
Gizual: Repository Visualisation for Git

// Project Presentation

const group1_members: [&str; 3] = [

“Thomas Pinheiro de Souza”,

“Stefan Schintler”,

“Andreas Steinkellner”,

];

const presentation_date: &str = “2022-01-31”;

// Information Architecture and Web Usability, WS 2022
Copyright 2022 by the author(s), except as otherwise noted.

Git Blame

Short Commit ID

Name Timestamp

Line Number

File Content

4% - 1 / 26

http://progress_bar_id
http://ratio_text_id

Background

● Inspired by Seesoft¹

● Visualise large repositories of code

● Easy visual comparison of:
○ File age
○ Line age
○ Author
○ File length
○ Change frequency
○ …

1: Eick, S. G., Steffen, J. L., & Sumner, E. E. (1992). Seesoft-a tool for visualizing line oriented software statistics

Image: Ball, Eick (1996): Software visualization in the Large.
“Program execution hotspots”

Copyright © 1996 IEEE and used under § 42f.(1) of Austrian copyright law

8% - 2 / 26

http://progress_bar_id
http://ratio_text_id

Previous Work (2022)

● Initial project work and proof
of concept took place in the
Information Visualisation
course (SS22)¹.

1: Korduba, Schintler, Steinkellner (2022): Gizual: Repository Visualization for Git
 https://courses.isds.tugraz.at/ivis/projects/ss2022/ivis-ss2022-g2-project-gizual-git-repo-vis.pdf

Image: Korduba, Schintler, Steinkellner (2022): Gizual: Repository Visualization for Git

12% - 3 / 26

https://courses.isds.tugraz.at/ivis/projects/ss2022/ivis-ss2022-g2-project-gizual-git-repo-vis.pdf
http://progress_bar_id
http://ratio_text_id

🔬
Toolchain

15% - 4 / 26

http://progress_bar_id
http://ratio_text_id

libgit2
https://libgit2.org/

● C implementation of the Git core methods.

● Minimal dependencies

● Cross-platform

● Permissive licensing (GPLv2)

● Used in production by many companies, including:
○ GitHub
○ GitLab

19% - 5 / 26

https://libgit2.org/
http://progress_bar_id
http://ratio_text_id

WebAssembly (WASM)
https://webassembly.org/

 Facts:

● Modern binary instruction format

● Load-time-efficient virtual stack
machine

● Sandboxed and memory-safe

 Wasm allows to:

● Compile executables for the browser.

● Use existing native libraries within the
browser.

Screenshot taken from https://caniuse.com/wasm
23% - 6 / 26

https://webassembly.org/
https://caniuse.com/wasm
http://progress_bar_id
http://ratio_text_id

Emscripten
https://github.com/emscripten-core/emscripten

● Compiler toolchain for WebAssembly

● Supports modern C and C++ (C++17 standard).

● Uses Clang¹ compiler and LLVM² toolchain.

● Ships with a pre-compiled standard library.

● Supports different forms of FileSystems (e.g. memoryFS).

1: Clang - https://clang.llvm.org/
2: LLVM - https://llvm.org/

27% - 7 / 26

https://github.com/emscripten-core/emscripten
https://clang.llvm.org/
https://llvm.org/
http://progress_bar_id
http://ratio_text_id

Emscripten + libgit2 (1)

- No native ability to execute http requests from Wasm.
+ Fork libgit2 and apply patches¹.

- No native filesystem within Wasm.
+ Use Emscripten’s memoryFS implementation.

- Libgit2’s synchronous API blocks the main thread (unresponsive UI).
+ Run wasm module within a Web Worker².

1: Inspired by https://github.com/petersalomonsen/wasm-git
2: Web Worker - https://web.dev/workers-overview/

31% - 8 / 26

https://github.com/petersalomonsen/wasm-git
https://web.dev/workers-overview/
http://progress_bar_id
http://ratio_text_id

Emscripten + libgit2 (2)

- Unable to clone into the browser because of CORS¹.
+ Setup a proxy² on the server-side to relay requests.

- Cloning a large repository takes too long.
+ Use File System Access API as an alternative.

- Timestamps in int64 format, but Wasm is 32 bit.
+ Use of Emscripten’s BigInt support for large numbers.

1: Cross-Origin Resource Sharing - https://web.dev/cross-origin-resource-sharing/
2: Inspired by https://github.com/isomorphic-git/cors-proxy

35% - 9 / 26

https://web.dev/cross-origin-resource-sharing/
https://github.com/isomorphic-git/cors-proxy
http://progress_bar_id
http://ratio_text_id

File System Access API

● Enables interaction with local files and folders.

● Users have to explicitly permit read and/or write access.

Allows us to:

● Copy local .git folder recursively into Emscripten’s memoryFS.

Screenshot taken from https://caniuse.com/native-filesystem-api

38% - 10 / 26

https://caniuse.com/native-filesystem-api
http://progress_bar_id
http://ratio_text_id

Current Approach

Gizual.app

Browser Web Worker

Show directory picker

Copy directory to memoryFS

Use libgit2 to explore repo
(get branches / commits / file tree)

Select branch / commit / files

Use libgit2 to create blame information

Render visualization

42% - 11 / 26

http://progress_bar_id
http://ratio_text_id

Improved State Management

● Previous approach:
○ State management with nested React hooks.
○ Complicated to extend, tight coupling with view layer.

● New solution:
○ State management with MobX¹.
○ Controller instance manages application state.
○ State accessible from anywhere within the application.
○ Debuggable state through browser console.
○ File (blame result) caching.

1: MobX - https://mobx.js.org/

46% - 12 / 26

https://mobx.js.org/
http://progress_bar_id
http://ratio_text_id

Native React State vs. MobX

● Capture state between re-renders
with useState.

● Core concept: Lifting state up (data
flows down)

● Decoupled from the UI (view layer)

● Core concept: Observer
automatically detects changes and
triggers necessary rerenders.

import { observable } from "mobx";
import { observer } from "mobx-react-lite";

const state = observable({ input: "Hello World" });

export const TextInputMobx = observer(() /> {
 return (
 <form>
 <input
 value={state.input}
 onChange={(e) /> (state.input = e.target.value)}
 />
 //form>
);
});

state.input = "This works even outside of react";

import React from "react";

export const TextInputReact = () /> {
 const [state, setState] = React.useState({ input: "Hello World" });

 return (
 <form>
 <input
 value={state.input}
 onChange={(e) /> setState({ input: e.target.value })}
 />
 //form>
);
};

Code example, simple text input with React state

Code example, simple text input with MobX state
50% - 13 / 26

http://progress_bar_id
http://ratio_text_id

Visualization Canvas

● Rendered using a single 2D Canvas.

● Written in Konva.js¹.

● Design inspired by Seesoft.

● Automatic file wrapping based on
available height.

● Automatic column width based on
longest line of code.

● Horizontal scrolling

54% - 14 / 26

1: Konva.js - https://konvajs.org/

http://progress_bar_id
http://ratio_text_id
https://konvajs.org/

Code-Lens

● Syntax highlighting with highlight.js¹.

● Floating window on top of canvas.

● Mouse indicator for displayed section.

58% - 15 / 26

1: highlight.js - https://highlightjs.org/

http://progress_bar_id
http://ratio_text_id
https://highlightjs.org/

Mantine (Main UI)
https://mantine.dev/

● Open source components library.

● >100 customizable components & 40 hooks.

● Supports various different frameworks (Next.js, Remix, React, etc.).

● Based on Typescript.

● First stable release (1.0.0) in May 2021.

Screenshot taken from https://mantine.dev/core/button/

62% - 16 / 26

https://mantine.dev/
https://mantine.dev/core/button/
http://progress_bar_id
http://ratio_text_id

🖥
Features

65% - 17 / 26

http://progress_bar_id
http://ratio_text_id

Features

● Clone / use local repository

● Code-Lens

● Glob search

● User-definable options
○ Coloring
○ Time range selection
○ Line length scaling

● Horizontally infinite canvas

69% - 18 / 26

http://progress_bar_id
http://ratio_text_id

Supported Modes

Specific Commit
(User selects a commit)

Time Range
(User selects a time range, last commit

within time range is pre-selected)

Author
(per line of code) Canvas colored based on author Canvas colored based on author,

Lines before specified range uncolored

Age
(per line of code) Canvas colored based on age Canvas colored based on age,

Lines before specified range uncolored

73% - 19 / 26

Coloring

Selection
Mode

http://progress_bar_id
http://ratio_text_id

Live Demo
(or try it yourself at https://gizual.xyz)

77% - 20 / 26

https://gizual.xyz
http://progress_bar_id
http://ratio_text_id

🐛
Limitations

81% - 21 / 26

http://progress_bar_id
http://ratio_text_id

Static Deployment vs. Docker

Static Deployment Docker

Deployment Complexity
😁👌
Simple webspace

🙇😅
Linux server with SSH,
Docker and root access

Feature: git pull
Impossible (missing git
protocol proxy server),
blocked by CORS¹

Possible for repositories up
to ~20MB

1: CORS - Cross-Origin Resource Sharing

85% - 22 / 26

http://progress_bar_id
http://ratio_text_id

Firefox Compatibility

● No File System Access API, but …
○ Non-standard legacy option: webkitdirectory
○ Works, but may be slow and laggy on large repos.
○ Returns FileHandles for each file within the folder.
○ Has some new performance limitations.

● Requires use of an older Web Worker Format
called “iife” instead of the modern “es” format.

Screenshot taken from:
https://udn.realityripple.com/docs/Web/API/HTMLInputElement/webkitdirectory

Screenshot taken from:
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file

88% - 23 / 26

https://udn.realityripple.com/docs/Web/API/HTMLInputElement/webkitdirectory
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file
http://progress_bar_id
http://ratio_text_id

Issue: Blame Performance

● Libgit2 file blame is slow for some files - open issue on:
https://github.com/libgit2/libgit2/issues/3027

● Core git solved blame performance problems a while back, but due to lack of
funding of a single contributor these changes are deliberately not permitted to
be ported to libgit2.

● Quote from the git contributors message board:

“So the price tag for letting the finished git-blame work (I've found a few more optimizations making it more
worthwhile) get relicensed under the libgit2 licensing scheme would be in the order of €10000. It would take a
rather good salaried programmer to reproduce what I'm doing right now for the same price tag, and since my
work will be available in Git proper under the GPLv2 before anybody has to make any decision, there is no
uncertainty about exactly what people will be getting.”

Andreas Ericsson <ae@op5.se>, 2014 - git@vger.kernel.org list mirror, accessible at:
https://public-inbox.org/git/87vbwwxfol.fsf@fencepost.gnu.org/

92% - 24 / 26

https://github.com/libgit2/libgit2/issues/3027
mailto:ae@op5.se
mailto:git@vger.kernel.org
https://public-inbox.org/git/87vbwwxfol.fsf@fencepost.gnu.org/
http://progress_bar_id
http://ratio_text_id

Performance

● Performance varies greatly between browsers, release versions, repositories
and files.

● Example (git blame performance on the same file):
○ Firefox 107: 581.669ms
○ Firefox 108: 4.726ms
○ Chrome 108: 16.380ms
○ Chrome 109: 16.392ms

96% - 25 / 26

http://progress_bar_id
http://ratio_text_id

Future Work

● Performance optimisations

● Different visualisation options

● Mergeable authors

● Smart selection of files

● Custom timeline for range selection

● Custom canvas settings (file width, maximum length, …)

● Infinite zoom into files

● Scaleable / Moveable Code-Lens

100% - 26 / 26

http://progress_bar_id
http://ratio_text_id

👋🎤
Thanks for your attention!

