis Helic (ISDS, TU Graz) Small-World March 28, 2020 90 / 96



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Emergence of Small World Networks

Affiliation networks and small world

Figure: ℓ = 1.62, 𝐶 = 0.7879
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Emergence of Small World Networks

Affiliation networks and small world

Small-world networks arise naturally
Divide nodes in two groups that reflect the social context, e.g. actors
and movies, people and professions (hobbies), etc.
But also information networks, e.g. tags and photos, hashtags and
tweets in twitter, etc.
Projection on one type of nodes, e.g. actors, people, tags, hashtags is
always a small-world
Why is this the case?
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Emergence of Small World Networks

Affiliation networks and small world

By definition every actor in a movie is connected to every other actor
in that movie
This is a fully connected clique of actors – local clustering is high
Networks are then networks of overlapping cliques – locked together
by actors acting in multiple movies
By “randomly” connecting actors to movies we obtain a network with
low diameter
High local clustering + low diameter = small-world networks
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Emergence of Small World Networks

Affiliation networks and small world

NetLogo Example
http://kti.tugraz.at/staff/socialcomputing/courses/
webscience/SWAffiliation.nlogo
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Applications

Applications and engineering

We have learned what are small world networks and how they emerge?
In what kind of applications can these new insights be applied?
Many different possibilities, e.g. information retrieval on the Web –
navigation
Information diffusion in online social networks, e.g. viral marketing
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Applications

Recommender systems

In many recommender systems networks look very much like Cavemen
World
Isolated caves of similar and related items
But almost no connections to other caves
We have learned that a few (random) long-range links can turn such
a world into a small world
Serendipity in recommender networks
How to have a surprise effect and connect various caves?
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