
AChart Creator: A Command-Line Tool to Create Accessible Charts with
D3 and Node

Inti Gabriel Mendoza Estrada, Mirza Kabiljagic, Stefan Rajinovic, and Aleksandar Stojicic

Institute of Interactive Systems and Data Science (ISDS),
Graz University of Technology

A-8010 Graz, Austria

31 Jan 2020

Abstract
AChart Creator is based on SVG-Describler. It is a tool written on TypeScript intended to read
data from a CSV file and create an SVG chart with D3. Furthermore, it adds aria attributes
to the SVG that allows it to be read by a screen reader. AChart Creator creates accessible
SVG charts, and it is intended to be used alongside AChart Reader and be compatible to
Describler. In this report we will give an in-depth overview of the tool, its technologies, as
well as the incremental update we have added to it.

© Copyright 2019 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Listings iii

1 Introduction 1
1.1 Accessible Rich Internet Applications (ARIA) . 1
1.2 Describler and AChart Reader . 2
1.3 AChart Creator . 2

2 Beautifying Tools 3
2.1 Unminify . 3
2.2 JS Beautifier . 3
2.3 Scour . 4
2.4 SVGO . 5

2.4.1 SVGO gulp . 7

3 Our Parser 9

4 Generating an .EXE File from Gulp 13
4.1 JavaScript Instead . 13

5 AChart Creator Changes 15
5.1 Folder Structure . 15
5.2 SVG Title, Description, and Header . 15
5.3 Embedded Table . 15

6 New Recipes 17
6.1 BoxPlot . 17

7 Conclusion 19

Bibliography 21

i

ii

List of Listings

1.1 Example ARIA-roles. 1
1.2 Example running AChart Creator . 2
1.3 Example Initial (Unreadable) SVG Output . 2

2.1 Example Scour SVG Output. 5
2.2 SVGO Command-Line Installation . 6
2.5 SVGO gulp Task. 7
2.3 SVGO Command-Line Usage . 7
2.4 SVGO Command-Line Examples. 7

3.1 Example Scour SVG Output. 9
3.2 Function parse . 10
3.3 Function parse lines . 11
3.4 Function remove commas . 12

5.1 Creating Proper File Structure. 15
5.2 Title and Description Hard-Coded . 16
5.3 Example running AChart Creator with Title and Description Arguments 16
5.4 Title and Description SVG Output . 16
5.5 SVG Embedded Pseudo-Table Example . 16

iii

iv

Chapter 1

Introduction

AChart Creator creates accessible SVG from CSV files. It is a tool that uses Accessible Rich Internet
Applications (ARIA), was built from SVG-Describer, and is intended to be used with AChart Reader and
(currently) Describler. Currently there are some issues needed to be addressed of the tool. In this report
we will discuss these issues and how we solved them, as well as any Quality-of-Life improvements.
SVG stands for Scalable Vector Graphics. The currently browser- supported SVG version is 1.1. It

is a vector-based format in which different shapes contain at least one markup element. SVG code is
remarkably similar to HTML and, like HTML, it can be styled using CSS and manipulated through
JavaScript (and by extent TypeScript).

1.1 Accessible Rich Internet Applications (ARIA)
ARIA is "set of attributes that define ways to make web content and web applications (especially those
developed with JavaScript) more accessible to people with disabilities. It supplements HTML so that
interactions and widgets commonly used in applications can be passed to assistive technologies when
there is not otherwise a mechanism. For example, ARIA enables accessible navigation landmarks in
HTML4, JavaScript widgets, form hints and error messages, live content updates and more" [MDN
contributors 2020].
As mentioned before, SVG files contain markup attributes, thus when creating an SVG file with

AChart Creator, we are able to inject ARIA attributes to it. An example can be seen in Listing 1.1.
The aria-charttype role defines the chart type, tabindex sets the index of this element that would
be accessed by pressing the TAB button. As the tabindex is 0, when pressing TAB for the first time,
the chart will be highlighted and the screen reader would understand that a chart is currently being
highlighted. Due to the attribute aria-labeledby, the screen reader knows that the title and description
is being defined by the <title> and <desc> tags, and it can then promptly and correctly read this
information out loud.

1 <g id="PieRoot" role="chart" aria-charttype="pie" tabindex="0"
2 aria-labelledby="title desc">
3 <title id="title"></title>
4 <desc id="desc"></desc>
5 <text role="heading" tabindex="0" x="200" y="25" text-anchor="middle">
6 </text>

Listing 1.1: Example ARIA-roles.

Without these ARIA attributes, a screen reader would not be able to read them. AChart Creator is

1

2 1 Introduction

properly able to extract and set ARIA attribute values from a CSV file. Tools like AChart Reader and
Describler enhance this even more.

1.2 Describler and AChart Reader
Currently Describler and AChart Reader serve relatively the same purpose. Describler was created
by Doug Schepers and is currently an experimental prototype screen reader for SVG files [Schepers
2020]. AChart Reader is currently developed by Christopher A. Kople with contributions by Inti Gabriel
Mendoza Estrada.

These tools are able to interpret ARIA attributes (making SVG files screen readble). Furthermore, they
are able to generate statistics of the chart, if desired. Information like the highest value, the average, the
range and domain of the chart, etc. . .

Describler has a web application at describler.com. AChart Reader is built similarly to AChart Creator.

1.3 AChart Creator
AChart Creator is a Node-based application. It uses gulp and is written in TypeScript. The gulp task
acreate reads from the commandline arguments and passes it to the appropriate TypeScript recipe. This
TypeScript recipe reads a given CSV file (gulp specifies the paths and everything) and, using D3, creates
an SVG image with the appropriate ARIA attributes. The gulp task then transpiles the TypeScript code
into JavaScript code and then runs this JavaScript code to output the proper SVG file. An example on
running AChart Creator to create a pie chart from a CSV file can be seen in Listing 1.2.

1 gulp acreate --file pie.ts --dataset fruit-pie.csv

Listing 1.2: Example running AChart Creator

When we started improving AChart Creator, AChart Creator would output SVG code in minified form.
When read with a text editor, the code would be written in a single line. This is useful to save disk space,
however, extremely difficult to be read by a human. If the user wants to make changes to the SVG, finding
the right tag and attribute of interest proves difficult. An example snippet of this code can be seen in
Listing 1.3. We have since fixed this, as discussed in Chapter 2.

1 <g id="ChartRoot" role="chart" aria-charttype="line" tabindex="0" transform="
translate(50,25)" aria-labelledby="title desc"><title id="title" role="heading">
Title</title><desc id="desc">Description</desc><g><rect id="backdrop" x="-75" y=
"-50" width="500" height="500" fill="#fff"></rect><rect role="chartarea" width="
400" height="400" fill="none"></rect></g><text x="200" text-anchor="middle">
Title</text><g id="xScale" role="xaxis" aria-axistype="category" tabindex="0"
aria-valuemin="100" aria-valuemax="465" transform="translate(0,400)" fill="none"
font-size="10" font-family="sans-serif" text-anchor="middle"><path class="

domain" stroke="currentColor" d="M0.5,6V0.5H400.5V6"></path><g class="tick"
opacity="1" transform="translate(0.5,0)"><line stroke="currentColor" y2="6"></
line><text fill="currentColor" y="9" dy="0.71em" role="axislabel" id="x-2011"
style="text-anchor: middle;">2011</text></g>

Listing 1.3: Example Initial (Unreadable) SVG.

describler.com

Chapter 2

Beautifying Tools

As mentioned in Chapter 1, AChart Creator initially created human-unreadable SVG code (example
show in Listing 1.3). To fix this, we looked for tools online that might allow us to fix this. We found
4 tools representative of the myriad of tools online: Uniminify (web-based), JS Beautifier (JavaScript
tidier), Scour (external Python library), and SVGO (Node-based tidier). We discuss these tools and their
usefulness overall and for our project in the remaining of this chapter.

2.1 Unminify
Unimify is a Web-based tidier. It is hosted in https://unminify.com/. This tool was written on JavaScript
and JQuery and developed by Media4x. The use case defined by Media4x is to unminify - to unpack,
deobfuscate - JavaScript, CSS, and HTML code [Media4x 2020].

This tool does not allow us to decide the way code is unminified. For example, setting our desired
indentation size is not possible. Instead, the tool decides the size and the proper indentation is based on
tag hierarchy. Furthermore, since our tool is Node-based and is not dependant on cloud resources (it is
run locally), integrating Unminify is only possible through server calls to its serve, it is not very useful
for our project.

For "quick and dirty" jobs, this tool delivers its promise of unminifying JavaScript, CSS, and HTML
(and SVG by extention) to industry standard code (4 spaces indentations).

2.2 JS Beautifier
JS Beautifier is another code cleanup and tidier Nodejs based tool. JavaScript was used to write this tool,
as well as Nodejs. Main usage of this tool is to reformat and fix indentations or add new ones if needed,
unpack

There are three ways of using it, either installing it via pip, npm or to include the .js files in the project
index.

Installing with npm:
1 npm -g install js-beautify

Installing with Python:
1 pip install jsbeautifier

The tool was created by Einar Lielmanis and maintained by Liam Newman[Einar Lielmanis 2016].
There is also a Web-based UI where the tool can be used, by accessing https://beautifier.io/

• -l, –indent-level Specify initial indentation level

3

unminify.com
beautifier.io

4 2 Beautifying Tools

• -n, –end-with-newline End output with new line

• -C, –comma-first Put commas at the beginning of new line instead of end

• –indent-empty-lines Keep indentation on empty lines

Also, there are command-line flags for the JavaScript and Python scripts:

• -f, –file Input file(s) (Pass ’-’ for stdin)

• -r, –replace Write output in-place, replacing input

• -o, –outfile Write output to file (default stdout)

• –config Path to config file

• –type [js|css|html] ["js"] Select beautifier type (NOTE: Does *not* filter files, only defines which
beautifier type to run)

• -q, –quiet Suppress logging to stdout

• -h, –help Show this help

• -v, –version Show the version

2.3 Scour
The Scour is the tool written in Python with the main job is to optimize and clean SVG code. Romoving
unnecessary data and optimizing structure the size of vector graphic is reduced. Also Scour can be used
in order to create a streamlined vector graphics. This vector graphics can be used for further processing
as well publishing and sharing in order to use in the web. There are a lot of information, redundant
information, that were created by producing SVG code by the most of SVG editors, so in order to render
and remove this information the Scour is used.
Scour was developed in 2010 by Jeff Schiller and Louis Simard. In 2013 the whole project is published
on GitLab and is maintained by Tobias Oberstein and Eduard Braun. It is open-source and licensed under
Apache License 2.0 [Tobias Oberstein 2020]

Installation:

1 t pip install scour

Standard usage:

1 scour -i input.svg -o output.svg

Better (for older versions of Internet Explorer):

1 scour -i input.svg -o output.svg --enable-viewboxing

Maximum scrubbing

1 scour -i input.svg -o output.svg --enable-viewboxing
2 --enable-id-stripping --enable-comment-stripping --shorten-ids
3 --indent=none

Maximum scrubbing and a compressed SVGZ file:

1 scour -i input.svg -o output.svgz --enable-viewboxing
2 --enable-id-stripping --enable-comment-stripping --shorten-ids
3 --indent=none

SVGO 5

1 ?xml version="1.0" encoding="UTF-8"?>
2 <svg role="graphics-document" viewBox="0 0 800 600" xmlns="http://www.w3.org/2000/

svg">
3 <style>.bar {fill: steelblue; }</style>
4 <g id="ChartRoot" transform="translate(100,50)" aria-charttype="bar"

aria-labelledby="title desc" role="chart" tabindex="0">
5 <title id="title" role="heading" tabindex="0">Most Popular Fruits</title>
6 <desc id="desc">Most Popular Fruits in 2019 given in percentage</desc>
7 <rect id="backdrop" x="-100" y="-50" width="800" height="600" fill="#fff"/>
8 <rect width="600" height="400" fill="none" role="chartarea"/>
9 <text x="300" y="-25" text-anchor="middle">Most Loved Fruits in 2019</text>
10 <g id="xScale" transform="translate(0,400)" fill="none" font-family="sans-serif"

font-size="10" text-anchor="middle" aria-axistype="category" role="xaxis"
tabindex="0">

11 <path class="domain" d="M0.5,6V0.5H600.5V6" stroke="currentColor"/>
12 <g class="tick" transform="translate(56.757)">
13 <line y2="6" stroke="currentColor"/> ...

Listing 2.1: Example Scour SVG Output

After execution the example snippet of this code can be seen in Listing 2.1. In comparation to the
Listing 1.3

With this tool we get a wanted output, but we can not use python with our TypeScript. As well the
Scour SVG Ouput works on Describler.

2.4 SVGO
SVG is optimizing Nodejs tool for SVG files which contains sometimes a lot of redundant and not
useful informations. The architecture of SVG optimizer is plugin-based and every plugin offers different
optimization. With this SVG tool is easily and safely possible to remove some non-optimal values in
order to not affect the SVG rendering [Belevich 2020].

Plugins:

• There are about 50 plugins and some of them are automatic enabled and some not

• They can move attributes, modify contents and SVG elements and any wanted operation

Config file:

• Default config file includes all plugins that have specific positions in the plugin list

• Parameter name from config file is used to enable/disable some plugin action

• Every user can setup their parameters in config file and then these parameter will be accessible in
plugin

• Using –config command line and parameter full: true enable using your personal settings

SVGO applies all plugins from config file to AST data. AST data is the converted content of SVG file.
Every user can decide to use optimizer for all SVG files or just for exactly one [Belevich 2020].

Therefore, plugins are separated into three groups:

• perItem

• perItemReverse

6 2 Beautifying Tools

Figure 2.1: Bar recipe optimized with SVGO tool [Image taken by the author.]

• full

There is a long API list for potential contributors.

List of active plugins:

• cleanupAttrs: remove attributes from newlines or repeating spaces

• inlineStyles: modify <style> elements by moving and merging into style attributes

• removeDoctype: with this plugin doctype is removed

• removeXMLProcInst: wit this plugin all XML processing instructions are removed

• removeComments: cleanup of comments

• removeMetadata: deleting <metadata> tag

• removeTitle: deleting <title> tag

• removeDesc: deleting <desc>

• removeXMLNS: deleting xmlns attributes

• convertColors: with this plugin the color is converted from rgb() to #rrggbb

Installation:

SVGO 7

1 const svgmin = require(’gulp-svgmin’)
2
3 gulp.task(’pretty’, function () {
4 return gulp.src(’build/svg/bar.svg’) // file to beautify
5 .pipe(svgmin({
6 js2svg: {
7 pretty: true
8 }
9 }))
10 .pipe(gulp.dest(’./out’)) // output directory
11 });

Listing 2.5: SVGO gulp Task.

1 [sudo] npm install -g svgo

Listing 2.2: SVGO Command-Line Installation

Usage:
1 svgo [OPTIONS] [ARGS]

Listing 2.3: SVGO Command-Line Usage

Options:

• -h, –help : Help

• -i INPUT, –input=INPUT : Input file, "-" for STDIN

• -o OUTPUT, –output=OUTPUT : Output file or folder (by default the same as the input), "-" for
STDOUT

• –config=CONFIG : Config file or JSON string to extend or replace default

• –disable=PLUGIN : Disable plugin by name, "–disable=PLUGIN1,PLUGIN2" for multiple plugins

• –enable=PLUGIN : Enable plugin by name,"–enable=PLUGIN3,PLUGIN4" for multiple plugins

Arguments: INPUT : Alias to –input

Example with files can be seen in Listing 2.4:
1 svgo test.svg
2 svgo *.svg
3 svgo test.svg -o test.min.svg

Listing 2.4: SVGO Command-Line Examples

2.4.1 SVGO gulp
SVGO has a gulp flavour. It can be used as a gulp task. To include this in your gulpfile.js, refer to
Listing 2.5. This tool optmizes the SVG as well as properly beautifying it.

Even though SVGO works with Describler, the gulp flavour does not. It unfortunately removes some
ARIA roles and attributes it deems useless, which are paramount to the functionality of our tools AChart
Creator and AChart Reader.

8 2 Beautifying Tools

Chapter 3

Our Parser

We have made improvements on AChart Creator over the past six weeks. We have also fixed and found
some bugs, as well as adding some Quality-of-Life changes. We research different kinds of Beautifying
Tools. This tools are described in 2. After research we come to some conclusion. The Unminify and
Scour are incompatible with local development. JS Beautifier only works with JavaScript files on node
it is not possible to add new lines with SVGO. Make more mess and unused SVG output. SVGO gulp
removes attributes it deems useless.

Tools are not useful for us, different environments, don’t add newlines and make it unusable with
describler (and AChart Reader). For all of this reasons we need to capture the string written into the SVG
file and tidy it ourselves. This leads us to make our own beautifier. For that we use JavaScript integrated
in TypeScript. Before we write out the SCG file we call some functions to beautify the code. The calling
routine You can see in 3.1

1 //---
2 // PRINT OUT:
3 fs.writeFileSync(’build/svg/’ + fileName + ’.svg’, remove_commas(parse_lines(parse(

d3.select(doc).select("body").html()))));

Listing 3.1: Example Scour SVG Output

The main itea is to take a input SVG code and to add new lines to end of each element <̈>.̈ In order to
do this job we implemented the function parse. In the 3.2 you can see how we did it.

After put new line after each closed element, we need to beautify the code further. So we take the
return value from function parse and try to add new line if the line length is bigger than 73 chars, as well
we need to take care that none of elements or identifier want be broken. For this we implemented the
function parse lines that we can see in 3.3

After all parsing becausewe playedwith lines and strings in JavaScript we need to delete all unnecessary
commas. We implemented small function to do this. We can see in 3.4

After all this parsing we get clean and readable code. Next improvements would be to insert tabs for
each element and delete some unused SVG code reproduced by SVG editor.

9

10 3 Our Parser

1 function parse(text_to_parse){
2
3 var output;
4 for (var i = 0; i < text_to_parse.length; i++) {
5 if(text_to_parse[i] == "<" && text_to_parse[i-1] == ">")
6 {
7 text_to_parse = splitValue(text_to_parse , i);
8
9 }
10
11 }
12 return text_to_parse;
13 }

Listing 3.2: function parse

11

1 function parse_lines(text){
2 var lines = text.split(’\n’);
3
4 for(var i = 0; i < lines.length; i++){
5 if (lines[i].length < 73)
6 {
7 continue;
8 }
9 for(var j = 55; j < 73; j++)
10 {
11 if(lines[i][j] == " ")
12 {
13 lines[i] = splitValue(lines[i], j);
14 if(lines[i].length > 140)
15 {
16 for(var j = 120; j < 140; j++)
17 {
18 if(lines[i][j] == " ")
19 {
20 lines[i] = splitValue(lines[i], j);
21 break;
22 }
23 }
24
25 }
26 else
27 {
28 break;
29 }
30
31 //TODO: maybe recursive
32 }
33 else{
34 if(j >= 72){
35 for(var l = 73; l < lines[i].length; l++)
36 {
37 if(lines[i][l] == " ")
38 {
39 lines[i] = splitValue(lines[i], l);
40 break;
41 }
42 }
43 }
44 }
45
46
47 }
48
49
50 }
51 return (lines.toString());
52
53
54 }

Listing 3.3: function parse lines

12 3 Our Parser

1 function remove_commas(string_line){
2
3 for(var n = 0; n < string_line.length; n++)
4 {
5 if(string_line[n] == "," && string_line[n - 1] == ">" && string_line[n + 1] == "<"

)
6 {
7 string_line = replaceAt(string_line , n, "\n");
8 }
9 }
10
11 console.log(string_line);
12 return string_line;
13 }

Listing 3.4: Function remove commas

Chapter 4

Generating an .EXE File from Gulp

Pkg is a command line interface which provides a possibility to pack a NodeJS project into a single
executable file which then can be run on any device without having NodeJS previously installed[Klopov
2020].

Most popular use cases for this tool:

• Fast way to make executable for other platforms

• Create temporary version of your application without using additional resources

• Spares you the trouble of using npm to install dependencies

• Pack everything up in one runnable file

• Check and test application against newer versions of NodeJS without the need to install them first

To install it via npm, by running:
1 npm install -g pkg

List of arguments:

• -v, –version Check pkg version

• -c, –config package.json or any json file with top-level config

• -t, –targets followed by target machine(node4-linux, node6-win, node6-mac)

• -h, –help outputs usage information

• -o, –output output file name or template for several files

• -d, –debug show more info during packaging process

• –public speed up and disclose the sources of top-level project

• –out-path specify where to save the executable

We were not successful to generate the executable file with the arguments for our project.

4.1 JavaScript Instead
Another idea would be to use JavaScript as a replacement instead, by extracting the file separately and
using the pkg tool with it.

13

14 4 Generating an .EXE File from Gulp

Chapter 5

AChart Creator Changes

We have made improvements on AChart Creator over the past six weeks. We have also fixed and found
some bugs, as well as adding some Quality-of-Life changes.

5.1 Folder Structure
Initially, if the folder structure was not correctly set up, the transpiled JavaScript and output SVG files
were not able to be saved. It was required to have a folder called build which must include two separate
folders called js and svg. If this folder structure was not like this, no file would be written. A code
snippet of how this was fixed in the gulpfile.js file can be seen in Listing 5.1.

1 if(!fs.existsSync(paths.build)) {
2 fs.mkdirSync(paths.build);
3 console.log(’folder created: ’, paths.build)
4 }

Listing 5.1: Creating Proper File Structure.

5.2 SVG Title, Description, and Header
Previously, to add the title, description, and the header (the visible title) of a chart in the SVG code, it
had to be done by hardcoding it into the TypeScript code, as seen in Listing 5.2. The .text attributes in
Listing 5.2 are then swapped by variables whose values are obtained from the command line.

An example of the new command line arguments to include title and description can be seen in Listing
5.3. The gulpfile.js file sanitizes these arguments and passes the proper strings to serve as the title
and description of the SVG file to the TypeScript recipe. A code snippet of the resulting SVG can be seen
in Listing 5.4

5.3 Embedded Table
To further add Quality-of-Life changes, we embedded the data found in the input CSV file as a JSON
string. This allows the SVG to keep the content/data that was used to create it. If the user were to need
this, it would be very accessible. A snippet of the SVG code which includes this pseudo-table can be
seen in Listing 5.5.

15

16 5 AChart Creator Changes

1 rootNode.append("title")
2 .attr("id", "title")
3 .attr("tabindex", "0")
4 .attr("role", "heading")
5 .text("Most Popular Fruits");
6
7 rootNode.append("desc")
8 .attr("id", "desc")
9 .text("Most Popular Fruits in 2019 given in percentage");

Listing 5.2: Title and Description being Hard-Coded.

1 gulp acreate --file pie.ts --dataset fruit-pie.csv --title "New_Title"
--desc "New_Desc"

Listing 5.3: Example running AChart Creator with Title and Description Arguments

1 <svg viewBox="0 0 400 400" version="1.1" xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" role="graphics-document">
3 <g id="PieRoot" role="chart" aria-charttype="pie" tabindex="0"
4 aria-labelledby="title desc">
5 <title id="title">New_Title</title>
6 <desc id="desc">New_Desc</desc>
7 <text role="heading" tabindex="0" x="200" y="25" text-anchor="middle">New_Title</

text>
8 <g id="pie-chart" transform="translate(200,200)" role="dataset">

Listing 5.4: Title and Description SVG Output.

1 <svg viewBox="0 0 400 400" version="1.1" xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" role="graphics-document">
3 <p>[{"fruits":"Apples","value":9},{"fruits":"Bananas","value":20},{"fruits":"

Grapefruits","value":30},{"fruits":"Lemons","value":8},{"fruits":"Oranges","
value":12}]</p>

4 <g id="PieRoot" role="chart" aria-charttype="pie" tabindex="0"
5 aria-labelledby="title desc">
6 <title id="title">New_Title</title>
7 <desc id="desc">New_Desc</desc>
8 <text role="heading" tabindex="0" x="200" y="25" text-anchor="middle">New_Title</

text>
9 <g id="pie-chart" transform="translate(200,200)" role="dataset">

Listing 5.5: SVG Embedded Pseudo-Table Example.

Chapter 6

New Recipes

6.1 BoxPlot
D3.js Boxplot is box and whisker plot with axes. The core of this Boxplot is Mike Bostock’s implement-
ation. The main difference is that Mike uses individual svg elements and in this implementation all box
plots are rendered with. It makes possibility for every user to easily add axes [Grubert 2019].

The other differences are:

• transitions are not used

• with labels variables the visibility of boxplots can be switched

• CSV files are supported

We didn’t adapt this Boxplot for our project. Given ts code can not be adapted for our case. Debugging
into ts doesn’t offers us some help.

17

18 6 New Recipes

Figure 6.1: D3.js Boxplot with Axes and Labels [Image taken by the author.]

Chapter 7

Conclusion

Using Unminify is not possible for AChart Creator as it does not integrate with it, given that it is web-
based and AChart Creator must be run locally. JS Beautifier can be integrated properly. However, as
it recognize the "<" and ">" as arithmetic and logical symbols, it adds spaces before and after these
characters. Effectively making HTML and SVG code useless. Scour is a Python library - integrating it
is impossible, although it does exactly what we want it to do. SVGO optimizes our SVG code and leaves
it integrally intanct. However, it does not add newlines to make our SVG human-readable. SVGO gulp
adds the newlines but removes attributes, messing with the file’s integrity.

We then made our own parser, as seen in Chapter 3. It makes it human-readable but indentation based
on hierarchy is still missing.

Building our own .exe from the Node project proved difficult do to the argument-based nature of
our tool. Our best bet to running our recipes locally without having to run Node is to run the output
JavaScript files found in the build/js folder. Taking a quick look at which arguments to add and which
are possible is as simple as looking at the source code or at Listing 5.3 and removing the arguments that
start with a "�".

Furthermore, we have included the possibility of adding a title, description, and heading to our SVG
files (as seen also in 5.3). This addition was also made compatible with Describler and AChart Reader.

At last, the stepping stone of our BoxPlot recipe will be invaluable to whomever decides to undertake
the project of AChart Creator’s further improvement.

19

20 7 Conclusion

Bibliography

Belevich, Kir [2020]. SVGO. https://github.com/svg/svgo/ (cited on page 5).

Einar Lielmanis, Liam Newman [2016]. JSBeautifier. 2016. https://github.com/beautify- web/js-
beautify (cited on page 3).

Grubert, Jens [2019]. D3.js Boxplot. http://bl.ocks.org/jensgrubert/7789216 (cited on page 17).

Klopov, Igor [2020]. PKG. https://github.com/zeit/pkg/ (cited on page 13).

MDN contributors [2020]. ARIA. 12 Jan 2020. https://developer.mozilla.org/en- US/docs/Web/

Accessibility/ARIA (cited on page 1).

Media4x [2020]. Unminify. https://unminify.com (cited on page 3).

Schepers, Doug [2020]. Describler. 31 Jan 2020. http://describler.com/ (cited on page 2).

Tobias Oberstein, Eduard Braun [2020]. Scour. https://github.com/scour- project/scour (cited on
page 4).

21

https://github.com/svg/svgo/
https://github.com/beautify-web/js-beautify
https://github.com/beautify-web/js-beautify
http://bl.ocks.org/jensgrubert/7789216
https://github.com/zeit/pkg/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://unminify.com
http://describler.com/
https://github.com/scour-project/scour

	Contents
	List of Listings
	1 Introduction
	1.1 Accessible Rich Internet Applications (ARIA)
	1.2 Describler and AChart Reader
	1.3 AChart Creator

	2 Beautifying Tools
	2.1 Unminify
	2.2 JS Beautifier
	2.3 Scour
	2.4 SVGO
	2.4.1 SVGO gulp

	3 Our Parser
	4 Generating an .EXE File from Gulp
	4.1 JavaScript Instead

	5 AChart Creator Changes
	5.1 Folder Structure
	5.2 SVG Title, Description, and Header
	5.3 Embedded Table

	6 New Recipes
	6.1 BoxPlot

	7 Conclusion
	Bibliography

