Information Architecture and Web Usability

Course Notes

Version of 15 Oct 2018

Ao.Univ.-Prof. Dr. Keith Andrews

ISDS
Graz University of Technology
Inffeldgasse 16c
A-8010 Graz
kandrews@iicm.edu

Copyright 2018 Keith Andrews.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Credits</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 User Experience (UX)</td>
<td>3</td>
</tr>
<tr>
<td>2.1 User Experience</td>
<td>3</td>
</tr>
<tr>
<td>3 Web Usability</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Three Kinds of Web Site</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Typical Cost of Building a Web Site</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Indicators of Web Usability</td>
<td>11</td>
</tr>
<tr>
<td>4 Mobile Usability</td>
<td>15</td>
</tr>
<tr>
<td>4.1 Mobile Usage Has Long Overtaken Desktop</td>
<td>15</td>
</tr>
<tr>
<td>5 Web Accessibility</td>
<td>17</td>
</tr>
<tr>
<td>5.1 Checking Your Web Site for Accessibility</td>
<td>17</td>
</tr>
<tr>
<td>6 Site Objectives and User Needs</td>
<td>19</td>
</tr>
<tr>
<td>6.1 Site Objectives</td>
<td>19</td>
</tr>
<tr>
<td>6.2 Web Site User Needs and Characteristics</td>
<td>19</td>
</tr>
<tr>
<td>7 Content Strategy</td>
<td>23</td>
</tr>
<tr>
<td>8 Information Architecture</td>
<td>25</td>
</tr>
<tr>
<td>8.1 Organisation Schemes</td>
<td>28</td>
</tr>
<tr>
<td>8.2 Taxonomies and Hierarchies</td>
<td>34</td>
</tr>
<tr>
<td>8.3 Card Sorting</td>
<td>35</td>
</tr>
<tr>
<td>8.4 Tree Testing</td>
<td>42</td>
</tr>
<tr>
<td>8.5 Controlled Vocabularies</td>
<td>43</td>
</tr>
<tr>
<td>8.6 Faceted Classification</td>
<td>46</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>8.7</td>
<td>User-Generated Structures</td>
</tr>
<tr>
<td>8.8</td>
<td>Site Search</td>
</tr>
<tr>
<td>8.9</td>
<td>Navigation Systems</td>
</tr>
<tr>
<td>8.10</td>
<td>Domain-Driven Design</td>
</tr>
<tr>
<td>9</td>
<td>Information and Navigation Design</td>
</tr>
<tr>
<td>9.1</td>
<td>Navigation Design</td>
</tr>
<tr>
<td>9.2</td>
<td>Text Design</td>
</tr>
<tr>
<td>9.3</td>
<td>Image Design</td>
</tr>
<tr>
<td>10</td>
<td>Visual Design</td>
</tr>
<tr>
<td>10.1</td>
<td>Greeking Test</td>
</tr>
<tr>
<td>11</td>
<td>Implementation and Optimisation</td>
</tr>
<tr>
<td>11.1</td>
<td>Tabular Page Layout (“The Old Way”)</td>
</tr>
<tr>
<td>11.2</td>
<td>HTML5</td>
</tr>
<tr>
<td>11.3</td>
<td>Polyglot XHTML5</td>
</tr>
<tr>
<td>11.4</td>
<td>Building Fault-Tolerant Web Sites</td>
</tr>
<tr>
<td>11.5</td>
<td>Responsive Web Design</td>
</tr>
<tr>
<td>11.6</td>
<td>Design Systems</td>
</tr>
<tr>
<td>11.7</td>
<td>Web Performance</td>
</tr>
<tr>
<td>12</td>
<td>Conducting a Formal Experiment</td>
</tr>
<tr>
<td>12.1</td>
<td>Experimental Design</td>
</tr>
<tr>
<td>12.2</td>
<td>Statistical Analysis</td>
</tr>
<tr>
<td>12.3</td>
<td>Examples for Common Situations</td>
</tr>
<tr>
<td>13</td>
<td>Evidence-Based Guidelines</td>
</tr>
<tr>
<td>13.1</td>
<td>Screen Fonts</td>
</tr>
<tr>
<td>14</td>
<td>Web Usability Case Studies</td>
</tr>
<tr>
<td>14.1</td>
<td>SunWeb: User Interface Design for Sun Microsystem’s Internal Web</td>
</tr>
<tr>
<td>14.2</td>
<td>SunWWW: User Interface Design for Sun’s Web Site</td>
</tr>
<tr>
<td>14.3</td>
<td>MSWeb: Microsoft Intranet Site</td>
</tr>
<tr>
<td>14.4</td>
<td>Designing Web Applications</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

2.1 Five Planes of User Experience ... 4
3.1 Three kinds of web site .. 8
3.2 Mixing Purposes Within a Web Site 10
8.1 From a Pile of Stuff ... 26
8.2 Three Circles Of Information Architecture 27
8.3 Topical Organisation Scheme at ConsumerReports 30
8.4 Task-Based Organisation Scheme at Ebay 31
8.5 Dell Web Site ... 31
8.6 Lufthansa Virtual Airport .. 32
8.7 Stanford Web Site ... 33
8.8 Mixed-Up Library .. 33
8.9 Concept Cards Scattered on a Table 38
8.10 Test Facilitator Explains Unclear Concepts 39
8.11 Grouping Cards into Categories .. 39
8.12 Categories Labeled with Post-It Notes 40
8.13 University Canteen Emergent Path 48
8.14 University Canteen Paved Cowpath 48
8.15 PeopleSoft Home Page ... 51
8.16 PeopleSoft Site Index ... 52
8.17 PeopleSoft Site Map .. 52
9.1 DENIM Storyboard .. 56
9.2 DENIM Runtime ... 57
9.3 Balsamiq Mockup Wireframe ... 57
9.4 Navigational Bar at Top of Each Page 57
9.5 Information Scent ... 58
9.6 Link Overload on PICS Pages at W3C 62
9.7 GIF Interlacing .. 64
9.8 Progressive JPEG ... 65
9.9 Using transparency for non-rectangular images 65
9.10 Anti-aliasing a black line ... 66
9.11 Antialiasing a red circle ... 66
9.12 An antialiased circle against a different background 66
10.1 Greeking Test, Template 1 .. 70
10.2 Greeking Test, Template 2 .. 71
10.3 Greeking Test, Template 3 ... 71
10.4 Greeking Test, Template 4 ... 72
10.5 Greeking Test, Template 5 ... 72
10.6 Average Percentage of Correctly Identified Page Elements 73
10.7 Preferred Page Templates ... 73

11.1 The Virtual Vineyards Site ... 76
11.2 The Virtual Vineyards Site, Table Borders Turned On 77
11.3 Original Look of Keith’s Home Page 79
11.4 Keith’s Redesigned Home Page .. 79
11.5 Behind the Scenes at Keith’s Redesigned Home Page 81
11.6 Desktop and Mobile Web Sites southwest.com 90
11.7 Desktop and Mobile Web Sites graz.at 90
11.8 A Breakpoint Diagram .. 92

12.1 Simple (Unbalanced) Latin Squares 106
12.2 Simple (Unbalanced) Latin Squares 107
12.3 Balanced Williams Designs (Latin Squares) for 2 to 7 Conditions 108
12.4 Choosing a Statistical Test .. 110

14.1 SunWeb: Card Distribution to Icons 125
14.2 SunWeb: Main and Second Level Mastheads 126
14.3 SunWeb: Final Home Page Design 127
14.4 Usability Lab Setup at Sun ... 129
14.5 SunWWW Button Bar Redesign ... 129
14.6 SunWWW Card Sorting ... 130
14.7 SunWWW Paper Prototyping .. 130
14.8 SunWWW Working Prototype .. 131
14.9 SunWWW Design 1 ... 132
14.10 SunWWW Design 2 ... 133
14.11 SunWWW Design 3 ... 133
14.12 SunWWW Design 4 ... 134
14.13 SunWWW Design 5 ... 135
14.14 SunWWW Design 6 ... 136
14.15 SunWWW Design 7 ... 137
14.16 SunWWW Design 8 ... 137
14.17 SunWWW Design 9 ... 138
14.18 SunWWW All Nine Iterations ... 139
List of Tables

3.1 Typical cost of building a web site .. 10
3.2 Time Spent on Repeat Visits to Home Page 12
3.3 Time Spent on Initial Visit Page .. 12
3.4 Most Disliked When Browsing Web on Mobile 13
3.5 How Long Will Users Wait? .. 13
3.6 Reasons for Return Visits .. 13

8.1 Most Users are Search-Dominant .. 50
8.2 Searching Reduces Success .. 50

9.1 SOWS Linkrot Survey .. 62

11.1 HTML source code for Keith’s new home page 80
11.2 Maximum acceptable page sizes .. 98

12.1 Simple Repeated Measures Data .. 106
12.2 Task Completion Times ... 111
12.3 User Ratings ... 113
12.4 User Preference Data ... 114

14.1 SunWeb: Results of Icon Intuitiveness Study 125
14.2 SunWeb: Five Iterations of Specialised Tools Icon 127
14.3 User Comments on Design 5 Icons 135
Preface

I first started teaching Human-Computer Interaction at Graz University of Technology in 1993. More and more interesting material came to be integrated into my HCI course notes, until in 2003, I decided to split them into two. The original HCI course was streamlined into an introductory course covering usability and the methods of usability engineering.

The more advanced and more web-specific material moved to a new course, this course on Information Architecture and Web Usability, which I first taught in winter semester 2003.

These lecture notes have evolved over many years and have benefitted from my experiences teaching courses on user interface design at FH Technikum Kärnten in Villach, web usability and advanced user interfaces at FH Joanneum in Graz, human-computer interaction at FH Hagenberg near Linz and numerous intensive courses at conferences and for industry.

I would like to thank all my students past and present for their many suggestions and corrections which have helped to massage these notes into their current form.

References in Association with Amazon

References with an ISBN number are linked to amazon.com (or amazon.co.uk or amazon.de) for quick, discounted purchasing. Amazon pay me a small referral fee for each item you purchase after following such a link – the item itself does not cost you any more. If you find these notes useful and would like to contribute towards their maintenance, please purchase any book you might want after following a specific ISBN link from here.

Thanks and happy reading,

Keith
Credits

- Figures 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, and 10.7 were kindly provided by Tom Tullis from Fidelity.
- The figures in Sections 14.1 and 14.2 were kindly provided by Jakob Nielsen from Sun Microsystems.
Chapter 1

Introduction

“We take stuff, and we sort it into useful categories, and we give it names that people recognise, and we put the stuff someplace where they're going to find it.”

[Eric Reiss, 22 Sept 2011, EuroIA, Prague.]

References

++ Scott Jehl; Responsible Responsive Design; A Book Apart; Dec 2014. [Jehl, 2014]

+ Peter Morville and Jeffery Callender; Search Patterns: Design for Discovery; O’Reilly, Jan 2010. ISBN 0596802277 (com, uk) [Morville and Callender, 2010]

+ Marti Hearst; Search User Interfaces; Cambridge University Press, Oct 2009. ISBN 0521113792 (com, uk) [Hearst, 2009]

○ Peter Morville; Ambient Findability; O’Reilly, 2005. ISBN 0596007655 (com, uk) [Morville, 2005]

○ William Jones; Keeping Found Things Found: The Study and Practice of Personal Information Management; Morgan Kaufmann, Nov 2007. ISBN 0123708664 (com, uk) [Jones, 2007]

○ Ryen White and Resa Roth; Exploratory Search: Beyond the Query-Response Paradigm; Morgan and Claypool, Mar 2009. ISBN 159829783X (com, uk) [White and Roth, 2009]

Online Resources

++ *Boxes and Arrows*; boxesandarrows.com
++ *A List Apart*; alistapart.com
++ Smashing Magazine; smashingmagazine.com

Professional Organisations

+ American Society for Information Science and Technology (ASIS&T); asist.org
+ Interaction Design Association; ixda.org
+ User Experience Professionals Association; uxpa.org
+ ACM SIGCHI; sigchi.org
 ◦ The Information Architecture Institute; iainstitute.org

Journals

◦ *Journal of the American Society for Information Science and Technology (JASIST)*; ISSN 0002-8231 https://onlinelibrary.wiley.com/journal/23301643
◦ *Journal of Usability Studies (JUS)*; Usability Professionals’ Association ISSN 1931-3357 uxpajournal.org
◦ *Journal of Information Architecture*; ISSN 1903-7260 [until 2013] journalofia.org

Conferences

finduxevents.com

◦ IA Summit; *Information Architecture Summit* iasummit.org
◦ EuroIA; *European Information Architecture Summit*; euroia.org
◦ IxDA; *Interaction Week*; http://ixda.org/events/interaction-week/
◦ ISI; *International Symposium of Information Science*; isi2017.de
◦ WebExpo Prague; webexpo.net
◦ Beyond Tellerrand; beyonddtellerrand.com
◦ Smashing Conference; smashingconf.com
◦ An Event Apart; aneventapart.com
◦ World Usability Congress; worldusabilitycongress.com
Chapter 2

User Experience (UX)

“Users don’t visit Web sites to experience the joy of navigation.”

References

Online Resources

+ UXmatters; uxmatters.com

◦ UX Magazine; uxmag.com

◦ UX Booth; uxbooth.com

◦ adaptive path; adaptivepath.org

◦ UX Myths; uxmyths.com

2.1 User Experience

User experience (UX); the entire experience of a user with a product or interface.

An umbrella term which encompasses:

• information architecture

• usability engineering

• graphic design

• interaction design
CHAPTER 2. USER EXPERIENCE (UX)

Figure 2.1: The five planes of user experience. Adapted from the diagram in Garrett [2002b, page 33].

The Five Planes of User Experience

- **5: Surface Plane**: web pages made up of images and text.
- **4: Skeleton Plane**: the placement of buttons, tabs, images, and blocks of text.
- **3: Structure Plane**: abstract structure of the site.
- **2: Scope Plane**: features and functionality.
- **1: Strategy Plane**: what the owners and users of the site want to achieve.

The five planes build from bottom to top.

The planes have slight nuances, depending on whether the (part of the) web site under design is task-oriented or information-oriented.

Stagger Work on Planes

Do not wait for work on one plane to finish before starting on the next. There must be some degree of iteration (feedback loop).

Work on a particular plane cannot finish before work on lower planes has finished.
2.1. USER EXPERIENCE

Web Application Site Design

Task-oriented (parts of) web site:

- **5**: Visual Design: visual treatment of interface elements.
- **4b**: Interface Design: design of interface elements, widgets, GUI.
- **4a**: Information Design: “content design”, wording and presentation of information to facilitate understanding.
- **3**: Interaction Design: design of application flows to facilitate user tasks.
- **2**: Functional Specifications: “feature set”, descriptions of functionality required to meet user needs.
- **1b**: User Needs: externally derived goals for the site identified through user research.
- **1a**: Site Objectives: business, creative, and other internally derived goals for the site.

Information Web Site Design

Information-oriented (parts of) web site:

- **5**: Visual Design: visual treatment of text, graphics, and navigational components.
- **4b**: Navigation Design: design of interface elements to facilitate navigation through information space.
- **4a**: Information Design: “content design”, wording and presentation of information to facilitate understanding.
- **3**: Information Architecture: structural design of the information space to facilitate intuitive access to content.
- **2**: Content Strategy: definition and management of content elements required to meet user needs.
- **1a**: User Needs: externally derived goals for the site identified through user research.
- **1a**: Site Objectives: business, creative, and other internally derived goals for the site.

Big Architect, Little Architect

Some people define the field of information architecture (IA) broadly, others more narrowly [Morville, 2000].

Defining information architecture (IA):

- “Big IA”: encompassing a broad range of responsibilities (all 5 planes of information site design).
- “Little IA”: narrowly focused on content organization and the structure of information spaces (plane 3 above).

I will adopt the convention of Garrett [Garrett, 2002a]:

Whereas an information architect might play many roles, the discipline of information architecture deals with the structuring of information spaces to facilitate navigation.
Chapter 3

Web Usability

“Don’t make me think!

...It means that as far as is humanly possible, when I look at a Web page it should be self-evident. Obvious. Self-explanatory.”

References

+ Jakob Nielsen and Hoa Loranger; *Prioritizing Web Usability*; New Riders, Apr 2006. ISBN 0321350316 (com, uk) [Nielsen and Loranger, 2006]

◦ James Kalbach; *Designing Web Navigation: Optimizing the User Experience*; O’Reilly, 07 Sept 2007. ISBN 0596528108 (com, uk) [Kalbach, 2007]

Resources in German

◦ Johannes Ippen; *Web Fatale: Wie Du Webseiten und Web-Apps gestaltet, denen niemand widerstehen kann*; Rheinwerk Design, 29 Mar 2016 ISBN 3836238985 (com, uk) [Ippen, 2016]

◦ Alexander Florin; *User Interface Design: Usability in Web- und Software-Projekten*; Books on Demand, 09 Jun 2015 ISBN 3738612386 (com, uk) [Florin, 2015]

There are three different kinds of web site, based on the purpose behind the web site:

a) Information: “get stuff” web sites.

b) Application: “do stuff” web sites.

c) Entertainment: “entertain me” web sites.

See also Figure 3.1.

The design criteria for each of these purposes are different!

Information Web Sites

- “get something” web sites.
- Structured content.
- The basic unit of interaction is the fact.
- Content, publishing.
• Books, papers, articles, reference material, specifications.
• Information sites are often large and are generated or maintained at least semi-automatically.
• The realm of information architects.
• For an information web site, the goal of the designer is to minimise the amount of time a user spends to find a specific piece of information.

Application Web Sites
• “do something” web sites.
• Structured tasks, dialogues.
• The basic unit of interaction is the task.
• Transactions, ordering, banking, planning, etc.
• Ordering, booking, form-filling, workflow.
• Web applications usually require some backend processing and often generate pages dynamically from a database.
• The realm of interaction designers.
• For an application web site, the goal of the designer is to minimise the amount of time a user spends to complete a specific task.

Entertainment Web Sites
• “be entertained” web sites.
• Enthralling content.
• The basic unit of interaction is the experience.
• Entertainment, marketing, promotion.
• Image, mindshare, building community.
• Promotion web sites are typically carefully hand-crafted by graphic designers for a specific look and experience (“form vs. content”).
• The realm of games designers and experience designers.
• For an entertainment web site, the goal of the designer is to maximise the amount of time a user spends on the site.

Mixing Purposes within a Site
Many larger web sites have a mixture of purposes, as shown in Figure 3.2.
However, the design criteria remain different for each corresponding area of the site.
Figure 3.2: Larger web sites often mix all three purposes within a single site.

<table>
<thead>
<tr>
<th>Cost</th>
<th>Information</th>
<th>Promotion</th>
<th>Transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>252,000</td>
<td>52,000</td>
<td>675,000</td>
</tr>
<tr>
<td>Content</td>
<td>813,000</td>
<td>237,000</td>
<td>1,910,000</td>
</tr>
<tr>
<td>Marketing</td>
<td>247,000</td>
<td>15,000</td>
<td>783,000</td>
</tr>
<tr>
<td>Total</td>
<td>1,312,000</td>
<td>304,000</td>
<td>3,368,000</td>
</tr>
</tbody>
</table>

Table 3.1: Typical cost of building a web site, in US$, estimated by Forrester Research, Dec, 1995.

3.2 Typical Cost of Building a Web Site

- Forrester Research (forrester.com) estimated the cost of web site development in 1995 for an information web site at around $1.3 million (see Table 3.1).

- AllBusiness [AllBusiness, 2006] estimated in 2006 that a “larger site with publishing tools, database connectivity and other advanced features” can cost $250,000 to build.

- In 2007, Guy Kawasaki described how he built Truemors (truemors.com) for $12,107.09 [Kawasaki, 2007]

- In 2015, the cost of building a web site can range from around $5,000 to $30,000 and up, depending on a whole variety of factors, according to the excellent analysis of Parr [2015].

- Pozin [2013], WebpageFX [2015] and Vyas [2013] provide alternative analyses.

- The student union (HTU) of Graz University of Technology published a breakdown of the €50,000 or so cost of their 2011–2013 website redesign [Ellmaier and Stachel, 2013], following some criticism [Kogelnik, 2014].

- Former Austrian finance minister Karl-Heinz Grasser’s web site karlheinzgrasser.at cost between €220,000 and €245,948 [APA, 2004] according to an independent expert assessment for the court.
3.3 Indicators of Web Usability

Success Rates

From Nielsen and Loranger [2006, pages 22–25]:

- Ask users to perform specific tasks on a particular web site (which are possible on that web site).
- In the 1990s, success rates of around 40%.
- In 2006, success rates average around 66%.
- Nielsen uses a fuzzy measure, taking partial success into account, rather than a binary measure of success or failure.

Linger Time

In Nielsen and Loranger [2006, page 27]’s study:

- Given a web-wide task, such as researching a new product.
- Users visited an average of 3.2 sites, in addition to any search engine they may have used.
- Users spent an average of 1 minute 49 seconds visiting a web site, before deciding to move on.
- A site only had a 12% probability of being revisited (for that task).

Time Spent on the Home Page of a Site

In Nielsen and Loranger [2006, page 32]’s study (see Table 3.2):

- Given a web-wide task, such as researching a new product.
- Users spent an average of only 31 seconds on the home page of a web site on their first visit.
- Decreased to an average of 25, 22, and 19 seconds on the second, third, and fourth visits.
- Only 23% of users scrolled down the home page (for those home pages which had multiple screenfuls) of a web site on the first visit.
- Only 16%, 16%, and 14% scolled the home page on the second, third, and fourth visits.

Gone in 30 secs.: so much to say and so little time to say it!

Time Spent on Initial Visit Page

From Nielsen and Loranger [2006, page 33]:

- Web users who first entered a web site on an interior page (say by following a deep link from a search engine), spent longer on that page than web users who entered at the home page spent there.
- More experienced web users spent less time than less experienced web users.
- Support deep linking to your site.

See Table 3.3.
<table>
<thead>
<tr>
<th>Visit</th>
<th>Time on Home Page</th>
<th>Users Who Scrolled</th>
<th>Screenfuls Scrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>31 s</td>
<td>23 %</td>
<td>0.8</td>
</tr>
<tr>
<td>2nd</td>
<td>25 s</td>
<td>16 %</td>
<td>0.8</td>
</tr>
<tr>
<td>3rd</td>
<td>22 s</td>
<td>16 %</td>
<td>0.8</td>
</tr>
<tr>
<td>4th+</td>
<td>19 s</td>
<td>14 %</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 3.2: On repeat visits to a web site’s home page, users spend even less time looking around. They go straight to the navigation and onward. [Data from Nielsen and Loranger [2006, page 32]]

<table>
<thead>
<tr>
<th>Experience</th>
<th>Time if Home Page</th>
<th>Time if Interior Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>35 s</td>
<td>60 s</td>
</tr>
<tr>
<td>High</td>
<td>25 s</td>
<td>45 s</td>
</tr>
</tbody>
</table>

Table 3.3: The time a user spends on the first page they see of a web site depends on whether they first see the home page or an interior page. More experienced web users spend less time than less experienced web users. [Data from Nielsen and Loranger [2006, page 33]]

Page Load Time

Waiting for web pages to load irritates people the most, as shown in Table 3.4.

- In 1998, people were prepared to wait around 15 seconds for a web page to load, as shown in Table 3.5.
- Today, it is probably much shorter.

Track Page Views not Unique Visitors

- Tracking the number of unique visitors to a site is now irrelevant [Nielsen and Loranger, 2006, page 39], since most of those visitors only sample a single page and then leave again.
- Instead, track the number of page views.

Reasons for Return Visits

Table 3.6 shows what users cite as the main reasons for returning to a site.

Note: never believe entirely what users tell you!
3.3. *INDICATORS OF WEB USABILITY*

<table>
<thead>
<tr>
<th>Most Disliked</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting for slow pages to load</td>
<td>46%</td>
</tr>
<tr>
<td>Being shown interstitials</td>
<td>16%</td>
</tr>
<tr>
<td>Encountering unplayable videos</td>
<td>14%</td>
</tr>
<tr>
<td>Getting redirected to the homepage</td>
<td>13%</td>
</tr>
<tr>
<td>Other</td>
<td>11%</td>
</tr>
</tbody>
</table>

Table 3.4: Responses to the question “What do you dislike the most when browsing the web on your mobile device?” from 570 respondents, as reported by [Google, 2015].

<table>
<thead>
<tr>
<th>% Still Waiting</th>
<th>Load Time (secs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>10</td>
</tr>
<tr>
<td>51</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3.5: The time users are prepared to wait for a web page to load before giving up. Reported by BrowserNews [Upsdell, 2001], quoting eMarketer (Nov. 1998).

<table>
<thead>
<tr>
<th>% of Users</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>High-quality content</td>
</tr>
<tr>
<td>66</td>
<td>Ease of use</td>
</tr>
<tr>
<td>58</td>
<td>Quick to download</td>
</tr>
<tr>
<td>54</td>
<td>Updated frequently</td>
</tr>
<tr>
<td>14</td>
<td>Coupons and incentives</td>
</tr>
<tr>
<td>13</td>
<td>Favourite brands</td>
</tr>
<tr>
<td>13</td>
<td>Chat and BBS</td>
</tr>
<tr>
<td>12</td>
<td>Cutting-edge technology</td>
</tr>
<tr>
<td>12</td>
<td>Games</td>
</tr>
<tr>
<td>11</td>
<td>Purchasing capabilities</td>
</tr>
<tr>
<td>10</td>
<td>Customisable content</td>
</tr>
<tr>
<td>6</td>
<td>Other</td>
</tr>
</tbody>
</table>

Table 3.6: The main reasons users give for returning to a site. Reported by BrowserNews [Upsdell, 2001], quoting Forrester Research (Feb. 1999).
Chapter 4

Mobile Usability

References

+ Jakob Nielsen and Raluca Budiu; Mobile Usability; New Riders, 10 Oct 2012. ISBN 0321884485 (com, uk) [Nielsen and Budiu, 2012]

+ Adrian Mendoza; Mobile User Experience; Morgan Kaufmann, 31 Oct 2013. ISBN 0124095143 (com, uk) [Mendoza, 2013]

Online Resources

+ Christian Holst; Exploring Ten Fundamental Aspects Of M-Commerce Usability; http://smashingmagazine.com/2013/05/21/recommendations-mobile-commerce-websites/ [Holst, 2013]

+ Google; Mobile-Friendly Test; https://google.com/webmasters/tools/mobile-friendly/

4.1 Mobile Usage Has Long Overtaken Desktop

- Sales of new smartphones overtook sales of new PCs (desktop + laptop) in Q4 2010 [Ferguson, 2011].

- As of May 2017 over 2 billion active Android devices [Popper, 2017].
• In 2015, US adults spent on average 2.8 hours per day (51%) on the internet on mobile devices, compared to 2.4 hours per day (42%) on desktop/laptop [Meeker, 2015, slide 14].

• The vast majority of twitter users (82%) in Q2 2016 accessed the service from a mobile device [Yeung, 2016].

• ≈ 74% of page impressions (to ÖWA Basic web sites) in Austria (Aug 2018) are from mobile web browsers [ÖWA, 2018]

Chapter 5

Web Accessibility

References

++ Heydon Pickering; Inclusive Design Patterns: Coding Accessibility into Web Design; Smashing, 2016. ISBN 3945749433 (com, uk) [Pickering, 2016]

++ Laura Kalbag; Accessibility for Everyone; A Book Apart, 2017. ISBN 1937557618 (com, uk) [Kalbag, 2017]

+ Sarah Horton and Whitney Quesenbery; A Web for Everyone: Designing Accessible User Experiences; Rosenfeld, 2014. ISBN 1933820977 (com, uk) [Horton and Quesenbery, 2014]

Online Resources

++ W3C; Web Accessibility Initiative (WAI); https://w3.org/WAI/

++ W3C; W3C Accessibility Standards Overview; https://w3.org/WAI/standards-guidelines/.

++ W3C; Web Content Accessibility Guidelines (WCAG) 2.1; W3C Recommendation 05 June 2018; https://w3.org/TR/WCAG21/.

++ WebAIM; Web Accessibility Initiative (WAI); webaim.org

++ Heydon Pickering; Inclusive Components; inclusive-components.design.

5.1 Checking Your Web Site for Accessibility

- Turn images and JavaScript off.
- Use the keyboard to navigate through your site (tab, arrow keys, space, return).
- Use a text-only web browser such as Lynx to browse your site lynx.browser.org.
- Use an accessibility evaluation service such as WAVE.
- Use a screen reader such as JAWS, NVDA, or VoiceOver.
Accessibility Evaluation Tools

- WebAIM; WAVE; wave.webaim.org

Screen Readers

- Freedom Scientific; JAWS; https://freedomscientific.com/Products/Blindness/JAWS. Commercial product for Windows (∼ US$ 1000), free trial version.
- Apple; VoiceOver; https://apple.com/accessibility/mac/vision/. Pre-installed on Apple devices (macOS, iOS, tvOS, and watchOS).
- WebAIM; *Designing for Screen Reader Compatibility*; https://webaim.org/techniques/screenreader/.
Chapter 6

Site Objectives and User Needs

“ We need to design for a world where Google is our home page, Wikipedia [DBpedia] is our content management system, and humans and robots are our users. ”

[Mike Atherton, talk at City University 06 Mar 2012 [Atherton, 2012, 00:13:48].]

6.1 Site Objectives

Site Objectives: business, creative, and other internally derived goals for the site.

6.2 Web Site User Needs and Characteristics

As with any kind of usability engineering, when designing web sites it is imperative to know your *target users* and their *typical tasks*.

User Needs: externally derived goals for the site identified through user research.

References

+ Louis Rosenfeld; *Search Analytics for Your Site*; Rosenfeld Media, 2011. ISBN 1933820209 (com, uk) [Rosenfeld, 2011]

6.2.1 Web Users in General

Statistics about web users in general. Not specific to any one site.

Demographics

• Pew Internet; *Internet/Broadband Fact Sheet*; 05 Feb 2018. [http://pewinternet.org/fact-sheet/internet-broadband/]
Browser Statistics

- StatCounter; *Global Statistics*; gs.statcounter.com
- NetApplications; *Browser Market Share*; netmarketshare.com

Connection Speeds

- Wikipedia; *List of countries by Internet connection speeds*; https://en.wikipedia.org/wiki/List_of_countries_by_Internet_connection_speeds
- Ookla; *Speedtest Global Index*; http://speedtest.net/global-index/ Measured connection speeds, aggregated from millions of users of speedtest.net.
- Cable; *Worldwide Broadband Speed League 2018*; https://cable.co.uk/broadband/speed/worldwide-speed-league/
- Akamai; *State of the Internet Report*; http://akamai.com/stateoftheinternet/

Austrian Data

- Austrian Internet Monitor Consumer (AIM-C); https://integral.co.at/de/aim/
- Statistik Austria; *IKT-Einsatz in Haushalten*; http://statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/informationsgesellschaft/ikt-einsatz_in_haushalten/

6.2.2 Know Your Own Users

- Server logs
 - Browser demographics:
 * OS
 * Browser version
 * Colours
 * Resolution
 - Page view logs:
 * Most popular pages
 * Most frequent paths
 - Search logs:
 * What is searched for most?
 * Which popular searches are unsuccessful?
- Bug reports, feedback
 - Problems, issues, and concerns.
• Online survey, competition.
 – User demographics
 – Connection speed

Survey of Users of www.sun.com

For a 1995 Sun sun.com site re-design, a survey of users of the site discovered the following categories of access:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-screen GUI</td>
<td>78%</td>
</tr>
<tr>
<td>Fast connection</td>
<td>82%</td>
</tr>
<tr>
<td>Text-only access</td>
<td>8%</td>
</tr>
<tr>
<td>Small screen GUI</td>
<td>13%</td>
</tr>
<tr>
<td>Modem</td>
<td>9%</td>
</tr>
</tbody>
</table>
Chapter 7

Content Strategy

“Content is King.”

Content Strategy: “Content strategy plans for the creation, publication, and governance of useful, usable content.” [Halvorson, 2008]

References

++ Meghan Casey; The Content Strategy Toolkit; New Riders, 18 Jun 2015. ISBN 0134105109 (com, uk) [Casey, 2015]

++ Margot Bloomstein; Content Strategy at Work; Morgan Kaufmann, 04 Dec 2012. ISBN 0123919223 (com, uk) [Bloomstein, 2012]

+ Erin Kissane; The Elements of Content Strategy; A Book Apart, 08 Mar 2012. ISBN 0984442553 (com, uk) [Kissane, 2011]

++ Sara Wachter-Boettcher; Content Everywhere; Rosenfeld, 12 Dec 2012. ISBN 193382087X (com, uk) [Wachter-Boettcher, 2012]

References in German

Online Resources

Chapter 8

Information Architecture

“IA is the means by which we get from a pile of stuff to a structured experience.”

[Adaptive Path, Designing the Complete User Experience, course slides.]

Information Architecture (IA) is the structural design of an information space to facilitate intuitive access to its contents. See Figure 8.1.

References

+ Andrea Resmini and Luca Rosati; Pervasive Information Architecture; Morgan Kaufmann, 13 Apr 2011. ISBN 0123820944 (com, uk) [Resmini and Rosati, 2011b]

+ Andrea Resmini and Luca Rosati; A Brief History of Information Architecture; Journal of Information Architecture, 2011. [Resmini and Rosati, 2011a]

◦ Abby Covert; How to Make Sense of Any Mess: Information Architecture for Everybody; CreateSpace, 04 Nov 2014. ISBN 1500615994 (com, uk) [Covert, 2014]

◦ Heather Hedden; The Accidental Taxonomist; Information Today, 03 May 2010 ISBN 1573873977 (com, uk) [Hedden, 2010]

+ Eric Evans; Domain-Driven Design; Addison-Wesley, 2003. ISBN 0321125215 (com, uk) [E. Evans, 2003]
Figure 8.1: Information architecture: getting from a pile of stuff to a structured experience.

+ Peter Morville and Jeffery Callender; Search Patterns: Design for Discovery; O’Reilly, 2010. ISBN 0596802277 (com, uk) [Morville and Callender, 2010]

+ Peter Van Dijck; Information Architecture for Designers: Structuring Websites for Business Success; Rotovision, 2003. ISBN 2880467314 (com, uk) [van Dijck, 2003]

◦ Alex Wright; Cataloging the World: Paul Otlet and the Birth of the Information Age; Oxford University Press, 04 Jun 2014 ISBN 0199931410 (com, uk) [Wright, 2014]

Online Resources

++ Boxes and Arrows; boxesandarrows.com

++ A List Apart; alistapart.com

◦ Peter Morville; Understanding Information Architecture; Prezi presentation, 27 Jun 2012. https://prezi.com/aafmvya6bk7t/understanding-information-architecture/

Information Architecture Output

Information architecture typically involves creating and maintaining:

● Groups and sub-groups for content: used in navigation.
Business goals, funding, politics, culture, technology, resources, constraints.

Context

Users

Content

Document and data types, content objects, volume, existing structure. Audience, tasks, needs, information seeking behaviour, experience.

Figure 8.2: The three circles of information architecture. Inter-dependent components which form an information ecology. Redrawn from [Rosenfeld, Morville and Arango, 2015, page 32].

- Metadata for individual items: used for search and faceted browsing.

The Three Circles Of Information Architecture

An information architect must consider three interdependent factors (a so-called information ecology):

- **Users**: Audience, tasks, needs, information seeking behaviour, experience.

- **Content**: Ownership, document and data types, content objects, volume, metadata, existing structure, dynamism.

- **Context**: Business goals, funding, politics, culture, technology, resources, constraints.

See Figure 8.2.

Information Seeking Behaviour

Users seeking information typically follow one of the following patterns of behaviour:
• **Known-Item Search**: The user knows exactly what they are looking for and how to describe it.

• **Exploratory Search**: The user knows broadly what they are interested in, and hopes to discover a few useful items or pointers.

• **Exhaustive Search**: The user is looking for everything available on a particular topic.

• **Refinding**: The users remembers having seen a particular item, but now wants to find it again.

Pace of Change

In traditional architecture, Brand [2010] describes how buildings comprise six layers, which change over time at different rates (“shearing layers”):

• **Site**: the geographical location. [changes the slowest]

• **Structure**: the skeleton of the building, including foundations, columns, support elements.

• **Skin**: the exterior surface of the building.

• **Services**: the internal infrastructure, such as heating, ventilation, plumbing, and wiring.

• **Space plan**: internal layout, room partitions, doors.

• **Stuff**: furnishings and appliances. [changes the fastest]

Similarly, a website’s visual design may change relatively frequently, while its underlying information architecture remains relatively stable.

8.1 Organisation Schemes

Homogeneity

An old-fashioned library card catalog is fairly *homogeneous*:

• It organises and provides access to books (and only books).

• It does not provide access to chapters of books or collections of books.

• All the objects are at the same level of *granularity*.

• Each record (index card) contains the same fields: author, title, and subject.

Heterogeneity

Most web sites, in contrast, are *heterogeneous*:

• Web sites may provides access to objects of different types in different formats.

• Objects might be accessible at different levels of granularity: collections of journals, journals, articles.

 It does not make sense to classify objects at varying levels of granularity (say, journals and articles) side by side.
8.1. ORGANISATION SCHEMES

Exact Organisation Schemes

Exact organisation schemes divide information up into well-defined, mutually exclusive sections, such as:

- Alphabetical: for example, residential telephone book (white pages) sorted by surname then first names.
- Chronological: for example, press releases sorted by date of announcement.
- Geographical: for example, weather forecasts sorted by country and region.

A facet is an attribute along which items can be organised, for example name of person or date of press release.

Known-item search: if you know the facet value of the item you are looking for, the path to it along that facet is unambiguous and obvious.

Ambiguous Organisation Schemes

Sometimes categories are overlapping or items fall into multiple categories.

Common ambiguous organisation schemes include:

- Topical: for example, product categories, newspaper articles, Open Directory.
- Task-based: for example, browse, sell, search, sign in (limited number of high priority tasks).
- Audience-based: for example, novice or expert.
- Metaphor-based: for example, desktop or sketch map.

Often, a selection of organisation schemes is provided.

Topical Organisation Schemes

In a library, you can typically search for books by:

- Author (exact),
- Title (exact), or
- Subject (ambiguous).

Library patrons use subject-based schemes much more often than author or title, because:

- often do not know exactly what they are looking for
- can browse serendipitously among groups of topically related items.

Examples include the site index at About.com about.com or the product categories at Amazon amazon.com or Geizhals geizhals.at.

Figure 8.3 shows the topical organisation scheme at ConsumerReports consumerreports.org in 2007.
CHAPTER 8. INFORMATION ARCHITECTURE

Task-Based Organisation Schemes

- Limited number of high priority tasks.

- For example: Browse, Search, and Sell, and Pay, Register, and Sign In on Ebay http://ebay.com/ in 2003, as shown in Figure 8.4.

Audience-Based Organisation Schemes

- Invite customers to self-select which category they fit into.

- Repeat visitors can bookmark their section.

- For example: Home & Home Office, Small & Medium Business, Large Business, and Government at Dell dell.com, as shown in Figure 8.5.

- However, research shows that users are not very good at self-identifying and think they are missing out on good content in the other sections.

Metaphor-Based Organisation Schemes

- Hard to get right.

- If it is to succeed, metaphor must be familiar to users.

- Do not stretch or break the metaphor.
8.1. ORGANISATION SCHEMES

Figure 8.4: Task-based organisation scheme at the Ebay web site in 2003.

Figure 8.5: Audience-based organisation scheme at the Dell web site.
• For example: users of a virtual airport might expect a check-in clerk to be on hand to answer questions.

• In 1996 the Lufthansa web site featured a Virtual Airport with a metaphor-based organisation scheme, as shown in Figure 8.6.

Multiple Organisation Schemes

Where multiple schemes are presented on the same page:

• Preserve the integrity of each organisation scheme.

• Do not mix and match schemes at the same level.

The Stanford University web site provides multiple organisation schemes, as shown in Figure 8.7. Dell has in fact a geographical, an audience-based, and a topical organisational scheme.

Metadata-Based Organisation Schemes (Database Model)

An alternative, bottom-up approach, based on every individual item having structured metadata attributes (records with fields, like in a database), for example:
Figure 8.7: Multiple organisation schemes at Stanford University web site: topical, audience, and alphabetical.

<table>
<thead>
<tr>
<th>Mixed Up Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
</tr>
<tr>
<td>Arts and Humanities</td>
</tr>
<tr>
<td>Community Centre</td>
</tr>
<tr>
<td>Get a Library Card</td>
</tr>
<tr>
<td>Learn About Our Library</td>
</tr>
<tr>
<td>Science</td>
</tr>
<tr>
<td>Social Science</td>
</tr>
<tr>
<td>Teen</td>
</tr>
<tr>
<td>Youth</td>
</tr>
</tbody>
</table>

Figure 8.8: A mixed-up hybrid organisational scheme. [From Morville and Rosenfeld [2006, page 67]]
In this example, it is possible to search for and sort items using any (combination) of these fields. The metadata fields for all items within a particular (sub)collection must be homogeneous and must (largely) be filled out.

8.2 Taxonomies and Hierarchies

A taxonomy (in our sense) is a hierarchical arrangement of categories.

At each level of a hierarchy, categories should be:

- *Mutually exclusive:* use non-overlapping categories, so users know where to look (scent).

- *Comprehensively exhaustive:* completely partition the parent category, so users do not suspect a category is missing.

- *Equivalently granular:* it is confusing to encounter neighbouring categories which appear to cover different levels of granularity.

Analysts at McKinsey use the MECE (mutually exclusive, collectively exhaustive) rule when they are breaking down business problems [Rasiel and Friga, 2001].

Category Labels

As far as possible, category labels should be:

- Phrased in the user’s language.

- Unambiguous.

Check your choice of labels by user testing.

Labelling System Audit

An existing web site’s navigation labelling system can be audited:

- Choose a starting point (say, the home page or a representative content page).

- Systematically check every local (within-site) navigation link on the page.

- For each such link, enter the following into a spreadsheet:
 - *Label text:* the text which the users sees and clicks.
 - *Destination heading:* A (typically bold) main heading in the destination page content.
8.3. CARD SORTING

– **Destination `<title>`** text: the text inside the `<title>` element of the link destination (typically shown in the browser window or tab bar). [Use View Source and search for `<title>` to determine the title text.]

– **Destination URL**: the URL of the page to which the user is taken.

Once the spreadsheet is complete, check the labels for consistency. Sort by Destination URL and cross-check.

An example can be found in Rosenfeld, Morville and Arango [2015, pages 158–160].

Polyhierarchies

If the categories are not mutually exclusive (i.e. if items may appear in multiple places), the taxonomy is **polyhierarchical**.

Sometimes it makes sense to crosslist items in multiple locations:

- Do tomatoes belong to fruit, vegetable, or berries? Probably all of them [Morville and Rosenfeld, 2006, page 56].
 [The tomato is technically a berry and thus a fruit, although it is usually used as a vegetable.]
- Are toner cartridges best listed under laser printers or printer supplies? Probably both.

Breadth versus Depth

- If a hierarchy is too narrow and deep, users have to click through too many levels.
- If a hierarchy is too broad, users must choose between a large number of subcategories at each level.
- A medium balance of breadth and depth provides the best results, according to Larson and Czerwinski [1998].
- If you expect the hierarchy to grow, tend towards broad-and-shallow (it is less problematic to add items to secondary levels of the hierarchy).

Note: The famous 7 plus or minus 2 study [Miller, 1956] investigated the number of items retained in short-term memory. It **does not apply to choices which are visible!!**

Top-down and Bottom-Up Design

- **Top-down**: Start with the broadest categories and work down.
- Top-level categories come from user and task analysis.
- **Bottom-Up**: Start grouping content items into low-level categories and work up.
- Content chunks come from content audit of client and competitive analysis.
- Meet in the middle.

8.3 Card Sorting

Construct a hierarchical structure from the users’ perspective by conducting card sorting tests.
References

++ Donna Spencer; *Card Sorting: Designing Usable Categories*; Rosenfeld Media, 2009. ISBN 1933820020 (com, uk) [Spencer, 2009]

++ Anthony Coxon; *Sorting Data: Collection and Analysis*; Sage Publications, 1999. ISBN 0803972377 (com, uk) [Coxon, 1999]

++ William Hudson; *Everything You’ve Always Wanted to Know About Card Sorting*; http://syntagm.co.uk/design/cardsort.pdf [Hudson, 2005]

Concept Cards

- Make a list of concepts which should be present on your site (brainstorming, user interviews, content audit).

- Each concept corresponds to a chunk or set of information.

- Around 50–100 concepts are manageable in practice.

- Make one notecard for each concept. I use cards of size 12cm \(\times \) 8cm (I print out 4 per sheet of A4 card).

- Use a large font, so the label can be read on the video recording.

- Number each card to better keep track of the concepts.

Open Card Sorting

Open card sorting test:

- Users cluster concept cards into their own categories and sub-categories, which they then label themselves.

- Too few concept cards and you will not get two levels of a hierarchy, only one.

- Used in early phases of research to help build a concept hierarchy.

Closed Card Sorting

Closed card sorting test:

- Users sort concept cards into a *predefined* category hierarchy.

- At the start, you can ask users what they think each category means.

- Once a hierarchy has been built, closed card sorting is used to check where users would *place* concepts.

- I am not a fan of closed card sorting: There are better ways to check where users would *look for* concepts: build a working prototype and ask users to locate concepts.

[When I say card sorting, I always mean *open* card sorting, unless otherwise stated.]
8.3. CARD SORTING

Preparation for Face-to-Face Card Sorting

- Prepare the set of numbered concept cards.
- Prepare a small set of demo concept cards.
- Reserve a quiet room with a large table. [The table should have a plain surface, so as not to distract from the cards. A glass surface or a multi-coloured tablecloth are not ideal…]
- Organise a video camera, tripod, and microphone.

Recipe for Face-to-Face Card Sorting

Thinking aloud usability test with 4 or 5 test users:

- Shuffle both sets of concept cards (random order).
- Start the recording.
- Greet the user.
- Go through the orientation script.
- Ask the user to read and sign the consent form.
- Explain thinking aloud: “I would like you to talk out loud while you are working, so that I can follow your thought process when I watch the video back later.”
- Give a demo of card sorting while thinking aloud with the small set of demo concepts.
- Ask if the user has any questions at this point.
- Give the user the pack of real concept cards.
- Ask the user to look through the cards to see if any concept is unclear. See Figure 8.9.
- If a concept is unclear, ask the user what they think it means (for feedback), then explain what was actually intended. See Figure 8.10.
- Ask the user to sort the cards into piles or categories (ideally, not too small and not too large) according to perceived similarity. See Figure 8.11.
- Make sure you prompt and encourage the user to keep talking out loud the whole time.
- Ask the user to name the piles using Post-it notes, as shown in Figure 8.12.
- If there are many fairly small piles, the user should group the piles into larger groups of similar piles.
- If a single pile contains many (>10–12) cards, ask the user to split it into subgroups.
- The user names each group using Post-Its. Use a different colour Post-It for each level of the hierarchy.
- About 30–60 minutes per user.
CHAPTER 8. INFORMATION ARCHITECTURE

Figure 8.9: A card sorting test. The concept cards are first scattered randomly over the table.

- Make sure you have understood the names given by the user to each group.

- Ask the user to explain any strategy they used to group the cards (to discover their organising principle): “How did you proceed? Did you have some kind of principle in mind while you were grouping the cards?”

- Thank the user and escort them to the door.

- Stop the recording. Check the audio quality. Save and rename the video file appropriately.

- Take photographs of this user’s cards and groups for documentation.

- Capture the contents of each pile and group (this user’s two-level hierarchical structure) on paper. [A quick way of doing this is to write the number of each card in a group onto that group’s Post-It.]

- Take more photographs of the groups with Post-Its (after writing down the member card numbers) for documentation.

- Prepare for the next user.

How Many Users for Card Sorting?

- To gain some insight into user thinking, 3 to 5 users are probably enough.

- To discover alternative organising principles and for statistical analysis, 20+ users would be better.
8.3. CARD SORTING

Figure 8.10: The test facilitator explains any concepts which are unclear. Note the observers sitting in the background.

Figure 8.11: The test user is in the process of grouping the cards into categories.
Software Tools to Help Run a Card Sort

Some software tools for running a card sort include:

- SimpleCardSort; simplecardsort.com
- OptimalSort; http://optimalworkshop.com/optimalsort.htm
- WebSort; websort.net
- NetSorting; cardsorting.info
- CardZort; cardzort.com
- uzCardSort; http://uzilla.mozdev.org/cardsort.html

Categorising Sorts by Mindset

Before you can do any meaningful analysis, you must categorise your sorts by “mindset”, the organising principle each user used to create their groups:

- Different users will often have different ways of grouping concept, using different organising principles (or mindsets).
- For example, when grouping supermarket items, each of these organising principles may appear:
8.3. CARD SORTING

- Supermarket: by the item’s (shelf) location in a supermarket.
- Recipe: by how the item is used with other items.
- Region: by where the item originates.
- Kitchen: by where the item will be stored at home.

- In face-to-face card sorts, when users are thinking aloud, they can usually explain their organising principle (mindset) to you.
- In online card sorts, you must ask the user to write down their organising principle (mindset) at the end of the sort. You need all the help you can get.
- It makes no sense to aggregate sorts from users who have used different mindsets.

Manual Analysis of Card Sorting Results

- Analyse data using an analysis spreadsheet (see Donna Spencer’s book [Spencer, 2009]).
- If users came up with several different names for (more or less) the same group of cards, choose the best name (even a new name) for that group.
- Come up with an aggregate suggestion for two-level hierarchy of information, *the way users would expect to find things organised*.
- Also come up with suggestions for naming every group (menus), but treat these only as suggestions, which should then be usability tested.
- Translate this into equivalent web site structure.
- Repeat card sorting at higher or lower levels of granularity.

Statistical Analysis of Card Sorting Results

All of the statistical tools presume a one-level hierarchy as input, i.e. a simple list of groups all at the same level. [If some users produce a multi-level hierarchy, it has to be flattened before it can be input to the tool.]

The most common measure for similarity between two concepts is based on how often the two concept cards are placed in the same group:

- Say there were 8 users and hence 8 different groupings.
- For every pair of concepts: count the number of times these two concepts were placed in the same group (a number between 0 and 8).
- Normalise by the number of users (i.e. divide by 8).
- That gives a number between 0 (never in the same group, highly dissimilar) and 1 (always in the same group, highly similar) indicating the similarity between every pair of concepts.

This similarity matrix (triangular matrix) is used as input for the statistical tools (hierarchical clustering).
Statistical Tools for Analysis of Open Card Sorting Results

Some tools to help with for statistical analysis of open card sorting data (hierarchical clustering) include:

- Sortpac; http://methodofsorting.com/sortpac.htm
- SynCaps; http://syntagm.co.uk/design/cardsortdl.shtml
- Hierarchical Clustering Explorer (HCE); http://cs.umd.edu/hcil/hce/

8.4 Tree Testing

Tree testing (hierarchy validation, or reverse card sorting) is used to validate a navigation hierarchy:

- Take existing or candidate navigation hierarchy.
- Ask users where they would look for certain items (known-item search).

Tree testing tests the basic hierarchy, stripping out any influence of visual or navigation design.

Tree Testing Benefits

Tree testing can check the following:

- Are the labels making sense to users?
- Is the content grouped logically?
- Do users look where expected? Why not?

Types of Tree Testing

- Paper-based with index cards.
- Computer-based tree testing tool.
- Simple mock-up web site implementing the candidate hierarchy.

Paper-Based Tree Testing with Index Cards

Described by Donna Spencer [Spencer, 2003]:

- Model each node in the hierarchy on an index card.
- Number each card within the hierarchy level (e.g. 1.1.2).
• Prepare some task scenarios on separate index cards.
• Arrange for an assistant (scribe) to take notes and/or record the session on video.
• For each test user:
 – Place the choices at the top level on the table and ask the user where they would look.
 – Place the children of the chosen card on the table and ask the user where they would look, and so forth.
 – Repeat for each task.
 – Debrief the user.
• Afterwards, transfer the results into a spreadsheet for analysis.

Online Tree Testing

• Treejack treejack.com [OW, 2016; OBrien, 2009].
• Naview naviewapp.com [Volkside, 2016].
• C-Inspector c-inspector.com [Schilb, 2016].

8.5 Controlled Vocabularies

A *controlled vocabulary* (CV) is a set of standard terms to be used on a site. Different flavours, from simple to complex:

• **Synonym ring**: simple list of equivalent terms.
• **Authority file**: list of preferred terms.
• **Classification scheme**: includes hierarchical relationships (broader, narrower) between terms.
• **Thesaurus**: includes associative relationships (see related) between terms.

See [Fast, Leise and Steckel, 2002] for more information.

Synonym Rings

food processor = *blender* = *mixer* = *cuisinart* = *kitchenaid*

• A synonym ring connects phrases which are equivalent for retrieval purposes.
• There may not be a single preferred term.
Authority Files

Strictly speaking, an authority file lists a single preferred term or acceptable value for each concept. In practice, authority files usually include both a preferred term and a list of variant terms.

AL Alabama
.
.
CT Connecticut, Conn, Connnecticut, Constitution State
.
.
CT is the preferred term, the others are equivalent terms.

Classification Schemes (Taxonomies)

A full blown hierarchy, showing:

- the broader terms (BTs),
- the narrower terms (NTs), and
- the variant terms (most often displayed as UF for Used for).

Jeans
BT Pants
NT Levis
NT Wranglers
UF Dungarees
UF Waist Overalls

Thesaurus

The “Rolls Royce of controlled vocabularies” (Peter Morville) also including related terms.

Jeans
BT Pants
NT Levis
NT Wranglers
UF Dungarees
UF Waist Overalls
RT Denim
RT Overalls

Denim
BT Fabrics
NT Ring Spun
NT Dark Indigo
NT Stonewash
RT Jeans
Using CVs with Search

A CV can be integrated with a web site’s search engine to handle the following situations:

- Synonyms: two words with the same meaning, like “jeans” and “dungarees”.
- Homonyms: words that sound the same, but have different meanings, like “bank” the financial institution and “bank” the side of a stream or river.
- Broaden or narrow a search.
- Common misspellings.
- Changes in content: for example, countries that change their name or have multiple spellings.
- “Best Bets”: identifying the most popular pages associated with a certain term.
- Connecting a woman’s married name to her maiden name.
- Connecting abbreviations to the full word: for example, NY and New York, the chemical symbol Si with the element Silicon.

Internal Use of CVs

As well as helping the user with search, CVs can:

- help keep your categories distinct.
- help establish a site’s navigation.
- be the basis for personalisation.
- help prepare for CMS or knowledge management projects.
- get the organisation using the same language as the users.
- help the organisation (and the user) understand what concepts the site covers. The CV is in fact a “concept map” of what is on the site.

Technology for Maintaining CVs

- Excel spreadsheet.
- Multites multites.com
- Term Tree termtree.com.au
- Protégé protege.stanford.edu
- PoolParty poolparty.biz

8.6 Faceted Classification

References

◦ Shiyali Ranganathan; *Colon Classification*; First Edition, Madras Library Association, 1933. [Ranganathan, 1933]

Online Resources

++ Daniel Tunkelang; *The Noisy Channel*; thenoisychannel.com

Colon classification

Ranganathan [Ranganathan, 1933] introduced *faceted classification* under the name colon classification in 1933:

- Originally, five fundamental categories (or facets): personality, matter, energy, space, and time (PMEST).
- Ranganathan called the facets *isolates*.
- Each facet is hierarchically subdivided.
- The set of allowable values for each facet is determined in advance.
- A compound subject or topic is described (placed) along one or more of the facets (dimensions).
- The facets are notationally separated by colons (:).

Example of Colon classification

To use an example from Tunkelang [2009, page 8], originally found in Ranganathan [1950, pages 35–38]:

L2153:4725:63129:B28

represents the statistical study of the treatment of cancer of the soft palate by radium:

- Disease (4) → Structural Disease (47) → Tumour(472) → Cancer (4725).
- Treatment (6) → Treatment by Chemical Substances (63) → Treatment by a Chemical Element (631) → Treatment by a Group 2 Chemical Element (6312) → Treatment by Radium (63129).
8.7. User-Generated Structures

Sometimes, a workable strategy is to allow users to generate their own structures.

Emergent Paths

- The University of California at Irvine supposedly used a deliberate organic design approach, where pathways between buildings were only paved after seeing where users were actually walking [Wall, 1999].
- This idea of watching user behaviour and then supporting it is also known as “paving the cowpaths”.
- Figure 8.13 shows a well-frequented emergent path to the university canteen (Inffeldgasse) at Graz University of Technology. Users did not want to follow the pre-ordained pathways, so the university relented and paved the cowpath, as shown in Figure 8.14.
- Peter Merholz describes another example at UC Berkeley [Merholz, 2003].

Social Tagging

- Web 2.0 [O’Reilly, 2005] and the rise of user-generated content has sparked a new form of emergent structure: collaborative tagging.
- Also called free tagging, collaborative categorisation, mob indexing.
Figure 8.13: A well-trodden emergent path from the lecture theatres to the canteen at Graz University of Technology in Aug 2004. [Photo used with kind permission of Martin Pirker.]

Figure 8.14: The university authorities bowed to the wishes of their users and paved the cowpath. The same scene photographed in Aug 2008.
• Users tag objects with one or more keywords.
• Nothing inherently new in that, simply the difference in scale (the number of people assigning tags).
• The network effect of “harnessing collective intelligence” [O’Reilly, 2006].

Folksonomies

• Thomas Vander suggested in 2004 that a user-created, bottom-up categorical structure be called a “folksonomy” [Morville and Rosenfeld, 2006, page 78].
• In contrast to a specialist maintained, top-down taxonomy.
• Controlled vocabularies (including taxonomies) are too expensive to build and maintain in the majority of cases where tagging is useful.
• “The advantage of folksonomies is not that they are better than controlled vocabularies, it is that they are better than nothing.” Clay Shirky, 2005.

8.8 Site Search

References

++ Tony Russell-Rose and Tyler Tate; Designing the Search Experience: The Information Architecture of Discovery; Morgan Kaufmann, Aug 2012. ISBN 0123969816 (com, uk) [Russell-Rose and Tate, 2012]

+ Peter Morville and Jeffery Callender; Search Patterns: Design for Discovery; O’Reilly, Jan 2010. ISBN 0596802277 (com, uk) [Morville and Callender, 2010]

+ Marti Hearst; Search User Interfaces; Cambridge University Press, Oct 2009. ISBN 0521113792 (com, uk) [Hearst, 2009]

8.9 Navigation Systems

• Browsable categories.
• Site-wide search.
• Site map.
• Site index.

Users Like to Search

In Nielsen’s studies [Nielsen, 1997c], most users are task-focused and rely primarily on searching rather than link-following to find information, as shown in Table 8.1. To facilitate searching:

• Put a search box or button on every page (by convention at the top right).
Search-dominant $>50\%$
Link-dominant $\approx 20\%$
Mixed $\approx 30\%$

<table>
<thead>
<tr>
<th>% of successful tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without search</td>
</tr>
<tr>
<td>With search</td>
</tr>
</tbody>
</table>

Table 8.1: Nielsen [1997c] found that most users are search-dominant.

<table>
<thead>
<tr>
<th>Without search</th>
<th>53%</th>
</tr>
</thead>
<tbody>
<tr>
<td>With search</td>
<td>30%</td>
</tr>
</tbody>
</table>

Table 8.2: Spool [1997] found that users who searched were *less* successful than those who browsed.

- Use global search by default (i.e. search the whole site by default, rather than only in the current scope).
- Relegate boolean queries to an “Advanced Search” page.

On-Site Searching Reduces Success

In Spool’s studies [Spool, 1997], users who used the on-site search facility, were actually *less* likely to find the information they were looking for, as shown in Table 8.2:

- The search engine may be poorly implemented.
- Search syntax is different from site to site.
- Users do not know how to formulate queries.
- Users rarely change the default search options.
- Users mistype search terms (an analysis of one week’s log files from Netscape’s DevEdge Online showed 3% of searches contained misspelled words).

Actually, Users are Not Search-Dominant

Whether people browse or search actually depends largely on how well each is supported on a particular site:

- Spool [2007] and Spool [2001] could not find any search-dominant users. Instead, he found users adapted their behaviour from site to site.
- Similar results were reported by Katz and Byrne [2003, page 217]:

 “Given broad, high-scent menus, participants searched less than 10% of the time, but they searched almost 40% of the time when faced with narrow, low-scent menus.”

See Koh [2016] for further discussion.
Provide Both Browse and Search

Provide both browse and search:

- Some users will prefer one or other.
- Many users will use both at some time, depending on the task at hand, and how well each is supported on a particular site.

Tognazzini [2011] and Johnson [2010] also make good arguments for providing both browse and search.

Even Better, Provide a Palette of Navigational Aids

In fact, if you can, provide all of these:

- **Multiple Taxonomies**: multiple category hierarchies to browse.
- **Search**: Attribute and full text search.
- **Site map**: either graphical or a topical table of contents.
- **Site index**: alphabetical index of common words and phrases.

The PeopleSoft web site http://www.peoplesoft.com/ used to be a good example of this (PeopleSoft has since been acquired by Oracle). See Figures 8.15, 8.16, and 8.17 and Fox [2002] and Fox [2003].
Figure 8.16: The former PeopleSoft web site’s A-Z site index, like the alphabetical index at the back of a book.

Figure 8.17: The former PeopleSoft web site’s Site Map: like a table of contents for the web site.
8.10 Domain-Driven Design

Design based on first modeling the space of the domain:

- Identify and name objects and concepts in the domain of interest.
- Identify and name relationships between objects and concepts.
- Each concept or object becomes a web page and gets its own URI.
- Draw in data from linked open data sources.

UK Government Resources

- UKGovLD; UK Government Linked Data Working Group; https://data.gov.uk/linked-data/UKGovLD

Example: legislation.gov.uk

UK legislation from 1267 onwards:

- Managing legislation as data.
- Versioning, changes, as in force at a particular time.
- URI naming scheme for documents and parts of documents.
 - Copyright, Designs and Patents Act 1988
 - Section 35
 - as it stood on 30 Jan 2001.

See the talk by John Sheridan [Sheridan, 2013].
Chapter 9

Information and Navigation Design

“Users rarely look at a web site and exclaim, “Wow, check out this brilliant classification scheme!””

Navigation Design: design of navigation elements, placement of navigation blocks.

Information Design: “content design”, placement of content blocks, wording and presentation of information to facilitate understanding.

References

Online Resources

++ Boxes and Arrows; http://boxesandarrows.com/

Wireframing Tools

• DENIM: An Informal Tool For Early Stage Web Site and UI Design; http://dub.washington.edu/denim/

• Axure; http://axure.com/

• Balsamiq Mockups; http://balsamiq.com/

• Microsoft Expression SketchFlow; http://www.microsoft.com/expression/products/Sketchflow_Overview.aspx

• HotGloo http://hotgloo.com/

Wireframes

• Build wireframe models (low-fi prototypes).
Figure 9.1: A storyboard of individual page wireframes modeled using DENIM.

- Test the wireframe model with test users.
- Figure 9.1 shows a web site storyboard in DENIM, composed of individual page wireframes. Figure 9.2 shows a test run through the linked page wireframes.
- Figure 9.3 shows a wireframe of a facebook Group page, modeled using Balsamiq Mockups.

9.1 Navigation Design

Users form a mental model of the structure (information architecture) of a site:

- Convey the site structure clearly and consistently.
- Reflect the structure in the choice of URLs.
- Put a logo or banner on every page to reinforce the sense of place.
- Use colour-coding or other distinctions to indicate sub-sites or sub-areas within a site.

The URL is Part of the User Interface

For lack of better orientational feedback, users analyse URLs to form a conceptual model of a site:

http://useit.com/papers/heuristic/heuristic_list.html

- Keep URLs short.
9.1. NAVIGATION DESIGN

Figure 9.2: Running through a DENIM prototype.

Figure 9.3: A wireframe of a Facebook Group page, modeled using Balsamiq Mockups. [Mockup contributed to mockupstopo.net by Benjamin A. Wendelboe. Image created by Keith Andrews.]

Figure 9.4: Jakob Nielsen’s site UseIT (useit.com) used to have a clickable hierarchy bar at the top of each page reflecting the full path from the home page.
Figure 9.5: The web site of the city of Graz (graz.at) provides examples of what is contained within each category to assist users in making the right choice.

- Use a domain name that is easy to remember and spell.
- Use meaningful names as part of the URL.
- Use easy-to-type URLs, avoiding punctuation and special characters.
- URL should reflect logical structure of site.
- URL should be “hackable”, allowing users to move up the site structure by hacking off the end of the URL.
- Use hyphen (“-”) rather than underscore (“_”) to separate word parts in URLs:
 - Many URLs are displayed as links, appearing blue and underlined, which means underscores in the URL are obscured and look like spaces to users.
 - The Google indexer treats a hyphen as a word separator, whereas underscore is silently deleted and the word parts are merged [Elshaw, 2011], for example:
 - “2011–2012” is indexed as “2011” and “2012” (two words)
 - “2011_2012” is indexed as “20112012” (one word)

Provide Information Scent

Give users clues in advance as to what is contained in each category or sub-category (“information scent”):

- Phrase and test category labels, to make sure they are as representative as possible.
- Provide hints or examples of items contained within each category [I. Barker, 2005], as shown in Figure 9.5.
- The concept of information scent comes from the theory of information foraging [Pirolli, 2007].
9.2 Text Design

Users Scan Rather than Read

- Attention is attracted to text first. [Of the first three eye fixations on a page, 78% were on text [The Poynter Institute, 2000; Nielsen, 2000]]

- Users scan for highlighted (bold or blue) terms such as headings, links, and captions [Morkes and Nielsen, 1997]. If everything is highlighted, nothing has prominence.

- Users scan paragraphs, often reading only the first sentence. [only 16% read word-by-word [Nielsen, 1997b]]

- Users expect one topic per paragraph. Users will skip over additional ideas, if they are not caught by the first few words in the paragraph.

- Users do not like reading on screen. Use less than 50% of the word count of an equivalent hardcopy version. [Reading from screen is more than 25% slower than from paper.]

Short or Long Pages (Scrolling)

In a 1994 study [Nielsen, 1994], only about 10% of users scrolled beyond the first screenful of each page. In more recent studies, users might say they don’t like scrolling, but are in fact perfectly willing to scroll [UIE, 1998; Nielsen, 1997a].

- Longer pages work better, according to UIE study [UIE, 1998].

- Place navigation elements and the most important content in the first screenful (“above the fold”, in traditional newspaper jargon).

- Avoid using horizontal rules. Some users think the page is finished and do not scroll down.

Use an Inverted Pyramid Style of Writing

Traditional scholarly writing starts with a foundation and gradually builds to the conclusion, in pyramid style:

- Problem statement.

- Related work.

- Methodology.

- Results.

- Conclusions.

Journalists use an inverted pyramid, starting with the main conclusion and becoming progressively more detailed.

- Conclusion.
• Supporting information.

• Background.

Since web users typically do not scroll, it is important to make the main point first, then go into more detail.

Support Deep-Link Users

In hypertext, you never know where your readers are jumping in from:

• Do not assume that users have read “preceding” pages or have followed a particular path.

• For example they may have followed a link from a list of search results.

• Or been sent a URL deep in your site by email.

• Nielsen and Loranger [2006, page 27] found that on web-wide tasks, 60% of initial page views were of interior pages rather than site home pages.

• Each page must stand on its own and be linked to its context:
 – Page content should be self-contained.
 – Breadcrumb trail to locate page in the web site’s hierarchy.
 – Logo with link to home page in top left corner.
 – Search box in top right corner.

Make Page Titles Distinctive

• Page titles (the text contained inside the HTML TITLE tag) are encountered by users in a variety of places:
 – In the browser window title bar.
 – When they save a bookmark to the page.
 – In search engine result lists.
 – When the browser window is iconified.

• Titles must be distinguishable from one another in a long list:
 – “Match Result” is a very bad page title.
 – “BBC | Sport | Football | World Cup | Germany 1 - 5 England” is a good page title.

• As an example of what not to do: the site \texttt{http://penny.at/} uses the same page title “Penny - Kampf dem Preis!” on every page on the site!

• Search engines sometimes give added weight to the words contained in page titles, get your keywords in there!
9.2. TEXT DESIGN

Listing 9.1: Use of the META tag to convey description and keywords at the old Virtual Vineyards site.

Banner Blindness

Users have become accustomed to ignore what they think might be banner ads [Benway and Lane, 1998; Norman, 1999]:

- Do not place important stuff in frames that look like banner ads!

Use the META Tag

Add meta-information to your pages (at least the main entry pages) using the META tag.

- Search engines pick up “keywords” and “description” attributes.

See the example in Listing 9.1.

Avoid Broken Links

A huge problem users have with the web is links which stop working over time (“linkrot”) [Wikipedia, 2015; Kille, 2015]:

- Around 5% attrition rate per year of links posted on bookmarking site Pinboard [Ceglowski, 2014a] and [Ceglowski, 2014b, 00:30:07].

- McCown et al. [2005] reported that around half of the URLs cited in D-Lib Magazine articles were no longer accessible 10 years after publication.

- Around 6% of all links on the web are broken, and around 30% of pages on the web contain at least one broken link [Nielsen, 1998a; Sullivan, 1999].

Check for Broken Links

Regularly check the links on your site for broken links:

- For a small site (few dozen pages and links), check links manually.

- For a larger site, use a spider such as Xenu’s Link Sleuth http://home.snafu.de/tilman/xenulink.html or link checker service such as Online Broken Link Checker brokenlinkcheck.com or the W3C Link Checker http://validator.w3.org/checklink
Results from Terry Sullivan’s SOWS Spider [Sullivan, 1999]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pages Sampled</td>
<td>200</td>
<td>213</td>
<td>44</td>
</tr>
<tr>
<td>Av. Page Size</td>
<td>60 kb</td>
<td>61 kb</td>
<td>44 kb</td>
</tr>
<tr>
<td>Linkrot Incidence</td>
<td>5.7%</td>
<td>5.9%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Linkrot Prevalence</td>
<td>28.5%</td>
<td>23.0%</td>
<td>18.0%</td>
</tr>
</tbody>
</table>

Table 9.1:

You can find a list of product announcements and other PICS-related press releases. These may be a good source of further press contacts.

Figure 9.6: A passage from the PICS pages at W3C showing “link overload”. The text is overloaded with links making it difficult to read. The first links covers 20 words and spans two sentences, when in fact the simple phrase “press releases” would be an ideal source region!

Avoid Link Overload

If everything is a link, text becomes hard to scan and read.

- Within flowing text, keep link source regions to the minimum words or phrase necessary.

See for example, the passage intended for media consumption on the PICS (Platform for Internet Content Selection) pages at W3C, shown in Figure 9.6.

Within-Page Links Can Confuse Users

Some pages have a table of contents at the top with links pointing further down the page.

Studies have shown that users are often confused by this:

- Users often expect links to take them to new pages entirely.
- When users scroll down such a page, they see the content pointed to by the within-page links, but the links do not change colour as visited.

See Scanlon [1996] and Nielsen [2006].

Use the Link Title Tag

The title attribute for links helps users to predict where they might go, should they click the link:

```html
<a href="http://www.iicm.edu/vrwave" title="The VRwave VRML97 browser.">VRwave</a>
```
9.3 Image Design

Use The Right Image Format

For vector graphics:

- Use SVG. All modern web browsers support SVG 1.1.

For raster images (pixels):

- Online, use GIF or PNG for small images, line drawings, icons, diagrams, i.e. almost everything except photographs.
- Online, use JPEG for full-size, continuous tone images (photographs).
- For archiving and editing, use PNG, since it is lossless and has excellent compression.

SVG

- SVG is an editable text file containing tagged elements (similar to HTML).
- The elements describe graphical objects such as lines, polygons, circles, and text (vector graphics).
- SVG graphics can be freely scaled up or down without loss of quality.
- SVG elements can be used alongside HTML elements, and objects can be styled with CSS.

GIF

- GIF looks row by row for patterns and assigns short codes to represent them (LZW compression).
- It compresses repeating patterns and large block of (exactly) the same colour value very well.
- Lossless (but max. 256 colours).
- Maximum of 256 colours, since GIF uses upto an 8-bit palette !! For more colours dithering is necessary, which does not compress well (switch to JPEG rather than dithering a GIF).
- One colour index can be specified as the transparent colour.
- Sequence of images in one file for animations (animated GIF).
- The LZW patent expired in 2003.

GIF is OK for small (less than say 100 by 100 pixel) thumbnail versions of a photographic image upto 256 colours.

JPEG

- JPEG transforms the image into a frequency space, and selectively throws away bits of resolution.
- Lossy (although the new JPEG 2000 supports lossless compression), quality degrades with successive editing and saving.
Figure 9.7: GIF interlacing. The image is transmitted in 8 passes. First, rows 1, 9, 17, ... are sent, then lines 4, 12, 20, ..., etc. During the first pass, the browser displays each row of the image 8 times, i.e. row 1 is repeated in rows 2 to 8 on the screen. During the second pass row 4 of the image is received and displayed in rows 4 to 8, and so on.

- User can control how much is thrown away – i.e. can trade image quality for space.
- Compresses continuously changing shades very well (photographs).
- Smudges hard edges, lines, and text.
- No provision for transparency.
- One image per file.

PNG

- Lossless.
- Indexed-colour images of up to 256 colours.
- True colour images up to 48 bits per pixel.
- Greyscale images up to 16 bits per pixel.
- Progressive display.
- Transparency.
- Full alpha channel (general transparency masks).
- One image per file.
- Increasing support for PNG in browsers and applications http://www.libpng.org/pub/png/pngstatus.html

Progressive Display (Interlacing)

Progressive images are displayed initially as an entire but course image.

- As more image data is received, the image is refined and users perceive less delay.
- Use interlaced GIF (see Figure 9.7) and progressive JPEG (see Figure 9.8) for images larger than a few kb.
Figure 9.8: Progressive JPEG. First the most important (high order) bits of each frequency component are transmitted, then successively lower order bits. The overall effect is first a rough image, where the details are then filled in.

Transparency

Transparency does away with the blocky, rectangular outlines of images.

- In GIF images, a single colour index can be designated as the transparent colour.

See Figure 9.9.

Anti-Aliasing

Antialiasing removes “jaggies” by fading gently from a foreground to a background.

- Antialiasing must be done again for a each new background, otherwise a “halo” results.
- For this reason, beware of antialiased shapes on a transparent image background – their appearance is highly dependent on the actual background.

Figure 9.10: The lines on the left illustrate aliasing, they have jaggy steps along the edges. On the right, the black lines are antialiased against a white background by adding intermediate (grey shade) pixels to fade gently from foreground to background.

Figure 9.11: On the left a red circle without antialiasing. The right circle is antialiased against the white background.

Figure 9.12: The aliased (jaggy) red circle can be displayed against any background. The antialiased circle is only suitable for display on the white background for which it was antialiased. Displaying it against a purple background makes its pink-white halo visible.
Always Specify Alt Text for Images

Always specify alternative text for images using the alt attribute.

```html
<img src="kandrews.jpg" width="300" height="225"
alt="Photo: Keith Andrews." />
```

- If an image has moved or for some reason cannot be fetched, the text indicates what would have been there.
- alt text is indexed by search engines.
- Specifying alt text is considerate to text-only browser users and sight-impaired users who depend on text-reading software.

Width and Height Attributes for Images

Before responsive web design came along, it made sense to specify the actual width and height of every inline image using the width and height attributes:

```html
<img src="kandrews.jpg" width="300" height="225"
alt="Photo: Keith Andrews." />
```

- If image sizes are known up front, browsers can display the textual content of a page while graphics are loading. [Users perceive the site to be faster, since they can begin reading the text.]
- Browsers now have much better sampling and scaling algorithms when dynamically resizing images.
- With responsive web design, it makes sense to scale images using CSS, rather than specify image sizes in HTML.
Chapter 10

Visual Design

Visual treatment of text, graphics, and navigational components.

10.1 Greeking Test

Greeking Test of Page Templates

Tests the layout of navigational and content elements on a page.

- Technique first proposed by Tom Tullis [Tullis, 1998].
- Mock up several page templates, including navigational and content areas (Photoshop).
- Replace all text with meaningless gibberish (“greek”). [In German “Kauderwelsch”]
- Ask test users to identify standard page elements, by drawing blocks around them on a colour printout:
 - main content
 - page title
 - person responsible for page
 - intranet-wide navigation (home, search)
 - site navigation (sections of a site)
 - last updated
 - intranet identifier
 - confidentiality/security info
 - site news items

The percentage of correctly identified page elements is a measure of their performance.

- Ask users their subjective preference.
Chapter 10. Visual Design

Figure 10.1: Fidelity Investments intranet greeking test, Template 1. [With kind permission of Tom Tullis, Fidelity Investments.]

Greeking Case Study

- Five templates for Fidelity Investments intranet mocked up by web design companies.
- Greeking test with 23 Fidelity employees.

Thanks to Tom Tullis from Fidelity for providing the templates in original size.

Greeking Case Study Results

- Users performed best with Template 3, correctly labeling 67% of the page elements. See Figure 10.6.
- Users liked Template 1 best, but only correctly identified 52% of the page elements. See Figure 10.7.
- A final design combining parts of Templates 1 and 3 was made and tested. Users both preferred it and performed best with it, correctly labeling 72% of the page elements.
10.1. GREEKING TEST

Figure 10.2: Fidelity Investments intranet greeking test, Template 2. [With kind permission of Tom Tullis, Fidelity Investments.]

Figure 10.3: Fidelity Investments intranet greeking test, Template 3. [With kind permission of Tom Tullis, Fidelity Investments.]
Figure 10.4: Fidelity Investments intranet greeking test, Template 4. [With kind permission of Tom Tullis, Fidelity Investments.]

Figure 10.5: Fidelity Investments intranet greeking test, Template 5. [With kind permission of Tom Tullis, Fidelity Investments.]
Figure 10.6: Average percentage of correctly identified page elements. [With kind permission of Tom Tullis, Fidelity Investments.]

Figure 10.7: Average ratings for the five templates on three subjective scales. [With kind permission of Tom Tullis, Fidelity Investments.]
Chapter 11

Implementation and Optimisation

Online Resources
++ Smashing Magazine; smashingmagazine.com
++ A List Apart; alistapart.com
++ Patrick Griffiths; HTML Dog; htmldog.com
+ Zen Garden: The Beauty of CSS Design; csszengarden.com

11.1 Tabular Page Layout (“The Old Way”)

The “old” way is with nested invisible tables and transparent single-pixel (spacer) GIFs [Siegel, 1996; Siegel, 1997].

The “new” way is with XHTML and CSS style sheets.

Controlling Page Layout with Nested Invisible Tables

Use nested invisible tables to divide up screen space:

- Turn on table borders when debugging, off for final layout.
- Use absolute table widths (in pixels), so that tables do not resize automatically.
- Use cellspacing (cellpadding) to guarantee white space.

Page Layout at Virtual Vineyards

Like many sites, Virtual Vineyards uses nested invisible tables to lay out its content on a grid.

See Figures 11.1 and 11.2.

Note: Virtual Vineyards was acquired by wine.com www.wine.com and no longer exists in its own right.
CHAPTER 11. IMPLEMENTATION AND OPTIMISATION

Figure 11.1: The Virtual Vineyards site.
11.1. TABULAR PAGE LAYOUT (“THE OLD WAY”)

Figure 11.2: The Virtual Vineyards site, with table borders turned on so that nested invisible tables are displayed.
Virtual Vineyards with Table Borders On

Controlling Spacing with Single-Pixel Invisible GIFs

A 1 by 1 pixel, transparent GIF, say dot-clear.gif, can be used as a strut for precise control of spacing:

- Make it opaque during debugging, transparent for final layout.
- The vspace and hspace (or height and width) attributes can be used to specify how much space to leave.
- Use it for line indentation (e.g. the first lines of paragraphs)
- Create a margin with it in a table cell.
- Add leading (interline spacing) between lines with it.

Use a Clean Tiling Background Image

- In Photoshop, make a 1200 by 25 pixel GIF, which tiles vertically.
- At least 1200 pixels wide, so that it doesn’t repeat horizontally (most people have screens less than 1200 pixels wide).
- Often a coloured left margin and white space to the right.

Problems Aligning Images

- Browsers have (different and unchangable) top and left margins, so aligning foreground images cleanly atop background images is impossible.
- Browsers leave (different amounts of) space between inline images, so image tiling and exact spacing can only be done by putting images inside borderless table cells.

Keith’s New Home Page

My original home page has my photograph, wall-to-wall text describing my achievements, and my address, as shown in Figure 11.3.

A redesign with exact spacings is shown in Figures 11.4 and 11.5.
11.1. TABULAR PAGE LAYOUT ("THE OLD WAY")

Figure 11.3: The original look of Keith’s home page.

Figure 11.4: Keith’s redesigned home page, using invisible tables for layout and transparent GIFs for spacing.
Table 11.1: The HTML source code for Keith’s new home page design. Some of the content has been omitted for the sake of brevity.
Figure 11.5: Behind the scenes at Keith’s redesigned home page. Table borders have been turned on, so that their extent can be seen. Transparent GIFs have been made green and two pixels wide, so their use as struts for spacing is apparent. The red circle was interlaced explicitly against the split blue and white background used as background image.
11.2 HTML5

HTML5 = (X)HTML5 + CSS3 + JS

References

++ Dan Cederholm; Sass for Web Designers; A Book Apart, 13 Nov 2013. ISBN 193755712X (com, uk) [Cederholm, 2013]

++ Mat Marquis; JavaScript for Web Designers; A Book Apart, 28 Sept 2016. ISBN 1937557464 (com, uk) [Marquis, 2016]

++ Chris Coyier; Practical SVG; A Book Apart, 27 Jul 2016. ISBN 1937557421 (com, uk) [Coyier, 2016]

++ David Demaree; Git for Humans; A Book Apart, 28 Jan 2016. ISBN 1937557383 (com, uk) [Demaree, 2016]

Online Resources

++ Google; HTML5rocks; html5rocks.com [Google, 2016a]

++ Patrick Griffiths; HTML Dog; htmldog.com [Griffiths, 2016]

+ Marcin Wichary; HTML5 Presentation; http://keithandrews.com/talks/html5rocks-slides/ [Wichary, 2016] [Originally at slides.html5rocks.com]

HTML5

- Semantic tags: section, article, figure, header, footer.

- Audio and video tags.

- Inline SVG.

CSS3

- New selectors.
11.2. HTML5

- Web fonts.
- Text wrapping.
- Text columns.
- Opacity.
- Rounded corners.
- Colour gradients.
- Shadows.
- Transforms.

JavaScript

- WebSocket: bi-directional transfer of data.
- Native drag + drop.
- Filesystem API.
- Geolocation: ask current location.
- Device orientation: ask current orientation.
- Canvas 2D.
- Canvas 3D (WebGL).
11.3 Polyglot XHTML5

Online Resources

◦ Total Validator; Total Validator totalvalidator.com

◦ W3C; Nu Markup Validation Service http://validator.w3.org/nu/ [W3C, 2016b]

◦ W3C; CSS Validation Service http://jigsaw.w3.org/css-validator/

XHTML

• XHTML: The Extensible HyperText Markup Language.

• A stricter version of HTML, compliant with XML syntax.

• XHTML tags (mark-up) are enclosed between less than (’<’) and greater than (’>’) characters.

• XHTML encodes the structure and content of a web page, CSS then specifies the presentation.

• General information and attributes go between the head tags.

• The actual content goes between the body tags.

Main Differences Between HTML and XHTML

In XHTML (compared to HTML):

• All tags must be in lower case.

• All documents must have a doctype.

• All documents must be properly formed.

• All tags must be closed.

• All attributes must be in quotation marks.

• All tags must be properly nested.

Serving HTML or XML to the Browser

The way a browser parses a (X)HTML file depends on the content type sent with it by the web server:

• text/html: the browser assumes HTML and parses loosely with liberal error handling.

• application/xhtml+xml: the browser assumes XHTML and parses strictly with an XML parser.
Usually, if your (X)HTML file has the extension:

- .html: the server will send it as text/html.
- .xhtml: the server will send it as application/xhtml+xml.

XHTML5

- HTML5 has an XML serialisation (stricter subset) called XHTML5, which complies with the stricter rules for XML.
- For example, in XHTML5, all tags and attributes must be written entirely in lower case. In HTML5 upper case, lower case, or a mixture can be used.
- UTF-8 is the default character encoding for XML. Use UTF-8 for XHTML5 web pages.
- There are only five named character entity references in XML: &, <, >, ', and ". Do not use any others.
- Although hex character references (such as ä for ä) are allowed in XML, only use them for non-printing characters such as non-breaking space (). Do not use hex character references.
- For all other characters, for reasons of readability, use the UTF-8 character itself: use Männer instead of Männer.
- Every XHTML5 file is also an HTML5 file.

Polyglot XHTML5

- Polyglot XHTML5 [W3C, 2015; Tverskov, 2012] takes this a step further: the same file can be served as either HTML5 (text/html) or XHTML5 (application/xhtml+xml) and works exactly the same in the browser.
- For this to work, a few extra rules (conventions) are necessary, so that the DOM created inside the browser will be the same in both cases (and thus JavaScript scripts will work the same).

Best practice is to write platform-independent, resolution-independent, polyglot XHTML5.

Extra Rules for Polyglot XHTML5

The following sum up most of the extra rules necessary for Polyglot XHTML5 [W3C, 2015]:

- Use both the lang and xml:lang attribute.
- Use `<meta charset="UTF-8"/>`.
- Use tbody, thead, or tfoot in tables (at least one of these must be present).
- When col is used in a table, also use colgroup.
- Do not use the noscript element.
- Do not start pre and textarea elements with newline.
• Use `innerHTML` instead of `document.write()`.
• In a `script` element, wrap JavaScript in a commented-out CDATA section.
• Many names in SVG and one name in MathML use lowerCamelCase.

Separating Content from Form

Separation of content and form (presentation):

• The XHTML specifies the *content*, a Cascading Style Sheet (CSS) specifies the *form*.
• The same content (an XHTML file) can be *repurposed* using different CSS style sheets:
 – Extra-large, high-contrast display for sight-impaired users.
 – Audio rendering for blind users, or people driving their car.
 – etc.
• Since XHTML is also valid XML [Wikipedia, 2012a], the content can be transformed automatically into different formats using XSLT (Extensible Stylesheet Language Transformations) [Wikipedia, 2012b]:
 – PDF
 – HTML
 – plain text
 – etc.

Validation Services

Make sure both your XHTML and CSS is *valid* and that your links all work:

• W3C Nu Markup Validation Service: http://validator.w3.org/nu/ [W3C, 2016b].
 To validate XHTML5:
 – Use file upload, make sure your file has the extension `.xhtml`, so that the stricter XML parser is used.
 Note that the Nu validator does not check for Polyglot rules, such as the use of at least one of `tbody`, `thead`, or `tfoot` in tables.
• W3C CSS Validation Service: http://jigsaw.w3.org/css-validator/ [W3C, 2008].
• W3C Link checker: http://validator.w3.org/checklink

Browser Validation Extensions

• Total Validator comprises an installable program and an extension for Firefox and Chrome, supporting within-browser validation totalvalidator.com [Total Validator, 2016].
• Total Validator can also check the rules for valid Polyglot XHTML5.
11.4 Building Fault-Tolerant Web Sites

Progressive Enhancement

- At the end of the 1990s, it took about 2 years for a newly released browser version to become widespread [Nielsen, 1998b; Nielsen, 1999].
- Nowadays, browsers typically auto-update themselves, however a significant minority of users still use old browser versions.
- Use progressive enhancement: Build with HTML, style with CSS, and enhance with JavaScript [Keith, 2016; Keith, 2015].
- HTML and CSS are fault-tolerant: Newer enhancements are simply ignored by older browsers.
- JavaScript is not fault-tolerant: Use feature-sniffing to detect support for newer features before use [Ateş et al., 2016].

Browser Support for Features

The following web sites show how far particular HTML5 (CSS3 and JS) features are supported by individual browsers:

++ Can I Use; caniuse.com [Deveria, 2013]

+ Mobile HTML5; mobilehtml5.org [Firtman, 2015]

Test on Multiple Browsers and Platforms

Remember to try out your site with a variety of browsers, versions, and platforms:

- Test using different (real) browsers, versions, and platforms (device lab). opendevicelab.at
- Use Browsersync to push design changes automatically to multiple devices. browsersync.io
- Test using different browsers inside a virtual environment:
 - BrowserStack; browserstack.com
 - Browser Sandbox; https://turbo.net/browsers
- Browsershots will take screenshots of a given web page in multiple browsers. browsershots.org
11.5 Responsive Web Design

A single web site design which dynamically responds (adapts) to the characteristics (screen width, resolution, capabilities, . . .) of the user’s device.

The same web site at the same URL works and provides an appropriate experience across all devices:

- smartphone
- tablet
- laptop
- desktop
- large-screen tv
- car dashboard

Web design is now responsive web design.

Being Responsive

Responsive web design is a combination of:

- Responsive layout: dynamically adjusting the layout to best suit the available window size (reflow at breakpoints, rescale in between).
- Responsive content: dynamically adjusting embedded content (tables, images, videos, charts, adverts, etc.) to best suit the device characteristics (space, resolution, etc.).
- Responsive interaction: dynamically adjusting interaction and navigation elements (menus, buttons, search boxes, etc.) to best suit the device characteristics (size, touch, voice, etc.).
- Progressive enhancement: selectively adding support for additional features such as location, orientation, tilt, and gestures. [Detect features not devices!]

References

++ Ethan Marcotte; Responsive Design: Patterns and Principles; A Book Apart, 18 Nov 2015. ISBN 1937557332 (com, uk) [Marcotte, 2015]

++ Scott Jehl; Responsible Responsive Design; A Book Apart; 19 Nov 2014. [Jehl, 2014]

++ Stephen Hay; Responsive Design Workflow; New Riders, 05 Apr 2013. ISBN 0321887867 (com, uk) [Hay, 2013]

++ Anna Debenham; Front-End Style Guides; Five Simple Steps, 2013. ISBN 1907828508 (com, uk) [Debenham, 2013]

+ Clarissa Peterson; Learning Responsive Web Design; O’Reilly, 27 Jun 2014. ISBN 144936294X (com, uk) [Peterson, 2014]
Separate Desktop and Mobile Web (m.) Sites

- Two separate sites under two separate URLs.
- Two separate sites to maintain.
- Redirection is based on UserAgent or device-sniffing (too course).
- Examples include:
 - southwest.com vs. m.southwest.com See Figure 11.6.
 - graz.at vs. m.graz.at See Figure 11.7.

Examples of Responsive Web Sites

Lists of responsive web sites:

- Eivind Uggedal; mediaqueri.es
Figure 11.6: Separate desktop and mobile (m.) versions of the Southwest Airlines web site southwest.com.

Figure 11.7: Separate desktop and mobile (m.) versions of the Graz web site graz.at.
• Awwwards; http://awwwards.com/websites/responsive-design/

• DesignModo; http://designmodo.com/responsive-design-examples/

Individual examples of responsive web sites:

• The Boston Globe; bostonglobe.com

• Smashing Magazine; smashingmagazine.com

• Lanyrd; lanyrd.com

• Starbucks; starbucks.com

• TED; ted.com

• engadget; engadget.com

• BBC One; http://bbc.com/sport/

• The Guardian; theguardian.com

• Gov.UK; gov.uk

• City of Surrey; surrey.ca

• Texas State University; txstate.edu

• Andy Clarke; stuffandnonsense.co.uk

• SparkBox; seesparkbox.com

• FoodSense; foodsense.is

• New Adventures in Web Design conference; 2013.newadventuresconf.com

Prevalence of Responsive Sites

• In 2013, around 11% of web sites (in the top 100,000) were responsive [Podjarny, 2014b].

• “Responsive design is Google’s recommended design pattern” [Google, 2016b].

Responsive Layout with CSS3 Media Queries

• First, appropriate breakpoints for the content are determined and specified in a breakpoint diagram as shown in Figure 11.8.

• It is good practice to specify the breakpoints in em or rem rather than in px, so they also respond when users set larger fonts (or text zooming). [Anyhow, at the root element, 1 em = 1 rem.]

• Most of the CSS code can be shared between all window widths.

• CSS3 media queries are used to distinguish between the different screen widths.
Specifying Breakpoints with CSS3 Media Queries

/* settings for window-width: narrow */
@media only all and (max-width: 40rem) {
 ...
}

/* settings for window-width: medium */
@media only all and (min-width: 40rem) and (max-width: 60rem) {
 ...
}

/* settings for window-width: wide */
@media only all and (min-width: 60rem) {
 ...
}
11.6 Design Systems

design system = interconnected patterns + shared practices

design pattern = functional pattern or perceptual pattern

functional pattern = components of an interface (buttons, menus, choosers, etc.) [nouns, typically in HTML]

perceptual pattern = styling of an interface (typography, colours, spacing, etc.) [adjectives, typically in CSS]

pattern library = tool to capture, share, and maintain design patterns

Think Components not Pages

• Build a system of components which (re-)arrange themselves according to page constraints.

• Build a pattern library (living style guide) to capture, share, and maintain the components.

References

++ Alla Kholmatova; Design Systems; Smashing Media, 2017. ISBN 3945749581 (com, uk) [Kholmatova, 2017]

++ Anna Debenham; Front-End Style Guides; http://www.maban.co.uk/projects/front-end-style-guides/

+ Christopher Alexander; The Timeless Way of Building; Oxford University Press, 1979. ISBN 0195024028 (com, uk) [Alexander, 1979]

◦ Bill Scott and Theresa Neil; Designing Web Interfaces: Principles and Patterns for Rich Interactions; O’Reilly, 26 Jan 2009. ISBN 0596516258 (com, uk) [Scott and Neil, 2009]

Online Resources

++ Anna Debenham; Website Style Guide Resources; http://styleguides.io/

◦ UI Patterns; ui-patterns.com

◦ Interaction Design Pattern Library; http://welie.com/patterns/
Design Patterns in Architecture

Design patterns: sample design solutions based on good practice (Musterlösungen).

A hierarchy of design patterns:

- Knobs
- Doors
- Walls
- Rooms
- Buildings
- Communities
- Regions

Different patterns are available at each level of abstraction.

Design Patterns in Web Design

A hierarchy of design patterns:

- Radio Buttons
- Forms
- Search Interface
- Page Layout
- Navigation System
- Site Architecture
- Site Genre

Different patterns available at each level of abstraction.

A heuristically-derived system of pluggable interface components.

Example Pattern Libraries (Living Frontend Style Guides)

- Starbucks; http://starbucks.com/static/reference/styleguide/
- Yelp; https://yelp.com/styleguide
Tools to Maintain Pattern Libraries

- *Fractal*: fractal.build.

See also the list at https://github.com/davidhund/styleguide-generators.
11.7 Web Performance

References

++ Steve Souders; *High Performance Web Sites*; O’Reilly, 2007. ISBN 0596529309 (com, uk) [Souders, 2007]

+ Steve Souders; *Even Faster Web Sites*; O’Reilly, 2009. ISBN 0596522304 (com, uk) [Souders, 2009]

++ Maximiliano Firtman; *High Performance Mobile Web*; O’Reilly, 26 Sept 2016. ISBN 1491912553 (com, uk) [Firtman, 2016]

++ Lara Hogan; *Designing for Performance*; O’Reilly, 19 Dec 2014. ISBN 1491902515 (com, uk) [Hogan, 2014]

+ Guy Podjarny; *Responsive & Fast*; O’Reilly; 03 Jun 2014. ISBN 1491911611 (com, uk) [Podjarny, 2014a]

+ Tom Barker; *High Performance Responsive Design*; O’Reilly; 01 Dec 2014. ISBN 1491949988 (com, uk) [T. Barker, 2014]

Online Resources

++ HTTP Archive; httparchive.org.

++ WPO Foundation; WebPageTest; webpagetest.org.

++ webhint; webhint.io.

++ Google; *Lighthouse*; https://developers.google.com/web/tools/lighthouse/.

+ Google; *Make the Web Faster*; https://developers.google.com/speed/.

+ Web Performance Matters; perf.rocks.

++ Tim Kadlec; *Fast Enough*; 14 Jan 2014 http://timkadlec.com/2014/01/fast-enough/.

+ Brian Jackson; *18 Tips for Website Performance Optimization*; 06 Jun 2017 https://keycdn.com/blog/website-performance-optimization

+ Cody Arsenault; *15+ Experts Share Their Web Performance Advice for 2018*; 11 Jun 2018 https://keycdn.com/blog/web-performance-advice-2018

The Need for Speed

- Google: +500 ms → -20% traffic [Mayer, 2006].
- Amazon: +100 ms → -1% sales [Linden, 2006].
- Bing: +500 ms → -1.2% revenue [Schurman and Brutlag, 2009].
- Mobify: -100 ms → +1.11% conversion

Podjarny [2010] lists more such statistics.

Response Time Limits

Three limits for response times from classic HCI research:

- 0.1 s: Immediate response.
- 1 s: Uninterrupted flow of thought.
- 10 s: Keeping to the task.

See Nielsen [1993a].

Total Loading Time

The total loading time is the time a user has to wait from clicking on a link or typing a URL until the whole new page is loaded and ready to use:

- Latency before the server starts transmitting the response.
- Download time of the page and its assets.
- Parsing and execution time in the browser.

The HTTP Archive reports (year to 15 Sept 2018) median loading speeds (Time to First Interactive) of around 7.5 seconds [HA, 2018a].

Latency

Latency is the time it takes for the server to receive the request and begin responding. There are several potential delays:

- DNS lookup to convert the domain name in the URL to an IP address.
- Routing the request to the appropriate server.
- Waiting in a wait loop until the server services the request.
- Waiting for any dynamic content to be assembled into a HTML page on the server.
CHAPTER 11. IMPLEMENTATION AND OPTIMISATION

<table>
<thead>
<tr>
<th>Connection</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Sec.</td>
</tr>
<tr>
<td>Analog Dialup (56 kbps)</td>
<td>4 kb</td>
</tr>
<tr>
<td>ADSL (1 mbps)</td>
<td>70 kb</td>
</tr>
<tr>
<td>LTE (30 mbps)</td>
<td>1.9 mb</td>
</tr>
</tbody>
</table>

Table 11.2: Maximum acceptable page sizes for a response time of 1 and 10 seconds, assuming 0.5 seconds latency.

Download Time

Once the server starts transmitting the page back to the browser, bandwidth and page size become relevant:

- The speed of the connection.
- The total size of files and assets needed for the initial view:
 - Caching means some files do not need to be downloaded.
 - Loading of some files can be deferred until later (lazy loading).
 - Compression can be used to make some files smaller.

Table 11.2 shows maximum acceptable page sizes (including inline images, css, scripts, etc.) for response times of 1 and 10 seconds, assuming 0.5 seconds of latency.

The HTTP Archive reports (year to 15 Sept 2018) median page weights of around 1.5 mb (desktop) and around 1.3 mb (mobile) [HA, 2018b].

Parse and Execution Time

As assets arrive in the browser:

- HTML and CSS files have to be parsed and the DOM and CSSOM constructed.
- Images and other assets need to be decoded.
- JavaScript need to be interpreted and executed.

Checking Performance Metrics

- Use the Developer Tools in Chrome or Firefox.
- Run Lighthouse from the command line https://developers.google.com/web/tools/lighthouse/
- Use a web-based service such as webpagetest.org or PageSpeed Insights https://developers.google.com/speed/pagespeed/insights/.
- Can download a page and its assets with wget 1.9.1 (https://gnu.org/software/wget/):

 wget --proxy=off --page-requisites --convert-links \http://tugraz.at/
Web Site Optimisation

Souders [2007] explains 14 rules for improving the performance of a web site (based on research at Yahoo):

1. Make Fewer HTTP Requests. [Update: turn on HTTP/2 and use SVG for icons]
2. Use a Content Delivery Network.
3. Add an Expires Header.
5. Put Stylesheets at the Top.
6. Put Scripts at the Bottom. [Update: use async and defer]
7. Avoid CSS Expressions.
8. Make JavaScript and CSS External.
10. Minify JavaScript.
11. Avoid Redirects.
12. Remove Duplicate Scripts.
13. Configure ETags (cache expiry over multiple servers).

[YSlow [Yahoo!, 2010] was built by the Exceptional Performance team at Yahoo[Yahoo!, 2008], but has now been superseded by the Dev Tools built into Chrome and Firefox.]

Packet Sniffers

- Wireshark; wireshark.org.
- HTTPWatch; httpwatch.com; [Simtec, 2009].

Web Runtime Performance

+ Luis Vieira; Web Runtime Performance; 01 Nov 2016 https://medium.com/the-ui-files/web-runtime-performance-462b1328df54

◦ Jake Archibald; Rendering Without the Lumpy Bits; Google Developers, 2013. https://youtu.be/oGLkBpIHj4Y
Ilya Grigorik *Optimizing the Critical Rendering Path*; Velocity Santa Clara, 2013. https://youtu.be/YV1nKLWoARQ
Chapter 12

Conducting a Formal Experiment

“Would you fly in an airplane that hasn’t been flight tested? Of course not. So you shouldn’t be using software that hasn’t been usability tested.”

[Ben Shneiderman, The Front Desk, BBC Video, 1995.]

Formal Experiment: Controlled experiment, usually in a lab setting, involving quantitative measurement of performance of test users and statistical analysis.

References

++ Jeff Sauro and James R. Lewis; Quantifying the User Experience; Morgan Kaufmann, 13 May 2012 ISBN 0123849683 (com, uk) [Sauro and Lewis, 2012]

+ James R. Lewis and Jeff Sauro; Excel and R Companion to Quantifying the User Experience; CreateSpace, 01 Mar 2012 ISBN 1470025574 (com, uk) [Lewis and Sauro, 2012]

+ Michael Crawley; The R Book; Wiley, 2007. ISBN 0470510242 (com, uk) [Crawley, 2007]

CHAPTER 12. CONDUCTING A FORMAL EXPERIMENT

Online Resources

++ Usability News; http://psychology.wichita.edu/surl/usability_news.html

+ Wichita State University, Software Usability Research Lab (SURL); http://psychology.wichita.edu/surl/

ο Andy Field; *Welcome to Statistics Hell*; http://www.sussex.ac.uk/Users/andyf/teaching/statistics.htm

ο James Brown; *EDGAR: Experimental Design Generator And Randomiser*; http://www.jic.bbsrc.ac.uk/services/statistics/edgar.htm

Formal Experiments

- *Summative* evaluations which provide bottom-line data (performance measurements).

- Two main uses:
 - Objective measurement of performance of a single design.
 - Objective comparison of the performance of two or more alternative designs.

- Require a large number of test users (sample size) for statistical accuracy: usually at least 20, often 50 or more.

Performance Measurement

Collect objective, quantitative data, e.g.:

- Time to complete specific task(s).
- Number of tasks completed within given time.
- Number of errors.
- Ratio successful interactions : errors.
- Time spent recovering from errors.
12.1 EXPERIMENTAL DESIGN

- Number of commands/features used.
- Number of features user can remember after test.
- How often help system used.
- Time spent using help.
- Ratio positive : negative user comments.
- Number of times user sidetracked from real task.

Validity

Validity: is measured data relevant to the usability of the real system in real world conditions?

Typical validity problems include:

- **Testing with the wrong kind of user**
 For example, testing business students instead of managers for a management information system. However, testing business students will generally lead to better results than testing, say, mathematics students.

- **Testing the wrong tasks**
 The results from testing a toy task in a prototype of a few dozen hypermedia documents may not be relevant to a planned system for managing tens of thousands of documents.

- **Not including time constraints and social influences**
 Queues of people waiting in line, noise levels in the working environment, etc.

Running a Formal Experiment

- Record each test on video, to be able to clarify any issues which emerge at a later time.
- Do not take timings with a stopwatch next to the user:
 - have the computer automatically log start and end times
 - or extract timings afterwards from the video
- *Never* mix thinking aloud with a formal experiment:
 - having to think aloud slows a user down
 - having to think aloud loud can change a user’s behaviour
- The facilitator must take care not to influence a user.

12.1 Experimental Design

Null Hypothesis

- The null hypothesis is an assertion about a population parameter.
• The null hypothesis is often the reverse of what the experimenter actually believes. It is put forward to allow the data to contradict it.

• A typical null hypothesis is that no difference exists between the control and experimental groups (for the variable being compared).

Independent and Dependent Variables

• *Independent variable* (or *factor*): variable manipulated by the experimenter. For example, type of browser, or font size.

• *Dependent variable*: variable measured by the experimenter. For example, task completion time, or reading speed.

Testing Absolute Performance of One Interface

• One interface.

• Run an experiment to objectively determine whether the interface satisfies specific requirements.

• For example: measure how long it takes 20 expert users to perform task X.

• Result: an expert user can on average perform task X in 2 minutes 10 seconds ± 6 seconds.

Comparing Two Alternatives

• Two interfaces, A and B.

• Run an experiment to objectively determine which interface is better, according to some criterion (efficiency, error rate, etc.).

• There is one independent variable (interface) and it has two *levels* (A and B).

• Two different ways of designing an experiment:

 – *independent measures*: also called *between-groups* or *between-subjects*.

 – *repeated measures*: also called *within-groups* or *within-subjects*.

Independent Measures (Between-Groups) Experiment

• Two equally-sized groups of test users.

• *Randomly* assign users to two groups.

• Identical tasks for both groups.

• Group 1 uses only system A, group 2 only system B.

Pros and Cons:

+ no problems with learning effect

- large individual variation in user skills (std. dev. ≈ 50%)
12.1. EXPERIMENTAL DESIGN

Repeated Measures (Within-Groups) Experiment

- One group of test users.
- Randomly assign users to two equally-sized pools.
- Users perform equivalent tasks on both systems.
- Pool 1 uses system A first, pool 2 uses system B first.

Pros and Cons:

+ automatically controls for individual variability
- transfer of skill between systems (learning effect)

Example Designs

<table>
<thead>
<tr>
<th>Independent Measures (Between-Groups)</th>
<th>Repeated Measures (Within-Groups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System A</td>
<td>System B</td>
</tr>
<tr>
<td>John</td>
<td>Dave</td>
</tr>
<tr>
<td>James</td>
<td>Mariel</td>
</tr>
<tr>
<td>Mary</td>
<td>Ann</td>
</tr>
<tr>
<td>Stuart</td>
<td>Phil</td>
</tr>
<tr>
<td>Keith</td>
<td>Tony</td>
</tr>
<tr>
<td>Gary</td>
<td>Gordon</td>
</tr>
<tr>
<td>Jeff</td>
<td>Ted</td>
</tr>
<tr>
<td>Bill</td>
<td>Edward</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Charles</td>
<td>Thomas</td>
</tr>
<tr>
<td>Celine</td>
<td>Doug</td>
</tr>
</tbody>
</table>

Comparing Multiple Alternative Interfaces

A repeated measures design is usually preferred because:

- Variability between test users is removed, which provides greater statistical power to detect differences.
- Fewer test users are required in total, since each users tries each test condition.
- In the example in Table 12.1, the differences between the two interfaces are very small relative to the differences among subjects, but repeated measures is still able to detect such differences.

Counterbalancing Presentation Order

One problem with repeated measures designs is the learning effect (or practice effect):

- Users tend to do better later in the test, having accumulated a certain amount of practice and familiarity with the tasks and interfaces being tested.
Table 12.1: Data from a simple repeated measures experiment to compare two interfaces for a particular task. The independent variable is interface, with two levels, A and B. The dependent variable is task completion time in seconds. Every test user was faster with A than with B. Even though the differences are small, they are very likely to be real, since they are consistent across all four test users.

<table>
<thead>
<tr>
<th>Test Person</th>
<th>Interface A</th>
<th>Interface B</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>14.00</td>
<td>17.00</td>
</tr>
<tr>
<td>TP2</td>
<td>22.00</td>
<td>24.00</td>
</tr>
<tr>
<td>TP3</td>
<td>29.00</td>
<td>31.00</td>
</tr>
<tr>
<td>TP4</td>
<td>48.00</td>
<td>53.00</td>
</tr>
<tr>
<td>Av</td>
<td>28.25</td>
<td>31.25</td>
</tr>
<tr>
<td>StdDev</td>
<td>14.52</td>
<td>15.59</td>
</tr>
</tbody>
</table>

Figure 12.1: Three simple (unbalanced) latin squares: 3×3, 4×4, and 5×5. Looking at the rows, each element appears once in each position. Each row corresponds to one test case, or presentation sequence of the test conditions (interfaces).

- If all test conditions (interfaces) are presented in the same order, later test conditions (interfaces) will gain an unfair advantage.
- The solution is to *counterbalance* the presentation order of the test conditions.

Latin Squares

- A mathematical construct where, looking at the rows, each element appears once in each position.
- For example, in a 3×3 latin square, the element ’1’ appears once in first place, once in second place, and once in third place.
- Each row of the latin square represents one sequence of test conditions and is called a *test case*.

Constructing a Latin Square

- In the simplest construction algorithm, each row is shifted once to the right (or left) to form the next row.
- However, the order of the elements within rows remains (more or less) the same.
- For example, in Figure 12.1, element ’2’ comes immediately after element ’1’ in every row except the last.
- Figure 12.1 shows three simple latin squares.
12.1. EXPERIMENTAL DESIGN

![Two balanced latin squares: 4 × 4 and 6 × 6. Each element appears once in each position. Additionally, each element follows every other element exactly once.](image)

Figure 12.2: Two balanced latin squares: 4 × 4 and 6 × 6. Each element appears once in each position. Additionally, each element follows every other element exactly once.

Balanced Latin Squares

- In a *balanced* latin square, each element additionally follows every other element exactly once.
- Balanced latin squares only exist for experiments with an even number of conditions (2 × 2, 4 × 4, 6 × 6, etc.).
- See Figure 12.2.

Constructing a Balanced Latin Square

Shaughnessy, E. B. Zechmeister and J. S. Zechmeister [2003, page 250] gives the following procedure to construct a balanced latin square with an even number of conditions:

1. Number the conditions 1 to \(N \).
2. The first row is:
 1, 2, \(N \), 3, \(N - 1 \), 4, \(N - 2 \), 5, \ldots
3. To generate the second row, add one to each number in the first row (\(N + 1 \) wraps around to 1).
 The second row is:
 2, 3, 1, 4, \(N \), 5, \(N - 1 \), 6, \ldots
4. To generate the third row, add one to each number in the second row (again wrapping \(N + 1 \) around to 1).
5. and so on.

If there is an odd number of conditions, two squares must be constructed. The first according to the procedure above, the second by reversing the rows of the first. The second is then appended on to the bottom of the first to make an \(N \times 2N \) square.

Test users must be assigned *randomly* to each condition.

This procedure derives originally from Williams [1949]. More details and example squares for up to 26 conditions are given by Pezzullo [2012].
Figure 12.3: Balanced “Williams designs” (Latin squares) for 2 to 7 conditions. If the number of conditions n is even, the Williams design is an $n \times n$ balanced Latin square. If the number of conditions n is odd, the Williams design is a $2n \times n$ rectangle, composed of two $n \times n$ Latin squares.
12.2 Statistical Analysis

The appropriate statistical test depends upon the answers to the following questions:

- **What type of data is involved?**
 Frequency or score (interval/ratio).

- **How many independent variables are involved?**

- **What kind of study is involved?**
 Experimental or correlational.

- **What kind of experimental design is involved?**
 Independent measures or repeated measures design.

- **How many conditions does the independent variable have?**

- **Are the data parametric or non-parametric?**

Figure 12.4 contains a flow diagram to help choose the appropriate statistical test for a given situation.

Sample Size (How Many Test Users?)

- Depends on desired confidence level and confidence interval.
- Confidence level of 95% often used for research, 80% is acceptable for practical development.

12.3 Examples for Common Situations

These examples are taken from a study of four different branching factors in a product hierarchy conducted for IAweb in WS 2005/2006.

[For a comparative evaluation of four hierarchy browsers conducted in 2006 by my Master’s student Janka Kasanicka, see Andrews [2006] and Kasanicka [2006].]

12.3.1 Performance Data (Not Normally Distributed)

Completion times are recorded for each user for each of a set of (equivalent) tasks. The analysis depends on whether the observed data are (near enough) normally distributed.

- In a counterbalanced repeated measures design, the time taken by each of 48 test users to complete equivalent tasks in each of the 4 conditions (branching factors) was recorded.
- The times recorded for the task “Find Product X” are shown in Table 12.2.
Figure 12.4: A flow chart to help choose the appropriate statistical test. Adapted from A. Field and Hole [2003, page 274].
Table 12.2

<table>
<thead>
<tr>
<th>User</th>
<th>Case</th>
<th>B4</th>
<th>B7</th>
<th>B16</th>
<th>B24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>32</td>
<td>26</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>27</td>
<td>24</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>30</td>
<td>14</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>11</td>
<td>14</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>12</td>
<td>29</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>13</td>
<td>17</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>26</td>
<td>19</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>16</td>
<td>12</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>15</td>
<td>37</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>18</td>
<td>20</td>
<td>8</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>30</td>
<td>15</td>
<td>41</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>38</td>
<td>19</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>17</td>
<td>22</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>23</td>
<td>31</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>63</td>
<td>16</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>14</td>
<td>12</td>
<td>18</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>13</td>
<td>15</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>35</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>40</td>
<td>33</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>15</td>
<td>9</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>11</td>
<td>18</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>13</td>
<td>18</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>21</td>
<td>26</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>29</td>
<td>11</td>
<td>55</td>
<td>23</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>38</td>
<td>25</td>
<td>33</td>
<td>61</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>32</td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>72</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>18</td>
<td>43</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>34</td>
<td>8</td>
<td>24</td>
<td>24</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>13</td>
<td>18</td>
<td>14</td>
<td>82</td>
<td>16</td>
</tr>
<tr>
<td>36</td>
<td>10</td>
<td>17</td>
<td>11</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>13</td>
<td>30</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>38</td>
<td>11</td>
<td>25</td>
<td>34</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>39</td>
<td>9</td>
<td>15</td>
<td>22</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>14</td>
<td>22</td>
<td>11</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>28</td>
<td>13</td>
<td>14</td>
<td>77</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>47</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>44</td>
<td>20</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td>49</td>
<td>22</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>45</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>46</td>
<td>5</td>
<td>15</td>
<td>17</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>47</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>48</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>33</td>
</tr>
<tr>
<td>Av</td>
<td> </td>
<td>22.4</td>
<td>19.2</td>
<td>18.5</td>
<td>24.7</td>
</tr>
<tr>
<td>SD</td>
<td> </td>
<td>12.7</td>
<td>7.7</td>
<td>12.1</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Table 12.2: Task completion times in seconds to find a product in each of four product hierarchies with different branching factors B4, B7, B16, and B24.
12.3.2 Effectiveness Data

Binary or partial measure of success.

12.3.3 Rating Data

Rating data are recorded on a seven-point Likert scale. The data are transformed to a score for each condition (branching factor) from 0 points (worst) to 6 points (best) from each user on a variety of scales.

- Users were asked to rate each of the four conditions (branching factors B4, B7, B16, B24) on a seven-point Likert scale.
- The rating data are shown in Table 12.3.

12.3.4 Preference Data

Each user votes for their overall most preferred condition (branching factor) for a variety of factors (best overview, perceived speed, best overall), resulting in a tally of votes for each condition.

- Users were which of the four conditions (branching factors B4, B7, B16, B24) they preferred overall.
- The preference data are shown in Table 12.4.

Pros and Cons of Formal Experiment

++ collects objective, quantitative data (bottom-line data)
++ allows comparison of alternative designs
- needs significant number of test users (20, 50, or more)
- usable only later in development process
- requires facilitator expertise
- cannot provide why-information (process data)
Table 12.3: User ratings for each of four product hierarchies with different branching factors B4, B7, B16, and B24. The data from a seven-point Likert scale was transformed to a score of 0 (worst) to 6 (best). User 34 did not give a rating to condition B7.
Table 12.4: User overall preference for one of four product hierarchies with different branching factors B4, B7, B16, and B24. User 37 could not decide between B4 and B16, so the vote was not counted.
Chapter 13

Evidence-Based Guidelines

“Nielsen has had a bad habit of presenting personal opinions as research fact.”

Web usability guidelines which are based on evidence from formal experiments.

Online Resources

- U.S. Department of Health and Human Service (HHS); Research-Based Web Design & Usability Guidelines; guidelines.usability.gov [HHS, 2006]
- Software Usability Research Laboratory (SURL); surl.org
- Usability News; http://psychology.wichita.edu/surl/newsletter.htm

13.1 Screen Fonts

13.1.1 Bernard, Mills, Peterson, and Storrer, 2001

Bernard, Mills et al. [2001] conducted a study comparing 12 different fonts.

Experimental Design

Counterbalanced, repeated measures design.

The independent variable (that which is varied) is font family.

Twelve different fonts (in three categories):

- **Sans serif**: Agency FB, Arial, Comic Sans MS, Tahoma, Verdana.
- **Serif**: Courier New, Georgia, Goudy Old Style, Century Schoolbook, Times New Roman.
- **Ornate**: Bradley Hand ITC, Monotype Corsiva.
Participants

- N = 22 participants: 7 male, 15 female.
- Age ranged from 20 to 44 (mean 25, sd = 6) years.

Tasks

- All text set at 12 pt size (≈ 3 mm high). [Agency was set to 14 pt to reach 3 mm height]
- All text was black on a white background.
- 12 passages of text from Encarta of around 1032 words, horizontal margins set at 640 pixels.
- Each passage contained 15 randomly placed substitution words.
- Each user asked to read 12 passages, one for each font.
- Users asked to read “as quickly and as accurately as possible” and flag (read aloud) any word appearing out of context.

Measures

Objective measures:

- % substitution words detected.
- Reading time in seconds.
- Reading efficiency := % substitution words detected / reading time.

Subjective measures:

- Rating for Perceived Font Legibility (6-point likert scale).
- Also ratings for:
 - Font Type Conveyed Personality
 - Font Type was Elegant
 - Font Type Appeared Youthful & Fun
 - Font Type Appeared Business-Like

These are not considered further here.

- Preference ranking of the 12 fonts.

Results

Objective measures:

- Reading time (regardless of accuracy): Tahoma < Corsiva. all other differences not significant.
• Reading efficiency: no significant differences.

Subjective measures:
• Perceived legibility:
 Courier › Agency, Courier › Goudy, Courier › Bradley, Courier › Corsiva.
 Comic › Agency, Comic › Goudy, Comic › Bradley, Comic › Corsiva.
 Verdana › Agency, Verdana › Goudy, Verdana › Bradley, Verdana › Corsiva.
 Georgia › Agency, Georgia › Goudy, Georgia › Bradley, Georgia › Corsiva.
 Times › Agency, Times › Goudy, Times › Bradley, Times › Corsiva.
• Preference ranking: % chosen as first or second preference choice, Verdana, Arial, and Comic are most preferred.

Conclusions
• Almost no objective differences between fonts at 12 pt.
• Based on subjective measures, Verdana is a good choice for a default font.

13.1.2 Bernard, Lida, Riley, Hackler, and Janzen, 2002
Bernard, Lida et al. [2002] conducted a study comparing 8 different fonts at three different sizes.

Experimental Design
Counterbalanced, mixed measures design.
 The independent variables were font family (within-subject) and font size (between-subject).
 Eight different fonts:
 • Sans serif: Arial, Comic Sans MS, Tahoma, Verdana.
 • Serif: Century Schoolbook, Courier New, Georgia, Times New Roman.
 Three different font sizes: 10 pt, 12 pt, and 14 pt.

Participants
• N = 60 participants: 16 male, 44 female.
• Age ranged from 18 to 55 (mean 24, sd = 7.8) years.

Tasks
• All text was black on a white background.
• 8 passages of text from Encarta of around 1032 words, horizontal margins set at 640 pixels.
• Each passage contained 15 randomly placed substitution words.
• Each user asked to read 8 passages, one for each font.
• 20 users read at 10 pt, 20 users at 12 pt, and 20 users at 14 pt.
• Users asked to read “as quickly and as accurately as possible” and flag (read aloud) any word appearing out of context.

Measures

Objective measures:

• % substitution words detected.
• Reading time in seconds.
• Reading efficiency := % substitution words detected / reading time.

Subjective measures:

• Rating for Perceived Font Legibility (6-point likert scale).
• Also ratings for Perceived Attractiveness (not considered further here).
• Preference ranking of the 8 fonts.

Results

Objective measures:

• Reading time (regardless of accuracy):
 Times < Courier, Times < Schoolbook, Times < Georgia.
 Arial < Courier, Arial < Schoolbook, Arial < Georgia.
 12 pt < 10 pt.
 All other differences not significant.

• Reading efficiency: no significant font family or font size effects.
 Fonts which were read faster were also generally read less accurately.

Subjective measures:

• Perceived legibility:
 10 pt Tahoma > 12 pt Schoolbook, 10 pt Arial > 12 pt Tahoma.
 10 pt Georgia > 12 pt Tahoma, 10 pt Georgia > 12 pt Schoolbook.
 12 pt Verdana > 10 pt Comic, 12 pt Verdana > 10 pt Schoolbook, 12 pt Verdana > 10 pt Verdana.
 12 pt Courier > 12 pt Schoolbook, 12 pt Courier > 12 Tahoma, 12 pt Courier > 14 pt Comic.
 14 pt Arial > 14 pt Comic.
 14 pt Arial > 10 pt Schoolbook, 14 pt Arial > 10 pt Comic.
• Preference ranking: % chosen as first or second preference choice.

Over all three font sizes:

Times < Arial, Times < Comic, Times < Tahoma,
Times < Verdana, Times < Courier, Times < Georgia.
Schoolbook < Verdana.

Conclusions

• There were no significant differences in reading efficiency between font types at any size.

• In terms of pure reading time (regardless of accuracy), Times and Arial were read significantly faster than Courier, Schoolbook, and Georgia. Fonts at 12 pt were read significantly faster than fonts at 10 pt.

• Arial and Courier were perceived as the most legible fonts (not significantly). Verdana was the most preferred font (not significantly).

• Overall, Verdana is recommended as a good choice: it is the most preferred, whilst also being read fairly quickly and perceived as fairly legible.

13.1.3 Boyarski, Neuwirth, Forlizzi, and Regli, 1998

Boyarski et al. [1998] conducted a study comparing 3 pairs of fonts. We consider the first study described in Part 1 of the paper.

Experimental Design

Three comparison tests, each a counterbalanced, repeated measures design.

Three pairs of fonts compared:

• Georgia vs. Times Roman.
• Georgia vs. Verdana.
• Verdana vs. Verdana Italic.

The independent variable (that which is varied) in each case is font family.

Participants

• Three separate tests, each with N = 16 participants.
• Age (of the 48 users total) ranged from 20 to 53 (mean 30, sd = 7.8) years.

Tasks

• All text was black on a white background.
• Two comparable tests (called Form-E and Form-F) were taken from an established set of reading speed and comprehension tests, the Nelson-Denny Reading Test.
• Four passages from Form-E and four passages from Form-F were extracted, each consisting of three to seven paragraphs of text and having four associated comprehension questions.

• Each user was asked to read 4 passages of text for each font.

• All text was set at 10 pt size with 13 pt leading and an average line length of 10 words.

• Texts were presented in Microsoft Word 6.0 (Windows 95) with the window set at 640×480 pixels.

• Users asked to “Work for both speed and accuracy; that is, work rapidly but try not to make mistakes.”

• After each font, users were asked to rate the font on a 9-point likert scale for each of the dimensions: Hard/Easy to Read, Fuzzy/Sharp, and Illegible/Legible.

• At the end of the test, users were shown both fonts side by side (on two monitors) and asked to express a preference for one font on a 9-point likert scale (5 being the neutral point) for each of the dimensions: Easiest to Read, Most Pleasing to Read, and Most Sharp.

Measures

Objective measures:

• Reading time in seconds.

• Score := Number of comprehension questions answered correctly (out of 16).

• Effective reading speed := score / reading time.

Subjective measures:

Indirect ratings (9-point likert scale) for:

• Hard/Easy to Read.

• Fuzzy/Sharp.

• Illegible/Legible.

Direct comparison (9-point likert scale, 5 being neutral point):

• Easiest to Read

• Most Pleasing to Read

• Most Sharp

Results

Objective measures:

• Reading time:

 No significant difference between Georgia and Times.
 No significant difference between Georgia and Verdana.
 No significant difference between Verdana and Verdana Italic.
13.1. SCREEN FONTS

- Score (comprehension):
 No significant difference between Georgia and Times.
 Georgia › Verdana
 No significant difference between Verdana and Verdana Italic.

- Effective reading speed:
 No significant difference between Georgia and Times.
 No significant difference between Georgia and Verdana.
 No significant difference between Verdana and Verdana Italic.

Subjective measures:
In the indirect comparison:

- Perceived as Easy to Read:
 Georgia › Times
 No significant difference between Georgia and Verdana.
 Verdana › Verdana Italic

- Perceived as Sharp:
 Georgia › Times
 No significant difference between Georgia and Verdana.
 Verdana › Verdana Italic

- Perceived as Legible:
 Georgia › Times
 No significant difference between Georgia and Verdana.
 Verdana › Verdana Italic

Conclusions

- There were no significant differences in (absolute) reading speed or effective reading speed between any of the font pairings at 10 pt.

- In the subjective ratings, Georgia is significantly preferred to Times.

- In the subjective ratings, Verdana is significantly preferred to Verdana Italic.
Chapter 14

Web Usability Case Studies

A series of case studies to illustrate how much can be learned from discount usability techniques.

14.1 SunWeb: User Interface Design for Sun Microsystem’s Internal Web

- Summer of 1994, Sun has large amounts of distributed, internal information.
- 10,000% annual Web growth on Internet, even higher behind Sun’s firewall.
- Tight timeframe in order to get consistent UI within Sun.
- Separate visual identities for internal and external pages.
- SunWeb design lead by Jakob Nielsen and Darrell Sano.
- Most of UI work done in few weeks.
- Note: 1994 design style – many icons and options.

The material in this section is adapted with kind permission from notes by Jakob Nielsen[Nielsen and Sano, 1994].

Usability Plan

“Discount Usability Engineering” – four usability studies over a period of two weeks:

- Card sorting to discover categories (4 users).
- Icon intuitiveness testing (4 users).
- Card distribution to icons (4 users).
- Thinking aloud walkthrough of page mock-up (3 users).

Note:
- Participants in last two tests also asked for ratings of icon aesthetics.
- Different users used in each study to avoid learning effects.
Card Sorting

- UI group brainstormed about possible information services/concepts in system (51).
- One notecard for each concept.
- Scattered on desk in random order.
- User sorts cards into piles (not too small or too large) according to similarity.
- Group piles into larger groups.
- Name groups using Post-it notes.
- About 30-40 minutes per user.
- Analyse data by “eyeballing”.
 [could also use statistical techniques]

Icon Intuitiveness

- Based on results of card sorting study, 15 first-level groupings of information defined for SunWeb.
- Designed icon for each of them.
- Show icons (without titles) to each user and ask what they mean. The results are shown in Table 14.1.
- Redesign of icons which tested poorly.

Card Distribution to Icons

- Test whether users associate correct concepts with icons.
- Mock up of home page design on desk.
- Icons printed in colour at 200% magnification, with labels.
- Post-it tape used to divide table into areas for each icon.
- Users place concept cards under most appropriate icon, as shown in Figure 14.1.
- Approx. 15 minutes per user.
- At end of test, users asked to comment on which icons they liked and disliked.

Thinking Aloud Page Walkthrough (Paper Prototype)

- Magnified color screendump of home page design.
- Test users asked to point to each button and think aloud what information they expected to find there.
- At end of test, users asked to comment on which icons they liked and disliked.
Table 14.1: SunWeb: Results of icon intuitiveness study.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Intended Meaning</th>
<th>User Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geographic view of the company (branch offices in different locations).</td>
<td>World, global view, planet, the world, Earth.</td>
</tr>
<tr>
<td></td>
<td>Benefits</td>
<td>Health field, money, health care is expensive, Clinton’s health plan, hospital, don’t know, benefits.</td>
</tr>
<tr>
<td></td>
<td>Public relations (TV with commercial).</td>
<td>TV set, video, TV, TV, TV.</td>
</tr>
<tr>
<td></td>
<td>Product catalog.</td>
<td>System oriented, disk, CD, Computer, CD-ROM, CD-ROM.</td>
</tr>
<tr>
<td></td>
<td>Specialized tools (toolbox).</td>
<td>Briefcase, personal info, briefcase, toolbox, briefcase.</td>
</tr>
<tr>
<td></td>
<td>What’s new (bulletin board).</td>
<td>Bulletin board, bulletin board, bulletin board, laundry.</td>
</tr>
<tr>
<td></td>
<td>World Wide Web.</td>
<td>Networking on a world scale, map, location, dimensions of the planet, networking around the world, geography, global.</td>
</tr>
</tbody>
</table>

Figure 14.1: SunWeb: Card distribution to icons. [With kind permission of Jakob Nielsen.]
Remarks

• For web page design, study the information structure.
 [since interaction techniques are determined by specific Web browser, over which you generally have no influence]

• Card sorting and icon intuitiveness studies were the most useful.

Iterative Design

• SunWeb design went through many revisions.

• For example, five main iterations of “Specialised Tools” icon.

Unified Design

• Consistent visual design applied to graphic elements.

• Textual labels in small font beneath each icon.

• Predictable location for information and controls on every page of SunWeb.

• Banner components placed in central repository with usage guidelines to encourage adoption.

• SunWeb banner colours from minimal, 64-colour palette.
 [reduce colour map problems, leave plenty free]
Table 14.2: SunWeb: Five iterations of Specialised Tools icon. [With kind permission of Jakob Nielsen.]

<table>
<thead>
<tr>
<th>Icon</th>
<th>Intended Meaning</th>
<th>User Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toolbox.</td>
<td>Briefcase</td>
</tr>
<tr>
<td></td>
<td>Open toolbox, with tool.</td>
<td>“Tool”, but almost any concept was considered to be a tool.</td>
</tr>
<tr>
<td></td>
<td>Storefront.</td>
<td>“Circuit board!”</td>
</tr>
<tr>
<td></td>
<td>Storefront.</td>
<td>Confused with shopping and product catalog.</td>
</tr>
<tr>
<td></td>
<td>Application chest.</td>
<td>Final design.</td>
</tr>
</tbody>
</table>

Figure 14.3: SunWeb final home page design. [With kind permission of Jakob Nielsen.]
14.2 SunWWW: User Interface Design for Sun’s Web Site

Several rounds of usability testing for the 1995 redesign of Sun’s external WWW site:

- Thinking aloud test of existing design.
- Competitive tests of other companies’ sites.
- Card sorting.
- Icon intuitiveness.
- Paper prototyping.
- Thinking aloud test of running prototype.
- Usability testing both in usability lab in Sun HQ and at offices around world.

The material in this section is adapted with kind permission from notes by Jakob Nielsen [Nielsen, 1995].

Thinking Aloud Test of Existing Design

- Inconsistent header bars.
- Strange image maps.
- Top button-bar did not look enough like buttons – immediately redesigned.
- Redesign resulted in 416% increased use over two-month period (Jan.–Mar. 1995).
 [overall use of server increased "only" 48% in same period]

Card Sorting for New Design

Card sorting with concepts from Sun’s WWW site, to gain an insight into how users would organise concepts:

- Users were asked to sort the cards into piles, such that cards representing similar concepts were in the same pile.
- Users were also allowed to group piles to indicate looser levels of similarity
- Finally, they were asked to name their piles.

Testing Paper Mock-Up of Home Page

- Homepage designs printed on colour printer and magnified on colour copier.
- Users first asked to comment on their general impression.
- Then asked to point to elements they might want to click on and what they would expect to happen.
- Area of desk marked with masking tape, so user doesn’t pick up the printout.
Figure 14.4: Usability lab setup at Sun. [With kind permission of Jakob Nielsen.]

Figure 14.5: The top button bar of Sun’s WWW site before and after redesign. Changing the button bar resulted in 416% increase in use over a two-month period! [With kind permission of Jakob Nielsen.]
Figure 14.6: Card sorting for Sun’s WWW site. Users group concepts into similar categories and name them. [With kind permission of Jakob Nielsen.]

Figure 14.7: Paper prototyping for Sun’s WWW site. [With kind permission of Jakob Nielsen.]
Figure 14.8: Thinking aloud test of working prototype of Sun’s WWW site. Note the small table clock to the left of the computer, so the facilitator does not continually look at their wristwatch. [With kind permission of Jakob Nielsen.]

Thinking Aloud Testing of Working Prototype

- Mostly in the Sun usability lab in Mountain View.
- Three tests at Sun offices in Europe and Asia.
- With a set series of tasks.

SunWWW Working Prototype

Nine Iterations of Sun’s WWW Home Page

SunWWW Feedback 1

- Users mistook the page to be Adobe’s home page rather than Sun’s!
- Most users’ initial impression was “very busy” or “complicated”.
- Even though beautifully designed, users did not notice the month name (January), negating the regular update message of magazine-style.
- When the month was pointed, users liked it but worried how they would be able to access the cover story next month.
- Users liked the subtitle “Entertainment for Propellerheads”, but it was removed anyway to enhance the site’s credibility.
• Users did not understand they could click on the lead paragraph to get more information about the Adobe story (no affordance for clickability). Likewise for the Weekly Update bar and the three bullet items.

• The striking colours in the photo seemed to clash with the rest of the screen design.

SunWWW Feedback 2

• The month name was now more prominent and was seen by the users. They all liked the fact that the page was dated.

• The blue {MORE} button made it clear there was more information.

• They understood that “News and Commentary” was clickable.

• Users still believed it was a page about Adobe – the Sun logo was made much more prominent on subsequent designs.

• Users generally liked the design: “pretty,” “nice looking,” “looks professional”.

• A few users thought that they could only click on the “News and Commentary” bar and that the individual stories were not clickable.
Figure 14.10: SunWWW Design 2. [With kind permission of Jakob Nielsen.]

Figure 14.11: SunWWW Design 3. [With kind permission of Jakob Nielsen.]
CHAPTER 14. WEB USABILITY CASE STUDIES

Figure 14.12: SunWWW Design 4. [With kind permission of Jakob Nielsen.]

SunWWW Feedback 3

- Users were still having problems understanding the status of the page compared with other things called SunWorld (a Sun trade conference).

- We decided to get rid of the name SunWorld for the home page. (and consequently also the world map as its graphic identity).

SunWWW Feedback 4

- This design succeeded in making the Sun logo prominent.

- However, it overwhelmed users with buttons, giving them too many options.

- All the buttons have equal priority, a “laundry list interface”.

SunWWW Feedback 5

- New cover story about HotJava.

- The test users did not like the “Duke” illustration.

- First design with real icons for the various buttons. Some of the user comments are shown in Table 14.3.

- Some icons are larger and more colourful than others to indicate prioritisation.
14.2. SUNWWW: USER INTERFACE DESIGN FOR SUN’S WEB SITE

Figure 14.13: SunWWW Design 5. [With kind permission of Jakob Nielsen.]

<table>
<thead>
<tr>
<th>Icon</th>
<th>Intended Meaning</th>
<th>User Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sun on the Net</td>
<td>“a punctured balloon”, “a snowman”, “a talking collapsing world”, “an idea coming out of a globe”.</td>
</tr>
<tr>
<td></td>
<td>What’s Happening</td>
<td>“a parade”, “people at a Sun launch”, “an intensely ugly logo with people in front of it”.</td>
</tr>
<tr>
<td></td>
<td>Sales and Service</td>
<td>“gas station”, “diner”, “public restroom”, “store to buy Sun equipment”, “fast food”</td>
</tr>
<tr>
<td></td>
<td>Technology and Developers</td>
<td>“Thunder and lightning”, “electric - looks painful”, “person being killed by technology”, “dance machine”, “why do Sun developers look bug-eyed?”</td>
</tr>
</tbody>
</table>

Table 14.3: User comments on Design 5 icons. [With kind permission of Jakob Nielsen.]
SunWWW Feedback 6

- New coffee cup design for HotJava.
- No underlay under top three stories for simpler design.
- Blue text and bullets were perceived as clickable.
- However, What’s Happening bar was no longer thought to be clickable!
- “Sun on the Net” icon still not working, decided globe had to be round!

SunWWW Feedback 7

- Adding triangle to What’s Happening bar made it clickable.
- “Technology and Developers” icon still looking too much like a thunderbolt.
- “Corporate Overview” icon perceived as “Sun’s headquarters suffering earthquake damage” and “a fever chart”.
- “Sun on Net” icon now round but still misinterpreted: “astronaut in space suit”, “an olive”, and “a golfer trying to hack his way out of the rough”!

SunWWW Feedback 8

- Triangle on What’s Happening button a bit too dark to really look engraved.
14.2. SUNWWW: USER INTERFACE DESIGN FOR SUN’S WEB SITE

Figure 14.15: SunWWW Design 7. [With kind permission of Jakob Nielsen.]

Figure 14.16: SunWWW Design 8. [With kind permission of Jakob Nielsen.]
• Also, our first professionally illustrated coffee cup looked too much like a nuclear explosion.

SunWWW Feedback 9

• At last: the perfect home page :-)
Figure 14.18: All Nine Iterations. [With kind permission of Jakob Nielsen.]
14.3 MSWeb: Microsoft Intranet Site

Redesign on Microsoft Intranet site:

- Vivian Bliss; *Redesigning the Microsoft Corporate Intranet*; http://argus-acia.com/acia_event/bliss_session.html

14.4 Designing Web Applications

Web applications, typically implemented in Java or HTML and Javascript, help users get specific tasks done, such as accessing their bank account or signing up for health insurance benefits.

Here is the story of one such design effort:

- Bruce Tognazzini; *Trials and Tribulations of Web Application Design*; http://asktog.com/maxscrns.html
Bibliography

BIBLIOGRAPHY

