Diamond:
An Online Tool for Card Sorting and Tree Testing

Christopher Oser, Markus Ruplitsch, Markus Stradner

706.041 Information Architecture and Web Usability WS 2020/2021
Graz University of Technology

1 Feb 2021

Abstract

This report summarizes the functionalities of Diamond, an application that offers both, tree
testing and card sorting. Since the tree testing capabilities had already been implemented
previously, the focus of this report is an overview on the new card sorting option that was
implemented. Some insights into card sorting in general as well as the necessary technologies
to implement the application are also provided.

© Copyright 2021 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents
List of Figures

1 Introduction
1.1 Creating a Card-Sorting Application

2 Card-Sorting
2.1 Procedure e e
2.2 Variants e e e s

3 Technologies

3.1 Angular e e e
32 Nodejs . . . o v e e e
33 MongoDB
34 Heroku e e e

4 Implementation

4.1 CreatingaCard Sort e e
42 TakingpartinaStudy
43 BEvaluatingResults

5 Conclusion

5.1 Possible Improvements e
5.2 FinalRemarks
Bibliography

iii

11
11
11

13

ii

List of Figures

2.1

3.1

4.1
4.2
4.3
4.4

Sample Image of Card Sorting

MongoDB Compass . . .

Card Sort Study Creation
Card Sorting Interface .

Card Sorting Results Overview it

Card Sorting Result Table

ii

v

Chapter 1

Introduction

Diamond: An Online Tool for Card Sorting and Tree Testing was created as an extension of the TreeTest
tool, which was implemented by Ajdin Mehic as part of his Master’s Thesis [Mehic 2019]. Because of
providing both functionalities a card sorting tool and a tree testing tool now the application was combined
under the new name.

In this report you will find a brief introduction to card sorting and an explanation of all technologies
used to create Diamond. The implementation steps are also listed and explained in a constructive manner.
Finally, there are expansion ideas for the future and final remarks mentioned.

1.1 Creating a Card-Sorting Application

Since there are already many tools out there, it is not easy to find a good approach to implement a new
app in this sector. One of the best existing examples is OptimalSort [Optimal Workshop Ltd. 2021].

At Diamond the main target was to keep it simple, but also to equip it with many features as possible.
Therefore, the card sorting process itself is designed very intuitive, but also the setup process of a new
study is created clean and straightforward. Here it is possible to create cards rapidly via .csv import.

In addition to editing and deleting, the status of each single study can be determined. For this you can
switch between launch and unlaunch. For launched studies you can easily send an invitation link to the
users.

Finally, after completition of all the participants, you also have the opportunity to export the results as
.csv in different ways.

1 Introduction

Chapter 2

Card-Sorting

In general, card sorting is a technique in user experience. Participants of a study have to assign the
different cards into the matching category, which is more or less a low-tech approach.

It is mostly used for designing a navigation structure, but it can be used for evaluating an information
architecture of a website or any other information structure, too. A sample image of card sorting can be
viewed in Figure 2.1.

2.1 Procedure

Participants of a card sort study assign cards to categories. This can be done either physically with paper
or carton cards, or nowadays more often in digital form where the user is given a list of cards and needs
to assign them to groups. The exact procedure depends on the defined variant.

2.2 Variants

There are three different types of card sorting. In closed card sorting the users have a fixed setup for the
categories and in open card sorting they have to create the different categories for their own. But there
is also a hybrid variant where you actually have a closed card sort but you are also be allowed to add
additional custom categories.

4 2 Card-Sorting

veaefables

bananas lettuce

onions

a(a(oles Pork

herc chicken
cherries Po-}afoes

oranaes

Carrotg m‘"ke&j

Figure 2.1: A sample image of a card sorting shows dividing cards in three categories. [Drawn by
Markus Stradner, inspired by the illustrations accompanying Sara Jee Watson’s blog post (https://boagworld.
com/usability/card-sorting/).]

https://boagworld.com/usability/card-sorting/)
https://boagworld.com/usability/card-sorting/)

Chapter 3

Technologies

This chapter covers the different frameworks and technologies that were used to create Diamond. While
many of these technologies provide a wide array of features, only the features used during the development
of Diamond will be mentioned here. For more in-depth information it is suggested to have a look at the
different documentations.

3.1 Angular

Angular is one of the most popular design frameworks for web applications. Angular applications are
structured in such a way that each visible part of the app has its own .css, .html and .ts file and is called a
component. As with other web applications the typescript file contains the logic, the HTML file contains
the markup and the CSS file defines the look and feel of the component. TreeTest was originally written
in Angular 7 and was updated to the newest version of Angular (Angular 11) before development of
Diamond began.

3.2 Node.js

Node.js is a JavaScript runtime environment that was used to set up the server side of application. It
simplifies many of the different web protocol interactions and allows developers to handle requests and
responses asynchronously without having to implement multi threading themselves. Node.js was also
used to store and retrieve the information stored on the MongoDB database.

Additionally, npm is a package manager that comes with Node.js by default, and was used to clone all
used packages and keep them up-to-date during development. This makes the use of external libraries
significantly easier and reduces the overhead when committing changes to git.

3.3 MongoDB

To store all user related information a MongoDB database was set up. The communication between our
server and the database was handled by Node.js. Furthermore, MongoDB compass was used to visualize
the database and manually interact with it, in case some erroneous information was stored. A screenshot
can be seen in Figure 3.1.

3.4 Heroku

Heroku was used for online hosting. In general it is a container-based cloud Platform as a Service (PaaS).
This means that everything about setting up a server, online deployment and hosting is provided by it. It
is very intuitive to use and free of charge, but an account is needed.

6 3 Technologies

MongoDB Compass - localhost:27017/node-mongo-registration-login-api

Connect View Help

Local Collections
Collection Documents Avg. Document Total Document Num. Total Index Properties
Name * Size Size Indexes Size
localhost:27017
cardsortresults 5 4174 B 2.0KB 2 72.0KB o
Standalone
cardsorttests 2 5440B 1.1 KB 13 468.0 KB w
MongoDB 3.6.3 Community
results 2 48608 872.0B 2 72.0KB ®
> admin
> config tests 1 22.0KB 22.0KB 12 300.0 KB W
> local
node-mongo-registratio... @ M users 1 14008B 140.0B 3 48.0 KB]

cardsortresults

cardsorttests

Figure 3.1: MongoDB Compass showing the database with some stored information [Screenshot was
captured by Markus Ruplitsch using MongoDB Compass.]

Heroku offers to connect a GitHub repository to that account. This is quite convenient, because you
can choose a branch to enable auto-deployment after every single push on this branch. For this reason
you can keep your web application up-to-date very easily.

It is recommended to created an Heroku branch and to push on that branch, when there is a larger
number of changes to deploy online. And the main branch should just be configured with the localhost
settings for testing locally.

Chapter 4

Implementation

In this chapter the core functionalities of the card sorting capabilities of Diamond are presented. Most
importantly, the actual sorting implementation is explained. Furthermore, all other aspects, such as
creating a card sort study or exporting and possible analytics of the results are also discussed.

4.1 Creating a Card Sort

The main structure of card sort study creation was taken from the previously implemented TreeTest, but
it was not copied entirely. Adjustments were made to better represent a card sort study.

Every study has a name and an option to include a mandatory password to guard the study from
unwanted participants. Then a welcome message, instructions as well as a thank you message and
feedback message can be specified. These messages are customizable to facilitate easy adjustments
according to the needs of the respective study.

Cards can be added manually through an input text field. After creation there is also the possibility of
renaming or deleting previously added cards. Another way of loading the wanted cards is by importing
the dataset via a .csv file. Here any number of cards, separated by a comma or semicolon, are included
into the study card list for later sorting. Note that using the import function clears any previously added
cards, as this helps unintentionally mixing datasets.

A screenshot of the card sort creation can be viewed in Figure 4.1.

4.2 Taking part in a Study

Once a card sort study has been created, it is possible to share it to users. This can be done via a link and
possibly a password to further control the users taking part in the study. Each user needs to specify their
name and receives the previously defined welcome message and instructions before attempting the actual
sorting.

The card sorting itself is made up of the card list, which is presented to the user on the left of the
screen, and a dedicated area for groups that are to be defined by the user. The cards in the card list are
stacked vertically and the remaining amount of cards in the list can be seen at the very top.

Currently Diamond only supports open card sorting, which, according to Prof. Keith Andrews, “..is
the only true form of card sorting”. Therefore all groups need to be defined by the user. This can be done
via a input text field. Once a group is added, cards can be dragged from the card list to a group of choice.
All groups can be renamed or deleted. Did a deleted group contain cards, these cards are then added back
to the card list to be sorted again. A screenshot of the card sorting process can be viewed in Figure 4.2.

Once all cards have been assigned to groups the user has the option to finish their sort. The next step
for the user is to explain their mindset during the sorting, to facilitate better analytics of the results. After
this, the user is presented with the option to provide general feedback concerning the study.

4 Implementation

® Diamond TreeTest Studies CardSort Studies

Edit Study

1. Settings 2. Cards 3. Messages 4. Finish

Please provide the cards for the card sorting. The cards can be imported as a CSV file. Comma () and semicolon () are also supported as delimiters.

- - - S

Sausages
Beer
Parsley
Mustard
Hand Cream
Teabags
After Shave

Honey

Figure 4.1: The graphical user interface during the adding of cards to a card sort study. [Screenshot
was captured by Christopher Oser using Diamond.]

@ Diamond TreeTestStudies CardSort Studies

SR m

~ Omnivore I Carnivore | Herbivore
Whale
Dog

Elephant

Mouse

Cow Lion

Bear

Butterfly

Snake

Badger

Figure 4.2: The graphical user interface during the sorting of cards by the user. [Screenshot was captured
by Christopher Oser using Diamond.]

Evaluating Results 9

Overview Participants

Excluded participants are not included in statistics or exports.

Export Users (as rows) Export Users (as columns) Export Sorts (as rows) Export Sorts (as columns)
Name Date and Time Explanation Feedback Exclude View Results Delete
Bob 2021-01-29 11:56:19 | Bob's Mindset Bob's Feedback (] - -
Peter 2021-01-29 11:57:13 | 1 just sorted them by how much I like them thought it was great! O - -
Anna 2021-01-2% 11:58:10 | | thought it would be great to sort them by how much fur they have. Quite interesting! 0 - -

Figure 4.3: The overview over the results of a card sort study in Diamond. [Screenshot was captured by
Christopher Oser using Diamond.]

4.3 Evaluating Results

At any point during the study, the study manager, the person who created the study, can view and export
the results of the study. The results are composed by the name of the user, the date of the sorting, the
sorting results, the mindset and the feedback message. The general overview of the results of a study can
be viewed in Figure 4.3. The sorting results are displayed on a separate page for each user, they are made
up by a table where each column represents one group. A sample table can be viewed in Figure 4.4.

The results can also be exported for later use in .csv format. There are four different files that are
ready for export. The first two files are the user data, comprisedby names, dates, feedback messages and
mindsets. The data can be exported as either rows or columns. The third file is the sorting data over all
users. Here the data is represented by all cards in the first row, followed by a one user per row group
assignment to the respective card in the column. The last file contains the same information as the third
one, but stores the data in columns instead of rows. So each user’s sorting data is represented by a row
of groups.

10

4 Implementation

Study

Overview Participants

Results of User Jeff

Carnivore Omnivore = Herbivore

Snake Badger Butterfly

Lion Bear Cow

Dog Mouse Elephant
Whale

Figure 4.4: The table that represents the sorting results of one user. Each group is represented by
a column and the respective cards are listed below the first row. [Screenshot was captured by
Christopher Oser using Diamond.]

Chapter 5

Conclusion

Now that all the details of the implementation of Diamond have been covered, this chapter concludes the
report and ends with some possible improvement for the future and some final remarks.

5.1 Possible Improvements

Due to limited time, some features, which are present in many other card sorting applications, were not
implemented. Here is a short list of features we thought of:

* Currently, the only information on the participants that is stored is their name. It could be inter-
esting to give the creator of a study the possibility to create custom questionnaires to extract more
information about the participants

* It would be nice to allow users to decide whether they want to create an open, close or hybrid card
sorting study. This could be done with only minor additional effort.

* While an overview of the results is provided within the app, for most use cases it is necessary to
export the results and then import them into some third application for further evaluation. The
tracking and display of statistics such as average sorting duration or how often users changed their
minds when sorting cards would be quite helpful and interesting.

* It might be interesting to create sub-groups when sorting the cards. This would require rescaling the
size of the groups during the sorting process and abstracting the cards into another component.

5.2 Final Remarks

As of the time of writing this report, Diamond is hosted publicly on Heroku under https://iaweb-

diamond.herokuapp.com/.

The git repository is https://github.com/somestudentcoder/Diamond.

11

https://iaweb-diamond.herokuapp.com/
https://iaweb-diamond.herokuapp.com/
https://github.com/somestudentcoder/Diamond

12

5 Conclusion

Bibliography

Mehic, Ajdin [2019]. TreeTest: Online Tree Testing for Information Hierarchies. Master’s Thesis. Graz
University of Technology, 2019 (cited on page 1).

Optimal Workshop Ltd. [2021]. OptimalSort. 27 Jan 2021. https : / / www . optimalworkshop . com /
optimalsort/ (cited on page 1).

13

https://www.optimalworkshop.com/optimalsort/
https://www.optimalworkshop.com/optimalsort/

	Contents
	List of Figures
	1 Introduction
	1.1 Creating a Card-Sorting Application

	2 Card-Sorting
	2.1 Procedure
	2.2 Variants

	3 Technologies
	3.1 Angular
	3.2 Node.js
	3.3 MongoDB
	3.4 Heroku

	4 Implementation
	4.1 Creating a Card Sort
	4.2 Taking part in a Study
	4.3 Evaluating Results

	5 Conclusion
	5.1 Possible Improvements
	5.2 Final Remarks

	Bibliography

