
Using Storybook as a Design System for the Angular Web App TreeTest

Georg Niess, Arwin Roubal, Stefan Thurner, Enrique Barba Roque

Graz University of Technology
A-8010 Graz, Austria

02 Feb 2020

Abstract
Modern information hierarchies require testing to yield the best experiences for users nav-
igating through them in search of content. One such approach on testing is so-called Tree
Testing where users navigate through information hierarchies. Ajdin Mehic has written an
Angular Web App called TreeTest for this purpose. In future work, the current TreeTest
implementation can be built upon and extended in various ways to provide an even better
open-source alternative to existing commercial tree testing applications. For improving,
adapting and even for customizing the software further, a design system like Storybook can
be very useful. This paper focuses on the usage of Storybook with the TreeTest project to
find out if it is suitable as a design system for the further development of TreeTest.

© Copyright 2020 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

1 Tree Testing and TreeTest 1
1.1 Tree Testing . 1
1.2 The Open-Source Web Appliation TreeTest by Ajdin Mehic 1

2 Modular Building 3
2.1 Introduction . 3
2.2 Basic Principles . 3
2.3 Advantages and Challenges . 4

3 The Design System Storybook.js 5
3.1 Introduction . 5
3.2 How to use Storybook . 5
3.3 Writing Stories . 5
3.4 Advantages of Storybook as a Design System . 7

4 Knobs Addon 9
4.1 What is Knobs Addon . 9
4.2 Knobs Addon in TreeTest . 10

5 The Issues of Storybook and TreeTest 13
5.1 Legacy Projects . 13
5.2 Knobs Addon . 13
5.3 Exernal Templates . 13

6 Conclusion 15

Bibliography 17

i

ii

List of Figures

1.1 TreeTest Example . 2
1.2 Components of TreeTest . 2

3.1 TreeTest Components in Storybook . 6
3.2 A Simple Story . 6
3.3 Result of a Simple Story . 7

4.1 Knobs Types Example . 10
4.2 Knobs Demo for TreeTest . 11

5.1 Addon Compatibility . 14

iii

iv

Chapter 1

Tree Testing and TreeTest

1.1 Tree Testing
In many cases, websites are dedicated to providing content to their users. They click on tabs and buttons
to reach subcategories and find the content they desire. It is necessary to design a hierarchy that helps the
users findwhat they are searching for, a so-called information hierarchy. But the designer of a hypothetical
site encounters a problem here. Categories and labels are not interpreted by every person in the same
way. This leads to users looking for content in the wrong places. In the worst case, this is annoying
enough for them to leave the site without having found the content they desired in the first place. An
information hierarchy, like everything linked to a user interface, is subject of testing in human-computer
interaction. But how to test if the categories we structured our site with are indeed “good” categories?
For this purpose, the praxis of Tree Testing was created.

In Tree Testing, users navigate an information hierarchy top-down, reaching child nodes and deciding
in each step which category they want to navigate to. If the path they take through the tree leads to
the desired content the navigation is considered a success. But if the chosen path does not lead to the
content this is considered important feedback for the creators. This is because the user was sure to find
the content in a place unexpected by the creator. Tree Testing is efficient because it cuts out distractions
in an UI that might cause the user to leave the correct path. It instead focuses only on language and if the
categorization of content made by creators actually matches what a typical user might expect. There are
actually a few known methods of doing Tree Testing. Users could categorize the content written on cards
to see if they choose according to the current design, this would then be filmed and evaluated. But for
efficiency reasons, it is preferable to do such studies on devices or even online nowadays. And of course,
there are commercial tools that achieve this, but never before has there been an open-source tool. That
was until Ajdin Mehic created the first open-source alternative, the Angular Web App TreeTest.

1.2 The Open-Source Web Appliation TreeTest by Ajdin Mehic
TreeTest is an open-source web application for tree testing. An example of a survey can be seen in
figure 1.1 It uses Angular 7 as a frontend framework, Node as a server, Express.js as a Node framework
and MongoDB as a database. These technologies are part of the so-called MEAN stack, a JavaScript
development solution. There are three different user roles in TreeTest. The Admin can add and delete
users, change user passwords, and enable study access. There is only one predefined admin account. The
Study Owner creates and runs studies, and of course, there is the Participant, the role of the user that
takes part in tree testing studies. As mentioned, one main advantage of TreeTest is that studies can be
shared through a link and be done online, which is much more practical than other approaches. TreeTest
features multiple interface components, as seen in figure 1.2, which leads to the question if the software
can be improved by a design system.

1

2 1 Tree Testing and TreeTest

Figure 1.1: A Simple Example of TreeTest by Ajdin Mehic.

Figure 1.2: Some of the Frequently Used Components of TreeTest.

Chapter 2

Modular Building

2.1 Introduction
When developing software, each new element brings complexity and with more complexity, it becomes
more and more complicated for developers. “Without a unified Language, all products drift toward
inconsistency”, Yesenia Perez-Cruz writes in her Book “Expressive Design Systems”. That means, the
larger a project becomes, themore inconsistent and complicated theworkflow becomes too if you don’t use
some form of modular building. Perez-Cruz says that teams don’t choose themselves to be inconsistent,
it is a natural process when a huge number of developers are working on one project. Another problem
is the formation of smaller teams within a software department. Many of them may form around specific
areas and the development process of different products (e.g. website, apps, etc.) begin to split up even
more. [Perez-Cruz 2019]

One possible solution for this issue is the usage of modular building. This means, that companies try
to design and build with reusable components in different forms. They want to unify the development
process across multiple teams. This should be a benefit for the developers and for the customers using
the final products. To achieve this kind of design unification there are multiple methods which can be
applied. [Perez-Cruz 2019]

• Pattern library: A pattern library is basically a compilation of reusable user interface components,
called “building blocks” that are shared within the company. All developers from the different teams
should be able to access them to use in their individual product development process.

• Style guide: A style guide is a textual documentation of howproducts should be developed concerning
design, functions or basic program logic. Such a style guide is usually text-based and available as a
document on a website or as a pdf-file.

• Design system: A design system is basically a combination of a pattern library and a style guide.
On the one hand, it provides a unified library of building blocks. On the other hand, it describes
these components in detail in a connected documentation. An example of such a design system is
Storybook.js, which will be explained in the next chapter.

2.2 Basic Principles
According to Yesenia Perez-Cruz, such design systems do have some basic principles [Perez-Cruz 2019]:

• Design systems are intentional. Which means that you should have a strict plan on how to approach
the development process.

• Your team is already working in systems. Meaning, that your team needs to get the concept clear
what it means to use a design system. Maybe they already stick to some form of documentation?

3

4 2 Modular Building

• Strong systems are collaborative. Design systems must be shared across all teams and should be a
benefit for all developers.

• The human aspects of your system are more complicated than tooling. This means, that many
challenges will come up within the development team and not within a specific software. Creating
a unified language for all your developers can be more important than the tool itself.

2.3 Advantages and Challenges
After defining what a design system is, a next step is to show, why design systems like Storybook can be a
huge benefit. In short: What are the main advantages of using a design system within your development
team? According to Yesenia Perez-Cruz, there are the following advantages [Perez-Cruz 2019]:

• Faster builds, through reusable components and shared rationale.

• Better products, through more cohesive user experiences and a consistent design language.

• Improved maintenance and scalability, through the reduction of design and technical debt.

• Stronger focus for product teams, through tackling common problems so teams can concentrate on
solving user needs.

These aspects show, that design systems can bring many advantages. However, using a design system
can also bring some new challenges. Yesenia Perez-Cruz describes them as following [Perez-Cruz 2019]:

• Rigid systems that stifle creativity.

• Monotonous systems that lead to generic, cookie-cutter experiences.

• Overly specific systems that can’t be adapted to enough use cases.

• Complicated, unexplained, and unsupported systems that lead to fragmented user experiences.

As a conclusion could be said, that design systems can be a very powerful tool for improving your
development process. Especially on a larger scale with multiple teams working on different products, a
design system can help to deliver products faster, more stable and in a unified design. However, when
using this form of modular building, you must know exactly where the challenges and base principles are
to gain the most value out of it.

Chapter 3

The Design System Storybook.js

3.1 Introduction
3.2 How to use Storybook
After explaining in general, what a design system is and how it works, this section will focus on giving
you a short introduction to Storybook.js. It is an open-source tool for UI development, and it helps you
creating modular user interfaces. Supporting different frameworks like React, Angular, Vue and more, it
offers you a selection of useful functions to create, maintain and share your building blocks within your
team. You can also think of it as a playground, where you can test out new options for your interface,
before adding it to the real application. The main purpose of Storybook is to develop components in
isolation. This should give you more control, reusability, organization and efficiency. A typical hierarchy
in Storybook can be seen in 3.1. On the left side is the hierarchy which contains the different building
blocks from the main app TreeTest. The current story is rendered in the Canvas Window.

Adding Storybook to a project is easy. It can be achieved by calling the command “npx -p @story-
book/cli sb init” within the root directory of your project. This creates the complete structure which is
needed for Storybook. To run the application with Storybook, the command “npm run storybook” can
be used. The application is now reachable at "http://localhost:6006/”.

As a next step, it should be defined, what a so-called “story” is. A story is one specific state of one
component of your application. It contains basic component information and is used to organize these
building blocks or to cover edge cases. Each story is written in an own file where all the classes and
dependencies needed, must be included. It is also possible to add different states for each component.

3.3 Writing Stories
Stories are a way of adding the information necessary to classify different visual states of a user interface
component. There is a story file per class, and the application loads the stories from there. Of course,
all necessary includes must be taken care of. But in the story files (cleanly separated from the main
application code), the developer can add as many stories as wished. Each story then shows up in the
Storybook application. To write a story one must create a story file (only files with the extension .stories
are recognized) and use the storiesOfApi. This is the API to match visual components to the data that
forms their different stories. It is worth to mention that currently (status from 2.2.2020) the API is already
deprecated according to the development team as they are working on a new solution that will be used in
Storybook in the future. However, until the current day, the storiesOf Api is the most widely used one
that is present in most of the applications using Storybook up until now. With the use of the API, the
developer adds all the necessary stories. Technically, a story is a function that returns something that can
be rendered to screen. How one uses stories depends on the application and used frameworks. A very
basic example of how stories work can be seen in figures 3.2 and 3.3.

5

6 3 The Design System Storybook.js

Figure 3.1: Loading TreeTest Components into Storybook.

Figure 3.2: A Simple Story with Storybook.

Advantages of Storybook as a Design System 7

Figure 3.3: The Outcome of the Simple Story shown in 3.2.

3.4 Advantages of Storybook as a Design System
Storybook comes with all the advantages and challenges that were addressed in the last chapter. However,
it also offers some exclusive features. A huge advantage is the support for many different frameworks
like Angular, React, Vue or more. Most of the other open-source systems like Atellier [Sprinklr 2016],
react cosmos [Skidding 2014] or react style guide generator [Pocotan001 2015] are specialized on one
framework. However, the support of the different frameworks in Storybook is not equally good, but this
aspect will be discussed later in the issues chapter.

Another advantage of Storybook itself is a large library of addons and extensions which can be
integrated into the application. There are addons like the “Knobs addon”, which will be introduced later
in this paper. Storybook also delivers a safe area for testing different components and allows you to use
markdown for documentation purposes. If it is integrated right from the start of a project, it can be a
powerful tool for comparing designs, showing different states and aiding at presentations for the project’s
stakeholders. Overall, Storybook is especially recommended for React and delivers many functions to
improve the development process. The main issues and conclusions for Storybook as a design system for
TreeTest will be covered in a separate chapter.

8 3 The Design System Storybook.js

Chapter 4

Knobs Addon

This chapter will take a look at the Knobs Addon for Storybook, which allows change of the properties of
the component under testing dynamically using the Storybook UI. This feature is useful to show possible
aspects for the UI to the investors or development team during meetings or demonstrations.

4.1 What is Knobs Addon
The Knobs Addon is one of the multiple addons available to add functionalities to Storybook, and it is
compatible with all frameworks supported by Storybook. The addon is also part of the development of
Storybook, but it is not installed together with the main package.

This addon works by defining a knobs object in the story and passing them as a property to the
component. This object is then represented in the Storybook interface, and modifying its value changes
the value in the visualized component, using basic string binding. This means that only string properties
can be changed in the component, like the text of a section or the colour property in certain style
expression.

There are different types of knobs objects, which changes how the knob value is visualized and selected
in the Storybook UI:

• Text: Standard HTML text input from the user.

• Boolean: Gets a boolean value from the user.

• Number: Number input, can be standard or a range slider format.

• Color: Displays a colour picker and sends the HEX string of the colour selected.

• Object: Gets a JSON object representation.

• Array: Obtains an array of strings from the user.

• Options: Offers different options of the value in different forms: radio, select, multi-select, check-
box...

• Date: Gets a date input from the user.

All these objects get as parameters a name that shows up in the Storybook UI, a default value and
optionally a group ID, to group them in tabs in the UI.

9

10 4 Knobs Addon

Figure 4.1: Different Knobs Types and Aspect in the Storybook UI.

4.2 Knobs Addon in TreeTest
The use of knobs in TreeTest could not be directly implemented due to unsolved dependencies and the
need to update the version of some tools, like Typescript. However, a small demo was implemented
taking the generated HTML and CSS from TreeTest and some knob objects were added to change the
colour of buttons. This way, the implementation of some of the properties of the addon could be tested
in the target application.

To make this work, a new component was created in a Storybook demo project with the Knobs addon
installed and all dependencies up to date. The component used the HTML and CSS from the tests table
generated by TreeTest as a template for the component, and passing the properties of the component
to the template using ngStyle for the colours. Then, the knobs are defined in a story and passed to the
component, which embedded them in the HTML.

For this test, three colour knobs, one text knob and one options radio knob were defined. The colour
knobs controlled the colour of standard buttons, danger buttons like remove and the font colour of the
buttons. The text knob changes the name of a column of the table, and the radio offers two options of the
label of the ending study button.

Knobs Addon in TreeTest 11

Figure 4.2: The Knobs Demo for TreeTest, Showing the Interface for the Color Knob.

12 4 Knobs Addon

Chapter 5

The Issues of Storybook and TreeTest

Some issues are creating obstacles for a clean and quick integration of Storybook in TreeTest. This
section will examine and try to give solutions to them.

5.1 Legacy Projects
Storybooks support for Angular is still in development. At the moment, React is the main development
branch. While most features work under Angular, they need more lines of code than in React and are not
as optimized.

Storybook is also hard to integrate well in already existing projects. A lot of changes must be made
for every element to not only load, but also support the dynamic features of Storybook. Every property
needs to be made visible to the story, and in the case of TreeTest a lot of components would need to be
split up to allow more granular stories and more control over their visual design.

5.2 Knobs Addon
There are also problems with the Knobs addon. The addon uses basic string binding to bind properties to
a knob. This means that every property of an element that should be able to change needs to be manually
made visible for the addon. This is done by string binding a property to its class and then adding an
individual handler to the respective story. Again, this process would take less lines of code and fewer
changes in React and JSX, for which the addon seems to be designed for initially.

5.3 Exernal Templates
Another problem is that TreeTest uses global external templates for CSS and Bootstrap. They are loaded
at runtime from a Cloudflare server and are hard to make changes to. To properly load the external CSS, it
is necessary to use a workaround to inject the code into a global story a startup. This means that the CSS
of stories is not isolated and that changes made by for example the Knobs addon get instantly overwritten
by the global template. Instead, the CSS would need to be made available locally so that Storybook can
create its own instances.

Another solution could be to create dynamic contexts. There is a Contexts addon for exactly this
problem, but it is not compatible with Angular yet 5.1.

13

14 5 The Issues of Storybook and TreeTest

Figure 5.1: Addon Compatibility of Different Frameworks Supported by Storybook [Shilman 2019].

Chapter 6

Conclusion

Storybook could be a very useful tool for TreeTest. Basically all the benefits discussed in this paper
would apply to the project. It could especially aid in the expansion of features and future UI components.

However, Storybook should have been integrated and planned for from the start. To integrate Storybook
now into TreeTest, a lot of changes and reworks are necessary which leads to the question if the integration
would be worth the time and effort. This largely depends on what the future of TreeTest is supposed to
be and if the Software should be able to adapt to and speed up further development.

The estimated time for an integration into TreeTest with all features working would be comparable to a
full UI rewrite. In that case, it also may be worth it to switch to React and a JSX interface in the process.
On the other hand, it is worth it to consider an integration of Storybook in future projects from the start.
There is not that much additional work if implemented in parallel with the UI, and it is also easy to plan
for. However, for very small projects or projects with no plans for expansion, the benefits of Storybook
would be too small to consider it. All other projects would benefit more than enough to go forward with
a full integration.

15

16 6 Conclusion

Bibliography

Perez-Cruz, Yesenia [2019]. Expressive Design Systems. A Book Apart, 21 Nov 2019. ISBN 978-1-937557-
84-3 (cited on pages 3–4).

Pocotan001 [2015]. react styleguide generator. URL. 2015. https://github.com/pocotan001/react-
styleguide-generator/graphs/contributors (cited on page 7).

Shilman [2019]. Addon / Framework Support Table. URL. 2019. https://github.com/storybookjs/
storybook/blob/master/ADDONS_SUPPORT.md (cited on page 14).

Skidding [2014]. react cosmos. URL. 2014. https://github.com/react-cosmos/react-cosmos (cited on
page 7).

Sprinklr [2016]. Atellier. URL. 2016. https://scup.github.io/atellier/ (cited on page 7).

17

http://amazon.co.uk/dp/978-1-937557-84-3/
http://amazon.co.uk/dp/978-1-937557-84-3/
https://github.com/pocotan001/react-styleguide-generator/graphs/contributors
https://github.com/pocotan001/react-styleguide-generator/graphs/contributors
https://github.com/storybookjs/storybook/blob/master/ADDONS_SUPPORT.md
https://github.com/storybookjs/storybook/blob/master/ADDONS_SUPPORT.md
https://github.com/react-cosmos/react-cosmos
https://scup.github.io/atellier/

	Contents
	List of Figures
	1 Tree Testing and TreeTest
	1.1 Tree Testing
	1.2 The Open-Source Web Appliation TreeTest by Ajdin Mehic

	2 Modular Building
	2.1 Introduction
	2.2 Basic Principles
	2.3 Advantages and Challenges

	3 The Design System Storybook.js
	3.1 Introduction
	3.2 How to use Storybook
	3.3 Writing Stories
	3.4 Advantages of Storybook as a Design System

	4 Knobs Addon
	4.1 What is Knobs Addon
	4.2 Knobs Addon in TreeTest

	5 The Issues of Storybook and TreeTest
	5.1 Legacy Projects
	5.2 Knobs Addon
	5.3 Exernal Templates

	6 Conclusion
	Bibliography

