
YACA and YASM: Command-Line Tools for Web Site Content Auditing and
Site Mapping

Group 2

Reinhard Egger, Daniel Geiger, Lorenz Leitner and Peter Oberrauner

706.041 Information Architecture and Web Usability WS 2019/2020
Graz University of Technology

03 Feb 2020

Abstract
Websites are made up of individual pages which are interlinked to each other. When studying
the content and structure of a website, the pages can be analyzed by creating a content audit
and a (visual) site map. A content audit tries to list all available content of a website, mainly
all existing pages, but additional information can be listed as well. A site map represents
the hierarchical structure of the pages via parent-child relationships. A tree structure of
this hierarchy can be visualized using a graph model. Existing paid proprietary solutions for
these purposes have been shown to be inadequate especially for their price. This report shows
two tools which offer this functionality free and open-source: Yet Another Content Auditor
(YACA) and Yet Another Site Mapper (YASM). The development process is described and
the usage of the tools is documented. An insight into past issues and potentials of future
work is given as well.

© Copyright 2020 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

List of Tables v

List of Listings vii

1 Introduction 1
1.0.1 Existing Solutions . 1
1.0.2 New Solution . 1
1.0.3 Availability . 1

2 Development 3
2.1 Development Process . 3
2.2 Issues . 4

2.2.1 Edge Bundling . 4
2.2.2 Depth and Width . 4

3 Documentation 7
3.1 Supported Platforms . 7
3.2 Prerequisites . 7
3.3 Usage . 7

3.3.1 YACA . 8
3.3.2 YASM . 8

3.4 Graphviz . 9
3.5 Blockdiag . 9
3.6 Node Colors . 10
3.7 Legend . 10

4 Future Work 13

5 Concluding Remarks 15

Bibliography 17

i

ii

List of Figures

2.1 Site Map of nextjs.org . 5

3.1 YACA CSV output of brunch.io . 8
3.2 Site Map of brunch.io using the engine Graphviz . 9
3.3 Site Map of brunch.io using the engine Blockdiag . 10
3.4 Graphviz legend . 10
3.5 Blockdiag legend . 11

iii

iv

List of Tables

v

vi

List of Listings

3.1 YACA Usage . 8
3.2 YASM Usage . 9

vii

viii

Chapter 1

Introduction

Most websites consist of many individual pages, which are linked to each other in addition to containing
links to the outside of the domain. The pages within a domain, that is the pages that belong to a website,
are a point of interest when studying a website’s content and structure. For this purpose, tools exist to
generate content audits and (visual) site maps of websites. A content audit attempts to list all available
content of a website, which is in its most basic form a list of all pages. Additional information can be
stored as well, such as page titles, content types, et cetera. A site map shows the hierarchical structure
of a website, in specific the parent-child relations of pages. A parent page links and therefore points to
a child page. A child page is therefore one level deeper in the hierarchy than its parent page. Such a
hierarchy can be expressed in a tree structure, which lends itself well to being represented visually as
graphs or diagrams.

1.0.1 Existing Solutions
Several existing tools for either or both of these purposes exist, which have been listed in the survey paper
of Ganster et al. [2019]. It is shown that most of these existing solutions are paid proprietary services
and aimed at corporate use, in contrast to personal use. Even though these tools are paid, some do not
offer satisfactory results in some ways.

1.0.2 New Solution
Ganster et al. [2019] provide a proof of concept solution for generating a content audit via Scrapy
[Scrapinghub 2020], a free and open-source tool to crawl and download web pages. This piece of code
was used to implement a more sophisticated solution for generating content audits via Scrapy, called Yet
Another Content Auditor (YACA). From the results of YACA, a visual site map can be generated via the
second tool, called Yet Another Site Mapper (YASM). Both of these tools are described and documented
in this project report, as well as the process of developing the tools and potential future work.

1.0.3 Availability
Both YACA and YASM are free and open-source, available on GitHub. YACA can be found at https:
//github.com/LoLei/yaca and YASM can be found at https://github.com/LoLei/yasm. YACA is licensed
under the MIT license [MIT] and YASM is licensed as CC BY-SA 4.0 [CC BY-SA 4.0].

1

https://github.com/LoLei/yaca
https://github.com/LoLei/yaca
https://github.com/LoLei/yasm

2 1 Introduction

Chapter 2

Development

The development of YACA and YASM took place over the course of about six weeks for the class
Information Architecture and Web Usability (706.041) at Graz University of Technology in 2019/2020.
The team of developers consisted of four people which tried to split the work between them, using the
version control system Git as a collaboration tool. The following sections show the development process,
issues which were encountered and lessons that were learned over the course of development.

2.1 Development Process
An initial proof of concept of Scrapy’s content auditing capabilities was obtained from Ganster et al.
[2019] at the beginning of development, as a starting point from which to develop further functionality.
This piece of code created a content audit from oebb.at in form of a list of URLs in a CSV file.

The first step was to generalize this and remove the hardcoded URL in favor of a dynamic input, which
also meant wrapping the pure Scrapy project with a Python wrapper. Through this Python wrapper, a
dynamic input domain can be supplied as well as every other options which were developed in the future.
This wrapper is what was to become YACA. Over the course of development, all code which stemmed
from the proof of concept has been removed or rewritten. However, a lot of boilerplate code that is
auto-generated from Scrapy for its project structure is of course the same.

It was quickly seen that the actual link wiring of pages on a website cannot be taken as-is to generate a
page hierarchy, which is needed to generate a site map. Consider a menu present on top of all pages of
a website, which is often the case. Since all pages have links to the pages in this menu, theoretically the
menu pages would always be children of every page. This and other link wiring issues led to using only
an approximation of the page hierarchy in the content audit via parent URLs and child URLs, and using
a different method of generating an accurate page hierarchy in YASM itself.

Having a list of all existing URLs via YACA was actually enough as initial input for YASM to generate
a site map. YASM goes through these URLs and generates a tree structure hierarchy based on the slashes
in the URLs. For example, domain.com/p1/p2 and domain.com/p1/p3 means domain.com points to p1 and p1
points to p2 and p3. This tree structure in itself is a site map, and is exported as JSON. However, to get a
human readable visual representation, this tree structure needed to be converted to the Graphviz textual
format, which can then be used by Graphviz to generate a visual graph or site map as PDF and SVG
consisting of the parts of the URLs as nodes. Fortunately there is a Graphviz Python library that makes
it easier to use the tree structure instead of manually writing text to a file via Python.

3

oebb.at
domain.com/p1/p2
domain.com/p1/p3
domain.com
p1
p1
p2
p3

4 2 Development

2.2 Issues
During the process of developing these tools, a few issues occurred, as it is known to happen. Some were
minor and easily fixed, therefore not worth mentioning here, but the larger ones might be interesting to
know about.

2.2.1 Edge Bundling
One of the biggest issue when using Graphviz with orthogonal splines, that is edge connections between
nodes with right angle corners, is that the automatic bundling of edges that run along each other is broken,
and has been for a long time. It is possible with regular edges, through the option concentrate=true but
this does not work for orthogonal splines, which has been reported since at least 2012 [Warner 2012]. So
if it were easy to fix, someone would have already done it. Another option would be to use the Mingle
Algorithm to use with Graphviz as done by Fröhlich et al. [2017], but this is also untested with orthogonal
splines.

The most straightforward solution was just to offer an alternative to Graphviz, which can be used in
cases Graphviz’s output gets too messy. The alternative that was found is Blockdiag, which inherently
uses orthogonal edges and bundles them as well. This leads to a much cleaner looking site map in most
cases. However, there is no official Python library available for this, but since it was written in Python,
it can simply be used as a module, and specific functions needed to generate the site map can be called.
Since Blockdiag uses a very similar textual input format to Graphviz the way this was handled was to
just generate the Graphviz textual format via Graphviz’s Python library, and transform this with a few
changes to one that can be used by Blockdiag.

Discovered later in the development process, a way to mitigate this in Graphviz is to group nodes from
a section of a site together, which places them in a close proximity on the visual map, which prevent
many overlapping edges, even if they are still running along in parallel.

2.2.2 Depth and Width
The depth of a website is the maximum number of links deep one can hop until the end is reached, that
is there are no more links, or there are only links left pointing to an upper level page. The depth can be
limited in both YACA and YASM via the -d flag. If a YACA run is done only to use the result as input
for YASM, the depth should be limited, to not scrape an unnecessary number of unneeded pages. When
using YASM, the depth should also be limited because displaying a large number of pages in a visual site
map may be impossible, at least to look at without zooming far out.

The width of a website is the maximum number of pages in one level. Limiting this number does not
make much sense as it would cut off arbitrary pages on one "side" of a website, even though they are
equally important as the other nodes on that level. Deeper nodes tend to have a lesser importance than
upper level nodes. Therefore limiting the depth in this way is more intuitive. Since the scraping in YACA
is also done breadth-first this goes hand in hand. However, some websites may still have a large width,
which makes viewing the visual output equally as difficult as having a large depth. In most cases, limiting
the depth also limits the width somewhat, since higher levels tend to have fewer pages. Otherwise, to
mitigate large widths the orientation of the YASM output can be changed via the --orientation flag.
This can make it easier to zoom in and scroll through nodes like a simple list in a PDF, from top to bottom.
To generally save space, the padding in between nodes can be altered and reduced as well, by using the
-wp and -hp flags, so as many nodes as possible can fit onto the visual output format. A visual sitemap
generated with these options can be seen in Figure 2.1.

A few additional mitigations were proposed, such as stacking pages on top of each other, or changing
directions after one or two levels, so the upper level nodes points down to a string of nodes which are
actually on the same level. However, doing this dynamically via Graphviz was deemed out of scope for
a project of this scale. Also, once one starts stacking pages and doing similar workarounds to have a

Issues 5

nextjs.org blog

features

showcase

docs

learn

telemetry

case-studies

next-9

next-9-2

next-8-1

next-5

styling-next-with-style
d-jsx

next-8-0-4

next-9-0-7

webpack-memory

next-8

next-6

create-next-app

next-6-1

next-7

next-5-1

next-9-1

new-documentation

next-9-1-7

static-exporting

progressive-web-apps

css-in-js

server-side-rendering

getting-started

api-reference

advanced-features

basic-features

old

deployment-types

features

faq

api-routes

deployment

routing

next

data-fetching

next.config.js

cli

head

router

link

amp

getInitialProps

exportPathMap

configuring-onDemand
Entries

configuring-the-build-i
d

disabling-etag-generat
ion

ignoring-typescript-err
ors

setting-a-custom-build
-directory

runtime-configuration

static-optimization-indi
cator

custom-webpack-confi
g

compression

environment-variables

introduction

disabling-x-powered-b
y

cdn-support-with-asset
-prefix

build-target

custom-page-extensio
ns

custom-app

custom-error-page

custom-document

custom-server

customizing-postcss-c
onfig

customizing-babel-con
fig

src-directory

automatic-static-optim
ization

static-html-export

amp-support

dynamic-import

introduction

adding-amp-compone
nts

typescript

amp-validation

amp-in-static-html-exp
ort

built-in-css-support

typescript

pages

static-file-serving

data-fetching

static

path-aliases

response-helpers

api-middlewares

introduction

dynamic-api-routes

shallow-routing

introduction

dynamic-routes

imperatively

basics

excel

getting-started

clean-urls-with-dynami
c-routing

styling-components

deploying-a-nextjs-app

api-routes

fetching-data-for-page
s

create-dynamic-pages

navigate-between-pag
es

using-shared-compone
nts

deploying-to-zeit-now

static-html-export

amp

lazy-loading-compone
nts

typescript

automatic-static-optim
ization

lazy-loading-modules

hulu

Parent Child

Legend

Figure 2.1: YASM output of the YACA content audit of nextjs.org, a website with about 100 pages.
[Generated with ./yasm.py ../yaca/output/nextjs-org.json -e blockdiag --
orientation landscape -wp 30 -hp 10]

prettier graph, the actual structure of the website gets lost, while every output seems to be transformed
into a generic balanced tree. So this generally is a trade-off between aesthetically pleasing output and
actual representation of a website’s structure.

nextjs.org

6 2 Development

Chapter 3

Documentation

YACA and YASM both have multiple features and options beyond their basic capability, which can
be specified as input arguments when starting a tool. The following technical documentation sections
shall list all these and describe them where further explanation is required. Also worth noting are the
prerequisite requirements that need to be installed before the tools can be used, as well as which platforms
are supported.

3.1 Supported Platforms
YACA and YASM were designed to run across all major operating systems, as only OS-agnostic Python
functions were usedwhen dealing withmatters such as the file system. In addition to that, the development
of both tools was distributed across multiple machines and operating systems as well.
Therefore, the supported operating systems are Linux, Windows andMacOS. These are the ones which

were tested at least. It might very well be the case that the tools also work on BSD variants and whatnot.

3.2 Prerequisites
The following lists dependencies that need to be installed on a machine in order to run YACA and YASM:

• Python 3.x [Python Software Foundation 2020] (Tested with 3.7 and 3.8)

• Scrapy [Scrapinghub 2020]

• Graphviz [AT&T Labs Research 2020]

• Blockdiag [Komiya 2020] (With PDF support)

• Python Colorspace [Stauffer 2020]
These programs are all open-source and under permissible licenses to use. Installing them for usage

with Python is in most cases a simple installation via pip, for example pip install graphviz, for
Graphviz. However, Blockdiag requires a special version for PDF support, therefore its installation must
be done with pip install "blockdiag[pdf]". In some cases, Python Colorspace’s pip installation
doesn’t work and requires cloning its repository and running python setup.py install from within.

3.3 Usage
The basic usage of both tools is to either execute the Python file with Python, or let your shell choose the
interpreter, since both files were given the executable permission. One additional argument is required,
the domain and the input file, for YACA and YASM respectively. Further usage differs according to
which tool is being used.

7

8 3 Documentation

Figure 3.1: CSV output of YACA of the brunch.io website. [Generated with ./yaca.py brunch.io]

1 $./yaca.py -h
2 usage: yaca.py [-h] [-d DEPTH] [-dl DELAY] [-c] [-ah] [-p] [-sd] [-ct

CONTENTTYPE] domain
3
4 positional arguments:
5 domain Domain/URL - Starting point. <example >.<tld>
6
7 optional arguments:
8 -h, --help show this help message and exit
9 -d DEPTH, --depth DEPTH
10 Maximum depth of the crawl (default 0=unlimited)
11 -dl DELAY, --delay DELAY
12 Delay between individual page downloads in seconds (

float supported)
13 -c, --children Include links within the domain in JSON output
14 -ah, --ahrefs Include links outside the domain in JSON output
15 -p, --parent Include parent in CSV output
16 -sd, --subdomains Include subdomains
17 -ct CONTENTTYPE , --contenttype CONTENTTYPE
18 Content-Type of pages that should be crawled (default =

only text/html)

Listing 3.1: The help text shown when supplying the -h flag to YACA.

3.3.1 YACA
YACA takes an input domain and produces a content audit from this root starting domain, producing it as
CSV and JSON output files. The CSV output of YACA can be seen in Figure 3.1. All usage parameters
can be see in Listing 3.1. This help text can be generated by supplying the -h flag to YACA.

3.3.2 YASM
YASM takes YACA JSON as input, that is the output of a YACA run, as described above. From this,
it generates a (visual) sitemap, as PDF, SVG, JSON and GV, which is the textual Graphviz format. The
output engine can be changed from Graphviz to Blockdiag, as it tends to produce better formatted visual
sitemaps in some cases, but the choice is left up to the user. All usage parameters can be seen in Listing

brunch.io

Graphviz 9

1 $./yasm.py -h
2 usage: yasm.py [-h] [-v] [-i] [-d DEPTH] [-wp WIDTHPADDING] [-hp HEIGHTPADDING]
3 [-e {dot,blockdiag}] [-o {landscape ,portrait}] [-t {pdf,svg}]
4 [-s] file
5
6 positional arguments:
7 file Input file - YACA JSON
8
9 optional arguments:
10 -h, --help show this help message and exit
11 -v, --verbose Verbosity of the output
12 -i, --instant View the output file immediately
13 -d DEPTH, --depth DEPTH
14 Maximum depth of the sitemap (default unlimited)
15 -wp WIDTHPADDING , --widthpadding WIDTHPADDING
16 Padding width between adjacent nodes
17 -hp HEIGHTPADDING , --heightpadding HEIGHTPADDING
18 Padding height between adjacent nodes
19 -e {dot,blockdiag}, --engine {dot,blockdiag}
20 Engine for output
21 -o {landscape ,portrait}, --orientation {landscape ,portrait}
22 Orientation for blockdiag output
23 -t {pdf,svg}, --type {pdf,svg}
24 Output file type
25 -s, --sdsp Treat subdomains same as slash path URL parts

Listing 3.2: The help text shown when supplying the -h flag to YASM.

Figure 3.2: Graphviz output of brunch.io website. [Generated with ./yasm.py ../yaca/output/
brunch.io]

3.2, which can be produced by supplying the -h flag as well.

3.4 Graphviz
Graphviz is a popular package which consists of various open source tools that can generate or process
DOT files. DOT is a graph description language. Defining such a graph in DOT is very simple. An
example of an output of Graphviz can be seen in Figure 3.2.

3.5 Blockdiag
Blockdiag can produce in some cases a much better looking visual site map instead of Graphviz as can
be seen in Figure 3.3. Mainly due to that edge bundling is working in Blockdiag. Blockdiag’s textual

brunch.io

10 3 Documentation

Figure 3.3: Blockdiag output of brunch.io website. [Generated with ./yasm.py ../yaca/output/
brunch.io]

Figure 3.4: Legend of a site map of the engine Graphviz

format is very similar to that of Graphviz’s textual format called DOT, therefore only slight changes are
necessary for Blockdiag to work.

3.6 Node Colors
There exist many different color spaces, most known is the RGB color space, but for a sitemap a color
space is needed, where the colors are easily distinguishable. The HCL color space is based on the human
color perception and can be controlled by the hue (color tone), chroma (colorfulness) and luminance
(lightness). This makes it much easier to dynamically set a color palette for the 1st level nodes of the
sitemap, and reducing the chroma with each level. To use the HCL color space in python, Stauffer 2020
is used.

3.7 Legend
For both Graphviz and Blockdiag a legend is added to the visual sitemaps, thus explaining how the
sitemap is structured. A node which is a parent,that is connected to their child node with an arrow can be
see in Figure 3.4 for Graphviz and in Figure 3.5 for Blockdiag.

brunch.io

Legend 11

Figure 3.5: Legend of a site map of the engine Blockdiag.

12 3 Documentation

Chapter 4

Future Work

Some of the issues mentioned in Chapter 2 could be worked on if additional development on YACA
and YASM were to be done. The edge bundling issue might be solved in a more sophisticated manner,
even if the current mitigations don’t necessarily require it, as well as the problem with large websites, for
example with a large width.

Another interesting aspect is the extensibility and further usage of the results that YACA and YASM
provide. YACA provides two output formats, CSV and JSON. The results in these files, which is a list
of all URLs with some additional information like the page title, the content type, et cetera, could very
easily be used by another program, as it is done when using it with YASM. The outputs of YASM can
also be used by other programs, since not only the visual site map in PDF and SVG is produced, but
it is also generated as a JSON tree hierarchy and textual Graphviz output (GV/DOT). This JSON tree
hierarchy can be for example imported into D3.js [Bostock 2020], a visualization engine using JavaScript.
This has been tested insofar that it can be imported and read by D3.js using d3.json, however already
existing solutions which map a JSON hierarchy into a visual D3.js output such as d3.hierarchy require
additional rewriting of the YASM JSON format, in specific adding name and children keys everywhere.

What also could be improved is the content of nodes in the visual sitemaps created with YASM.
Currently the only content in the nodes is the part of the URL identifying the node but it would be
possible to, for example, display the titles of pages or any other information that could be crawled with
YACA. This would, of course, blow up the sizes of individual nodes which might make the sitemap harder
to reason about but it could be a valuable configuration option for some users.

13

14 4 Future Work

Chapter 5

Concluding Remarks

Content audits and visual sitemaps are useful tools when analyzing the content and structure of websites.
Due to the poor quality and high costs of existing commercial tools, a reliable solution based on open
source technologies could prove beneficial for many users. During this project, two tools have been
implemented that can be used to create comprehensive content audits as well as customizable, intelligible
visual sitemaps. Both tools have been implemented using exclusively open source frameworks and the
results have shown to be of, at least, comparable quality as those of commercial tools.

15

16 5 Concluding Remarks

Bibliography

AT&T Labs Research [2020]. Graphviz. https://www.graphviz.org/ (cited on page 7).

Attribution-ShareAlike 4.0 International [2020]. CreativeCommons, 02Feb 2020. https://creativecommons.
org/licenses/by-sa/4.0/ (cited on page 1).

Bostock, Mike [2020]. D3.js. https://d3js.org/ (cited on page 13).

Fröhlich, David, Markus Kammerhofer, Samuel Kogler, and Stephan Stiboller [2017]. Edge Bundling.
Technical report. Graz University of Technology, 2017. https://courses.isds.tugraz.at/ivis/
surveys/ss2017/ivis-ss2017-g4-survey-edge-bundling.pdf (cited on page 4).

Ganster, Paul, Peter Grassberger, Magdalena Mayerhofer, and Ana Lopez Camarero [2019]. Sitemap
Generators. Technical report. Graz University of Technology, 2019 (cited on pages 1, 3).

Komiya, Takeshi [2020]. Blockdiag. http://blockdiag.com/ (cited on page 7).

Python Software Foundation [2020]. Python. https://www.python.org/ (cited on page 7).

Scrapinghub [2020]. Scrapy. https://scrapy.org/ (cited on pages 1, 7).

Stauffer, Reto [2020]. Python Colorspace. https://python-colorspace.readthedocs.io (cited on pages 7,
10).

The MIT License [2020]. Massachusetts Institute of Technology, 02 Feb 2020. https://opensource.org/
licenses/MIT (cited on page 1).

Warner, Kip [2012]. Problem With Ortho Splines And Concentrate. 2012. http://graphviz.996277.n3.
nabble.com/Problem-with-ortho-splines-and-concentrate-td165.html (cited on page 4).

17

https://www.graphviz.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://d3js.org/
https://courses.isds.tugraz.at/ivis/surveys/ss2017/ivis-ss2017-g4-survey-edge-bundling.pdf
https://courses.isds.tugraz.at/ivis/surveys/ss2017/ivis-ss2017-g4-survey-edge-bundling.pdf
http://blockdiag.com/
https://www.python.org/
https://scrapy.org/
https://python-colorspace.readthedocs.io
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
http://graphviz.996277.n3.nabble.com/Problem-with-ortho-splines-and-concentrate-td165.html
http://graphviz.996277.n3.nabble.com/Problem-with-ortho-splines-and-concentrate-td165.html

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.0.1 Existing Solutions
	1.0.2 New Solution
	1.0.3 Availability

	2 Development
	2.1 Development Process
	2.2 Issues
	2.2.1 Edge Bundling
	2.2.2 Depth and Width

	3 Documentation
	3.1 Supported Platforms
	3.2 Prerequisites
	3.3 Usage
	3.3.1 YACA
	3.3.2 YASM

	3.4 Graphviz
	3.5 Blockdiag
	3.6 Node Colors
	3.7 Legend

	4 Future Work
	5 Concluding Remarks
	Bibliography

