
RespTable

A Lightweight, Responsive HTML Table Library

Alexander Kassil, Daniel Hevesy-Szettyan, Dominik Bauer, and Miloš Globočki

706.041 Information Architecture and Web Usability 3VU WS 2024/2025
Graz University of Technology

05 Feb 2025

Abstract
This report describes RespTable, an open-source, lightweight, responsive table pattern lib-
rary. It is designed to enhance the usability of tables seamlessly across various screen sizes
and devices. RespTable is highly flexible and provides an easy way for developers to imple-
ment patterns in their tables. In addition, it is very easy to expand and enhance. This report
introduces RespTable, provides a concise overview of HTML tables and the principles of
responsive design. It discusses the responsive table patterns and best-practice table patterns
implemented in RespTable and explains the library structure along with the development
workflow for incorporating new features.

© Copyright 2025 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

List of Listings v

1 Introduction 1

2 HTML Tables and Responsive Design 3
2.1 Traditional HTML Tables . 3
2.2 Responsive Tables . 3

3 Responsive Table Patterns 5
3.1 Stacking . 5
3.2 Squishing . 5
3.3 Flipping . 5
3.4 Horizontal Scrolling . 6

4 Good Practice Table Patterns 9
4.1 Sorting . 9
4.2 Filtering . 9
4.3 Pinnable Header Row . 9
4.4 Zebra Stripes . 11
4.5 Easy Column Alignment . 11

5 RespTable Library 13
5.1 Library Structure . 13
5.2 Building . 13
5.3 Simple HTML Table with CSS-Only Squishing and Stacking. 14
5.4 Responsive HTML Table from CSV with JavaScript 15
5.5 React Integration with RespTable . 17

6 Concluding Remarks 19

Bibliography 21

i

ii

List of Figures

3.1 Stacking Pattern. 6
3.2 Flipping Pattern . 7

4.1 Table with Patterns. 11

5.1 Responsive HTML Table with CSS Only 14
5.2 Responsive HTML Table from CSV . 17
5.3 React Integration with RespTable . 17

iii

iv

List of Listings

2.1 Basic HTML Table . 4

4.1 Source Code for Filterable Table . 10

5.1 Top-Level File and Directory Structure 14
5.2 Creating Basic Responsive HTML Table 15
5.3 Responsive HTML Table from CSV . 16
5.4 React Integration with RespTable . 18

v

vi

Chapter 1

Introduction

These days, almost all web sites and web applications are designed to be resposnive, so that they can
be used and viewed on a variety of devices and screen widths [Marcotte 2014]. Web developers have
to ensure that their content is usable and readable on every possible screen size. Among the content
elements in HTML, data tables can be tricky to make responsive.

In previous work, Kassil et al. [2024] surveyed responsive table patterns and libraries. Larger responsive
table libraries, like Handsontable [Handsoncode 2024], AG Grid [AG Grid 2024], and DataTables
[SpryMedia 2024], provide extensive features and sophisticated functionality. Smaller libraries, like
TanStack Table [TanStack 2024] and Grid.js [Usablica 2024], have fewer features and are simpler to use.

The aim of this project was to build an open-source, lightweight, responsive table library, positioned
somewhere between the larger and smaller libraries mentioned above and self-contained with no other
dependencies. The library is called RespTable and is available on GitHub [Kassil et al. 2025].

1

2 1 Introduction

Chapter 2

HTML Tables and Responsive Design

The essential framework for web content is HTML (HyperText Markup Language). It defines the
structure and semantics of web content. CSS handles the visual display, and JavaScript runs interactivity
and functionality. These three components will be used in our project to ensure responsiveness for HTML
tables on every device.

2.1 Traditional HTML Tables
HTML tables are basic components of web design that show data organized in rows and columns
[W3Schools 2025; MDN 2025]. Despite their simplicity, classic HTML tables are essentially static,
making them unsuitable for current responsive web design and reducing the accessibility options that the
developer may want to include. As a result, adapting tables to dynamic layouts has become a top priority
for developers.

Listing 2.1 shows the most basic implementation of the table in HTML. This code snippet shows the
basic structure that every table in HTML should have, and that it should consist of <table>, <tr>, <th>,
and <td> HTML elements, with their closing tags, respectively. While this structure is effective for
fixed layouts, it presents challenges in responsive design, particularly on smaller screens. Issues such as
overlapping content, excessive scrolling, and loss of readability are common.

2.2 Responsive Tables
To address these challenges for responsive design, various techniques can be used to make tables re-
sponsive and usable on different devices. With such patterns tables can be rearranged into new shapes,
important data can be filtered, table content can be highlighted, or the user interaction with the table can
be enhanced.

Some of the patterns implemented in RespTable include:

• Stacking: Converts table rows into vertically stacked blocks for narrow screens.

• Squishing: Fitting a table into a smaller space by reducing its size.

• Sorting: Rearrange rows by clicking on a column header to sort the values in ascending or descending
order.

• Filtering: Display only rows matching a filter criteria.

Some of the patterns, such as Stacking and Squishing, can be implemented with CSS only. Some patterns,
such as Filtering and Sorting, need JavaScript to work.

3

4 2 HTML Tables and Responsive Design

1 <table>
2 <thead>
3 <tr>
4 <th>Specification</th>
5 <th>Details</th>
6 <th>Value</th>
7 </tr>
8 </thead>
9 <tbody>

10 <tr>
11 <td>Engine Type</td>
12 <td>Displacement</td>
13 <td>3.0 L I6</td>
14 </tr>
15 <tr>
16 <td>Power</td>
17 <td>Torque</td>
18 <td>335 hp / 500 Nm</td>
19 </tr>
20 </tbody>
21 </table>

Listing 2.1: A basic HTML table without any CSS styling.

Chapter 3

Responsive Table Patterns

As explained in previous work [Kassil et al. 2024], table patterns can be grouped into responsive table
patterns and good practice table patterns. Responsive table patterns allow HTML tables to adapt their
layout and functionality based on the device, ensuring that they remain usable and functional whether
viewed on a mobile device, PC, or TV. The RespTable library implements four key responsive patterns:
Stacking, Squishing, Flipping, and Horizontal Scrolling.

3.1 Stacking
In the Stacking pattern, each table row is rearranged into a vertical stack, displayed sequentially. The
initial table headers serve as labels next to the data for each corresponding row. This approach improves
readability and usability on compact devices, allowing users to access all content in a row at once without
scrolling. It is usually implemented solely with CSS, eliminating the need for additional JavaScript. This
provides the benefit of straightforward implementation and ensures functionality even in environments
where JavaScript is disabled. However, a downside of stacking is that comparing content across different
rows becomes challenging, as the stacked format displays only one row at a time, making this approach
less suitable where the primary goal is value comparison.

Figure 3.1 shows parts of a data table with 15 columns. On a narrow screen, most columns would be
cut off if stacking were disabled. With stacking, users can view the content of one row at a time without
truncated text.

3.2 Squishing
The easiest approach to make a table responsive is by reducing the width of its columns just enough to
keep the content readable. In the Squishing pattern, the content of cells are truncated, compressed, or
wrapped, so they take up less width. These techniques can be implemented purely in CSS with only a
small amount of code. This simplicity is the primary benefit of the pattern, and there is little justification
to omit it from any HTML table. Ideally, squishing allows all columns to remain visible, which is
beneficial for tables where preserving the overall layout is important. However, in practice, this is often
not feasible, requiring the consideration of additional patterns.

3.3 Flipping
The Flipping pattern transposes a HTML table by swapping rows and columns to better fit smaller or
wider screens. When flipped, the table headers are displayed vertically, enhancing the visibility of content
on mobile devices. This technique is particularly beneficial for tables with many columns but few rows.
Without flipping, the table can become too wide, making it impossible to view on one screen. For tables

5

6 3 Responsive Table Patterns

(a) Stacking disabled. (b) Stacking enabled.

Figure 3.1: The same table with and without stacking, displayed on a narrow screen. [Screenshots taken
by the author(s) of this report.]

with many rows and columns, flipping is not optimal and needs to be combined with other patterns,
such as horizontal scrolling. Flipping uses CSS and JS to remove and reconstruct the entire table in
its transposed form within the DOM. Activation can be automatic via container query-based screen size
detection or manually through a user-initiated button.

Figure 3.2 shows the same table with 15 columns and one header row and six data rows in its basic
and transposed forms. For mobile devices such as tablets, the flipped form of the table would improve
readability. On other devices, especially with very wide screens, the basic form of the table is better.

3.4 Horizontal Scrolling
The Horizontal scrolling pattern enables users to navigate tables horizontally, ensuring that all columns
remain visible even when the table exceeds the width of the screen. This is achieved by adding a
horizontal scroll bar, either within or next to the table. Unlike other responsive patterns, horizontal
scrolling maintains the complete table structure, making it ideal for tables with numerous columns or
complex data. Implementation is straightforward, often requiring just a few lines of CSS, similar to the
Squishing pattern. However, one drawback is that horizontal scrolling can be cumbersome for touchscreen
users, as interacting with scroll bars on such devices may lead to a less intuitive experience. For this
reason, alternative patterns may be more suitable for touch-based interfaces.

Horizontal Scrolling 7

(a) Standard Table.

(b) Flipped Table.

Figure 3.2: The same table in its basic and flipped forms. [Screenshots taken by the author(s) of this report.]

8 3 Responsive Table Patterns

Chapter 4

Good Practice Table Patterns

As explained in previous work [Kassil et al. 2024], table patterns can be grouped into responsive table
patterns and good practice table patterns. Good practice table patterns significantly enhance the usability
and readability of HTML data tables regardless of the screen width and have been widely recognized
and used extensively for years. The RespTable library implements five common good practice patterns:
Sorting, Filtering, Pinnable Header Row, Zebra Stripes, and Easy Column Alignment.

4.1 Sorting
The Sorting pattern enables users to sort columns in ascending or descending order. It is activated by
clicking on a column header, which toggles between the two sorting directions. Small arrows, located
next to the text in the header cell, indicate if the column is sorted in ascending order (upward arrow)
or descending order (downward arrow). The arrows are disabled by default and only appear on a click.
Additionally, the arrows appearing do not affect the column width, which prevents a sudden change in
the size of the table. The table in Figure 4.1, is sorted in ascending order of Calories, indicated by the
upward arrow next to the Calories header.

4.2 Filtering
The Filtering pattern involves incorporating a filter bar into the table interface, allowing users to quickly
filter data and locate specific data within large data tables. This feature is particularly useful for enhancing
usability in tables with extensive information. Figure 4.1 shows a table with a specific filter query for
fruits and the five results. The filter bar is located in the top left corner. Listing 4.1 shows the code to
implement this feature. The code is part of the CreateTable-function where the main functionality of the
library is implemented. When the filterable option is activated, the filter input is created, as well as an
listener which monitors for text input and, upon detection, filters the data appropriately and reconstructs
the table.

4.3 Pinnable Header Row
When working with large data tables, scrolling can often lead to a loss of context, particularly when header
rows are no longer visible. To address this issue, the Pinnable Header Row pattern was implemented.
This ensures that the table headers remain anchored to the top of the view port, staying visible at all times
regardless of how far the user scrolls down. By keeping the headers in place, this pattern allows users
to easily associate data with the corresponding columns, enhancing readability, and maintaining context
throughout the table.

9

10 4 Good Practice Table Patterns

1 const container = document.getElementById(’table-container’);
2 container.innerHTML = ’’;
3
4 const filterInput = document.createElement(’input’);
5 if (isFilterable) {
6 filterInput.type = ’text’;
7 filterInput.placeholder = ’Filter...’;
8 filterInput.classList.add(’table-filter’);
9 container.appendChild(filterInput);

10 }
11
12 const tablePlaceholder = document.createElement(’div’);
13 tablePlaceholder.id = ’table-content’;
14 container.appendChild(tablePlaceholder);
15
16 const fullTable = initializeTable(data);
17 tablePlaceholder.appendChild(fullTable);
18
19 if (isFilterable) {
20 filterInput.addEventListener(’input’, (event) => {
21 const filterTerm = event.target.value.toLowerCase();
22 const filteredData = data.filter((row) =>
23 Object.values(row).some((value) =>
24 value.toString().toLowerCase().includes(filterTerm)
25)
26);
27
28 tablePlaceholder.innerHTML = ’’;
29
30 if (filteredData.length === 0) {
31 const noResultsMessage = document.createElement(’div’);
32 noResultsMessage.classList.add(’no-results’);
33 noResultsMessage.textContent = ’No results found.’;
34 tablePlaceholder.appendChild(noResultsMessage);
35 } else {
36 const filteredTable = initializeTable(filteredData);
37 tablePlaceholder.appendChild(filteredTable);
38 if (applyStacking) {
39 ApplyStacking();
40 } else if (a) {
41 ApplyFlipping(filteredData, applyFlipping);
42 }
43 }
44 });
45 }

Listing 4.1: The source code to implement a filterable table.

Zebra Stripes 11

Figure 4.1: A table illustrating five table patterns simultaneously: Sorting, Filtering, Zebra Stripes,
Easy Column Alignment, and Flipping (via a button). [Screenshot taken by the author(s) of this report.]

4.4 Zebra Stripes
The Zebra Stripes pattern is used to improve readability. As a table gets larger and has more rows, it
can be quite challenging to match the information to the correct row. Zebra stripes solve this problem
by coloring the rows in alternating colors. This pattern should probably be implemented in almost every
table, due to its simplicity and large impact.

4.5 Easy Column Alignment
The Easy Column Alignment pattern ensures consistent and intuitive formatting, by automatically aligning
text to the left and numbers to the right. This approach improves readability and usability, since left-aligned
text enhances the flow of reading, while right-aligned numbers make it easier to compare numerical values.
It was implemented via two CSS classes to specify either left-aligned text or right-aligned numbers. When
a table is constructed from a CSV file, the correct classes are automatically assigned.

12 4 Good Practice Table Patterns

Chapter 5

RespTable Library

The RespTable library is built in JavaScript. It implements four responsive table patterns: Stacking,
Squishing, Flipping, and Horizontal Scrolling. Additionally, it implements five good practice patterns:
Sorting, Filtering, Pinnable Header Row, Zebra Stripes, and Easy Column Alignment.

A pattern can be activated by including the library files and either assigning a CSS class or calling
a JavaScript function. RespTable also contains fucntionality to read a data table from a CSV file and
automatically generate a corresponding HTML table. Besides documentation, three examples of using
RespTable are provided: from a simple, CSS-only HTML example, through a CSS and JavaScript HTML
example with multiple patterns, to a more extensive React example.

5.1 Library Structure
The structure of the RespTable library is hown in Listing 5.1. The dist/ folder contains the built library

files; it is created upon the first successful build. The examples/ folder contains three examples of using
RespTable.

To include new patterns or adapt existing ones, the developer only has to add or modify code in
the file Table.js. Once the functionality is given, it is recommended to add it as a parameter to the
CreateTablefunction. However, it is also possible to not do so, then it is simply required to declare the
newly implemented feature as export and import it into the index.js file in the root folder of the library.
To add new styles or adapt the current stylesheet, the developer has to work on the file table.css. If a
newly implemented pattern needs a .css file, it is recommended to add them to the styles/ folder, named
after the specific pattern, and import it into file Table.js.

5.2 Building
After cloning the library, install its dependencies with the command:

npm install

To build the RespTable library, use the command:

npx gulp build-lib

The three examples can be built and started with the commands:

npx gulp html
npx gulp html-csv
npx gulp react

13

14 5 RespTable Library

RespTable/
dist/ (generated)
cjs/
esm/

examples/
html/
html-with-csv/
react/

src/
components/
Table.js

styles/
squishing.css
stacking.css
table.css
index.js

Listing 5.1: The top-level file and directory structure of the RespTable project.

Figure 5.1: Example of a responsive HTML table using CSS only. [Screenshot taken by the author(s) of this
report.]

5.3 Simple HTML Table with CSS-Only Squishing and Stacking
The Squishing and Stacking patterns can be realised with CSS only, no JavaScript is required. Listing 5.2
shows the HTML code for a simple responsive table with CSS only; it has been shortened for brevity.
The steps required are:

1. Include the RespTable CSS file in the <head> element:

<link rel="stylesheet" href="respTable/RespTable.css">

2. Create a standard HTML <table> with hardcoded data.

3. Apply the RespTable CSS classes responsive-table, squishing, and stacking to the <table>
element.

The result is shown in Figure 5.1.

Responsive HTML Table from CSV with JavaScript 15

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
6 <title></title>
7
8 <link rel="stylesheet" href="respTable/RespTable.css">
9 </head>

10
11 <body>
12 <h1>Responsive Table with CSS Only</h1>
13
14 <div id="table-container" class="table-container">
15 <table class="responsive-table squishing stacking">
16 <thead>
17 <tr>
18 <th>Name</th>
19 <th>Manufacturer</th>
20 <th>Type</th>
21 ...
22 </tr>
23 </thead>
24 <tbody>
25 <tr>
26 <td data-label="Name" class="text">100%_Bran</td>
27 <td data-label="Manufacturer" class="text">N</td>
28 <td data-label="Type" class="text">cold</td>
29 ...
30 </tr>
31 ...
32 </table>
33 </div>
34 </body>
35 </html>

Listing 5.2: Creating a basic responsive HTML Table, using only CSS.

5.4 Responsive HTML Table from CSV with JavaScript
In this example, a table is dynamically loaded from a CSV file using JavaScript and then enhanced
with the Flipping and Stacking patterns. Listing 5.3 shows the corresponding HTML code; it has been
shortened for brevity. The steps required are:

1. Include the RespTable JavaScript and CSS files in the HTML.

2. Use JavaScript to load CSV data and generate the table directly.

3. Apply the desired patterns from JavaScript.

The result is shown in Figure 5.2.

16 5 RespTable Library

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <meta name="viewport" content="width=device-width, initial-scale=1.0 />
6 <title>Responsive Table from CSV with JavaScript</title>
7
8 <link rel="stylesheet" href="respTable/RespTable.css">
9 </head>

10
11 <body>
12 <h1>Responsive Table from CSV with JavaScript</h1>
13
14 <!-- Flipping and Stacking Example -->
15 <button id="flip-button">Flip Table</button>
16 <div id="table-container"></div>
17
18 <script type="module">
19 import { LoadCSV, CreateTable, ApplyFlipping, ApplyStacking }
20 from ’./respTable/RespTable.js’;
21
22 let isFlipped = false;
23
24 const initializeTable = async () => {
25 const csvData = await LoadCSV(’./cereals.csv’);
26 CreateTable(csvData);
27 ApplyStacking();
28
29 const flipButton = document.getElementById(’flip-button’);
30 flipButton.addEventListener(’click’, () => {
31 isFlipped = !isFlipped;
32 ApplyFlipping(csvData, isFlipped);
33 });
34 };
35
36 document.addEventListener(’DOMContentLoaded’, initializeTable);
37 </script>
38 </body>
39 </html>

Listing 5.3: Loading table data from a CSV file with JavaScript and enhancing with the Flipping and
Stacking patterns.

React Integration with RespTable 17

Figure 5.2: Example of a responsive table populated from a CSV file. [Screenshot taken by the author(s) of
this report.]

Figure 5.3: Example of a React integration with RespTable. [Screenshot taken by the author(s) of this report.]

5.5 React Integration with RespTable
This example shows how to use RespTable within a React project created with create-react-app.
Listing 5.4 shows the corresponding code; it has been shortened for brevity. The steps required are:

1. Import the table component into a React file, with Flipping and CSV loading.

2. Add <App /> to the main component to render it.

The result is shown in Figure 5.3.

18 5 RespTable Library

1
2 import React, { useState, useEffect } from ’react’;
3 import {
4 LoadCSV,
5 CreateTable,
6 ApplyFlipping,
7 } from ’../src/respTable/RespTable.js’;
8 import ’./respTable/RespTable.css’;
9

10 const App = () => {
11 const [isFlipped, setIsFlipped] = useState(false);
12 const [csvData, setCsvData] = useState([]);
13
14 useEffect(() => {
15 const initializeTable = async () => {
16 const data = await LoadCSV(‘${process.env.PUBLIC_URL}/cereals.csv‘);
17 setCsvData(data);
18 CreateTable(data, true, true);
19 };
20
21 initializeTable();
22 }, []);
23
24 const handleFlip = () => {
25 setIsFlipped((prev) => !prev);
26 ApplyFlipping(csvData, !isFlipped);
27 };
28
29 return (
30 <div>
31 <h1>RespTable: Showcase</h1>
32 <button onClick={handleFlip}>Flip Table</button> {}
33 <div id="table-container"></div>
34 </div>
35);
36 };
37
38 export default App;

Listing 5.4: Importing RespTable to use within React. CSV loading and Flipping are used.

Chapter 6

Concluding Remarks

RespTable is a lightweight, open-source responsive table library with a compact package size of 24 kB.
It includes basic patterns that are only dependent on plain HTML and CSS, and more advanced patterns
which are also dependent on JavaScript. The library and three example usages available on GitHub
[Kassil et al. 2025].

RespTable could be further improved and extended. Additional responsive patterns, such as pinnable
columns for easier navigation in wide tables, pagination for managing large datasets, and column/row
toggle for customizable data views, could be implemented to address a broader range of use cases.
Furthermore, accessibility features such as screen reader compatibility should be added to ensure that the
library meets modern web accessibility standards and caters to all users. Extensive compatibility testing
could be performed with Rslidy, a responsive HTML slide deck tool [Rslidy 2025], to ensure seamless
integration and optimal performance when used together. These enhancements will establish the library
as a versatile solution for responsive table design.

19

20 6 Concluding Remarks

Bibliography

AG Grid [2024]. AG Grid: The Best JavaScript Grid in the World. 06 Dec 2024. https://ag-grid.com/
(cited on page 1).

Handsoncode [2024]. Handsontable: JavaScript Data Grid with Spreadsheet UI. 06 Dec 2024. https:
//handsontable.com/ (cited on page 1).

Kassil, Alexander, Daniel Hevesy-Szettyan, Dominik Bauer and Miloš Globočki [2024]. Responsive
Tables. 706.041 Information Architecture and Web Usability WS 2024 Survey Paper. Graz University
of Technology, 13 Dec 2024. https://courses.isds.tugraz.at/iaweb/surveys/ws2024/iaweb-ws2024-g
3-survey-responsive-tables.pdf (cited on pages 1, 5, 9).

Kassil, Alexander, Daniel Hevesy-Szettyan, Dominik Bauer and Miloš Globočki [2025]. RespTable.
05 Feb 2025. https://github.com/milos-globocki/RespTable (cited on pages 1, 19).

Marcotte, Ethan [2014]. Responsive Web Design. 2nd Edition. A Book Apart, 02 Dec 2014. 153 pages.
ISBN 1937557189. https://ethanmarcotte.com/books/responsive-web-design/ (cited on page 1).

MDN [2025]. The Table Element. 05 Feb 2025. https://developer.mozilla.org/docs/Web/HTML/Element
/table (cited on page 3).

Rslidy [2025]. Rslidy. 05 Feb 2025. https://github.com/tugraz-isds/rslidy (cited on page 19).

SpryMedia [2024]. DataTables. 06 Dec 2024. https://datatables.net/ (cited on page 1).

TanStack [2024]. TanStack Table. 06 Dec 2024. https://tanstack.com/table (cited on page 1).

Usablica [2024]. Grid.js Advanced Table Plugin. 06 Dec 2024. https://gridjs.io/ (cited on page 1).

W3Schools [2025]. HTML Tables. 05 Feb 2025. https://w3schools.com/html/html_tables.asp (cited on
page 3).

21

https://ag-grid.com/
https://handsontable.com/
https://handsontable.com/
https://courses.isds.tugraz.at/iaweb/surveys/ws2024/iaweb-ws2024-g3-survey-responsive-tables.pdf
https://courses.isds.tugraz.at/iaweb/surveys/ws2024/iaweb-ws2024-g3-survey-responsive-tables.pdf
https://github.com/milos-globocki/RespTable
http://amazon.co.uk/dp/1937557189/
https://ethanmarcotte.com/books/responsive-web-design/
https://developer.mozilla.org/docs/Web/HTML/Element/table
https://developer.mozilla.org/docs/Web/HTML/Element/table
https://github.com/tugraz-isds/rslidy
https://datatables.net/
https://tanstack.com/table
https://gridjs.io/
https://w3schools.com/html/html_tables.asp

	Contents
	List of Figures
	List of Listings
	1 Introduction
	2 HTML Tables and Responsive Design
	2.1 Traditional HTML Tables
	2.2 Responsive Tables

	3 Responsive Table Patterns
	3.1 Stacking
	3.2 Squishing
	3.3 Flipping
	3.4 Horizontal Scrolling

	4 Good Practice Table Patterns
	4.1 Sorting
	4.2 Filtering
	4.3 Pinnable Header Row
	4.4 Zebra Stripes
	4.5 Easy Column Alignment

	5 RespTable Library
	5.1 Library Structure
	5.2 Building
	5.3 Simple HTML Table with CSS-Only Squishing and Stacking
	5.4 Responsive HTML Table from CSV with JavaScript
	5.5 React Integration with RespTable

	6 Concluding Remarks
	Bibliography

