
SelfMemo 2.0

Open-Source, Self-Hosted Email Reminder Service

Niklas Lorber, Maria Seiser, and Kilian Weisl

706.041 Information Architecture and Web Usability 3VU WS 2024/2025
Graz University of Technology

04 Feb 2025

Abstract
SelfMemo 2.0 is an open-source, self-hosted, web-based email reminder service. It is
designed to help users efficiently schedule and manage email-based notifications and sup-
ports both local and cloud-based deployment. The platform was developed to address the
discontinuation and limitations of prior solutions, offering a modern and scalable alternative.
SelfMemo 2.0 utilizes state-of-the-art technologies and features, such as role-based author-
ization, multiple scheduling options, allowing users to create, modify, and manage reminders
according to their needs, sending automated warning reminders. Customizable email tem-
plates provide users with greater control over the content and format of their reminders.

© Copyright 2025 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

2 Email Reminder Services 3
2.1 MemoToMe . 4
2.2 SelfMemo 1.0. 5

3 SelfMemo 2.0 7
3.1 System Requirements . 7
3.2 Software Architecture . 8
3.3 Implemented Features . 10

4 Setup and Deployment 11
4.1 Local Development Environment . 11
4.2 Hosting a Production Instance with Vercel 12

5 Concluding Remarks 21

Bibliography 23

i

ii

List of Figures

2.1 MemoToMe: Reminders Overview . 4
2.2 SelfMemo 1.0: Reminders Overview . 5

3.1 SelfMemo 2.0: Software Architecture . 9

4.1 Step 1: Fork the Repository on GitHub 13
4.2 Step 2: Import the Forked Repository on Vercel 14
4.3 Step 3: Connect GitHub to Vercel . 14
4.4 Step 4: Confirm Connection from GitHub to Vercel 15
4.5 Step 5: Select Fork and Import Repository 15
4.6 Step 6: Deploy with Default Settings . 16
4.7 Step 7: Continue to Dashboard . 16
4.8 Step 8: Create a New Neon Project . 17
4.9 Step 9: Copy the Database URL . 17
4.10 Step 10: Create Environment Variable. 18
4.11 Step 11: Create Other Environment Variables 18
4.12 Step 12: Update Build Command in Vercel 19
4.13 Step 13: Redeploy the Application . 19

iii

iv

List of Tables

4.1 Environment Variables . 12

v

vi

Chapter 1

Introduction

SelfMemo 2.0 [Lorber et al. 2025] is an open-source, self-hosted, web-based email reminder service. It
designed to assist users in managing email reminders effectively. This project was developed as part of
the course 706.041 Information Architecture and Web Usability in WS 2024/2025 at Graz University of
Technology [Andrews 2025]. The development of SelfMemo 2.0 was driven by the need for a reliable
and user-friendly platform that lets users manage their reminders. The software is freely available on
GitHub [Lorber et al. 2025].

Previous services, such as MemoToMe [JJ Zone 2025], provided useful functionality but were dis-
continued, leaving users without an alternative for managing email-based reminders. This created an
opportunity to develop a new solution that incorporates similar functionality while introducing enhanced
features for better usability.

Many existing reminder applications do not provide sufficient customization in terms of scheduling,
warning notifications, and email template personalization. Furthermore, many reminder services rely on
proprietary infrastructure that may not be accessible to all users. SelfMemo 2.0 offers an open-source
alternative that ensures reliability, scalability, and ease of deployment, utilizing cloud-based solutions
such as Vercel [Vercel 2025c] for deployment and Neon [Neon 2025] for database hosting.

SelfMemo 2.0 aims to achieve the following objectives:

• Integration of administrative role for managing users.

• Integration of user role managing reminders.

• Secure authentication and authorization mechanisms.

• Flexible scheduling options, including customizable reminder intervals and warning notifications.

• Intuitive installation and deployment process for both local and production environments.

1

2 1 Introduction

Chapter 2

Email Reminder Services

This chapter gives an overview of existing email reminder services, comparing their features and how
they address common problems. Particular attention is paid to the two applications that served as a model
for the work in this project, namely: MemoToMe and SelfMemo.

Managing appointments and deadlines efficiently has become increasingly important in today’s fast-
paced, event-driven society. Reminder services play a crucial role in helping individuals organize
their schedules by notifying them of upcoming events. These services come in various forms and
implementations. Based on their implementation and primary mode of notification, reminder services
can be grouped into several categories:

• Calendar-Based Reminder Services: Integrated into digital calendar applications, these services
notify users about scheduled events via pop-up alerts, emails, or notifications.

• Application-Based Reminders: Standalone applications, such as Apple’s Reminders [Apple 2025]
or Google Keep [Google 2025], primarily use push notifications to remind users of tasks and events.

• Email Reminder Services: These services deliver reminder notifications via email, allowing users
to receive alerts directly in their inbox.

• SMS Reminder Services: Some services send reminder messages via SMS, ensuring notifications
reach users even without internet access.

• Hybrid Reminder Systems: A combination of different approaches, these systems integrate email,
SMS, and push notifications to maximize reliability and user reach.

These different approaches fit different user needs, whether for personal task management, professional
scheduling, or general event notifications.

Email reminder services distinguish themselves by utilizing email as the primary communication
channel for delivering notifications. This approach offers several advantages: emails are widely used,
ensuring broad accessibility, and they are less intrusive compared to push notifications or SMS messages.
Since nearly everyone has an email account, this method provides a convenient and effective way to
deliver timely reminders without disrupting the user’s daily activities. Email reminder services have
several essential features to enhance productivity and ensure no important matters are missed, inlcuding:

• Scheduled Reminders: Users can specify exact dates and times when they wish to be reminded about
specific events.

• Recurring Reminders: This functionality allows users to set reminders that repeat at defined intervals,
ideal for ongoing commitments and regular follow-ups or just birthdays.

• User Management: Some reminder services can manage users and assign roles.

3

4 2 Email Reminder Services

Figure 2.1: MemoToMe offers a reminder list interface, showing a structured table of scheduled
reminders. [Image created by Keith Andrews. Used with kind permission.]

• Customization Options: Users can often customize the nature of reminders and how they look,
ensuring individuality.

• Analytics and Reporting: Advanced services tend to offer analytics features, providing insights into
reminder effectiveness, response rates, or overall usage patterns.

2.1 MemoToMe
MemoToMe [JJ Zone 2025] was a comprehensive web-based email reminder service. The platform
allowed for one-time and recurring email reminders, with warning emails at set intervals. Its user
interface is shown in Figure 2.1. Unfortunately, although the user interface of the service is still available,
it is no longer sending out emails.

The main features of MemoToMe included:

• Comprehensive Scheduling: Users can set email reminders for any event, choosing exact times or
time intervals.

• Reminder Overview: A complete list of all reminders, including the next scheduled occurrence.

• Various Reminder Types: Supports multiple reminder intervals, including: one-time, daily, weekly,
every few weeks, monthly, and yearly.

• Warning Reminders: Users can enable warning reminders at specific intervals before the main
reminder occurs.

• Basic Statistics: Provides simple usage statistics, helping users analyze their reminder patterns.

Overall, MemoToMe stood out as a robust, feature-rich, free-to-use reminder service that seamlessly
combined simplicity and functionality. It offered all the essential tools for managing reminders while

SelfMemo 1.0 5

Figure 2.2: SelfMemo 1.0 offers a simple reminder list interface, showing a simple table with active
reminders. [Screenshot created by the author(s) of this report.]

ensuring an intuitive and user-friendly experience. With its discontinuation, a significant gap emerged
for a free alternative solution.

2.2 SelfMemo 1.0
SelfMemo 1.0 [Juri et al. 2024] is the direct predecessor to this project work. The web application was
developed in 2023 by students participating in the course Information Architecture and Web Usability.
Its user interface is shown in Figure 2.2. SelfMemo 1.0 was conceived as an initial response to the
discontinuation of the MemoToMe service and successfully implemented some of the key functionality
essential to an email reminder service, including:

• User Management: An admin user can create and manage users accounts.

• SMTP Selection: An admin user can configure the preferred SMTP server for sending reminders.

• Reminder Overview: A structured list of all scheduled reminders along with their next occurrences,
ensuring clear and efficient tracking.

• Basic Reminder Types: Support for the following reminder types: one-time, daily, weekly, monthly,
and yearly,

As is evident, SelfMemo 1.0 already provided the fundamental features necessary for a lightweight,
simple, and user-friendly mail reminder service. However, the team encountered some challenges in
making the platform publicly accessible, reliable, and free to host.

6 2 Email Reminder Services

Chapter 3

SelfMemo 2.0

SelfMemo 2.0 is an open-source, self-hosted, web-based email reminder service [Lorber et al. 2025],
building on the experience of SelfMemo 1.0 [Juri et al. 2024]. SelfMemo 2.0 is a web application written
in TypeScript [Microsoft 2025] and React [React 2025], using Next.js [Vercel 2025b]. This chapter
explains the system requirements, system architecture, and the final set of implemented features.

3.1 System Requirements
The system requirements for SelfMemo 2.0 were formulated as follows:

• Authentication System: A secure authentication systemmust be implemented to verify user identities
and ensure that each user can access only their designated data. This systemwill prevent unauthorized
access and help distinguish between different user-specific reminders. The authenticationmechanism
should be username-password verification.

• Role-Based Authorization System: An authorization system should be incorporated to differentiate
between various user roles. This system must support the creation of roles within the application
to distinguish between administrative users and standard users. Administrative users should have
full control over the system, including managing all user accounts and performing CRUD (Create,
Read, Update, Delete) operations on all reminders across all users. Standard users, on the other
hand, should only have permissions to manage their own reminders.

• Admin Account Setup During Installation: During the initial setup process of the application, an
administrator account should be created. This admin account will serve as the primary access
point for managing system-wide settings, user accounts, and application configurations. The setup
process should allow the first admin account to be configured with custom login credentials to ensure
security.

• Administrative Privileges for User Management: Any administrator account should possess the
ability to perform CRUD operations on all user accounts. This includes the capability to create
new users, update user information, delete users when necessary, and retrieve user details. Such
functionality is essential for maintaining user records and ensuring smooth application management.

• User Permissions for Managing Reminders: All registered users, regardless of their role, should
have the ability to perform CRUD operations on their own reminders. However, administrators have
extended privileges that allow them to view and manage all reminders created by any user. Standard
users should only be able to access and modify their own reminders.

• Support for Multiple Reminder Types: The system must support various types of reminders to
accommodate different scheduling needs. The following reminder types should be available:

– One-Time.

7

8 3 SelfMemo 2.0

– Daily.

– Weekly.

– N-Weekly (custom interval).

– Monthly.

– Yearly.

– N-Yearly (custom interval).
These options will provide users with flexible scheduling capabilities for their reminders.

• Warning Reminders: To enhance user experience and prevent missed reminders, the system should
support warning reminders. These warnings should be configurable to notify users before the actual
reminder is due. Users should have the option to define multiple warnings at specific intervals, such
as “Send N warnings Y minutes/hours/days apart before the actual reminder.”

• User Profile Management: Users should have the ability tomanage and update their personal account
details. This includes:

– Changing their name.

– Updating their email address.

– Resetting or modifying their password.
Ensuring users can maintain up-to-date account information is crucial for security and personaliza-
tion.

• Minute-Based Reminder Intervals: The system should allow reminders to be scheduled with pre-
cision, including minute-level intervals. This feature will provide greater flexibility in setting up
reminders for time-sensitive tasks and activities.

• Email Notifications for Reminders: The system must include an automated email notification feature
to ensure users receive their reminders at the specified times. The email notifications should include
relevant details about the reminder.

3.2 Software Architecture
SelfMemo2 is a web-application based on Next.js [Vercel 2025b] (React [React 2025]), written in
TypeScript [Microsoft 2025]. This ensures it has a very simple and basic software architecture of a
standard web-application. A visualization of our architecture can be found in figure 3.1.

Both frontend and backend are implemented using Next.js [Vercel 2025b], in order to simplify the
installation and setup of the application andmake it possible to host the entire application in one repository.
In contrast, the predecessor application SelfMemo 1.0 [Juri et al. 2024] has separate repositories for
backend and frontend. The frontend communicates with the backend via basic HTTP requests. Common
HTTP methods where employed to define the routes of the application, with standard URL design and
error message codes. The SelfMemo 2.0 backend communicates via the Prisma Object-Relational-
Mapper (ORM) with the database of choice, in this case a cloud-based PostgreSQL [Wikipedia 2025a]
database hosted by Neon [Neon 2025]. A cron-job [cron-job.org 2025] sends a request every minute to
the SelfMemo 2.0 backend in order to trigger the procedure to check whether any (warning) reminders
need to be sent. If so, a connected SMTP server sends the corresponding emails. For final deployement,
the hosting provider Vercel [Vercel 2025c] was used.

The following tools and technologies were used in the final implementation of SelfMemo 2.0:

Software Architecture 9

User

Frontend (Next.js) Backend (Next.js)

e.g. POST
/api/reminders

e.g. GET
/api/reminders

Store/Fetch Data

GET
/api/cron/process-tasks

Send E-Mail

SMTP Service

Db

cron-job.org

Figure 3.1: SelfMemo2.0 has a typicalweb application architecture, consiting of a frontend, backend,
database, cron job and SMTP connection. [Diagram Created by the author(s) of this report.]

1. GitHub [GitHub 2025] for code hosting and distribution.

2. Vercel [Vercel 2025c] for app deployment.

3. Neon [Neon 2025] for hosting the PostgreSQL database.

4. cron-job.org [cron-job.org 2025] for triggering the reminder procedure via a cron job.

5. Any kind of SMTP-Service for sending reminder notifications.

In case any of the above tools and technologies are shut down or discontinued, the following alternatives
are recommended:

1. Any code hosting platform, e.g. GitLab [GitLab 2025].

2. The application can always be deployed manually. Since SelfMemo 2.0 is a standard Next.js
application, the standard procedure of deploying a Next.js application can be followed [Vercel
2025a].

3. Any PostgreSQL database. This can be self-hosted or on an external provider like Supabase
[Supabase 2025].

4. A cron job to trigger the reminder procedure. Cron jobs can be self-hosted on a server. GitHub
Actions are another possibility, but have a minimum interval of around 5 minutes. Other cron job
providers include FastCron [FastCron 2025] and EasyCron [EasyCron 2025].

5. Any SMTP service can be configured for the application to send outgoing emails.

10 3 SelfMemo 2.0

3.3 Implemented Features
SelfMemo 2.0 includes a comprehensive set of features designed to enhance both the user and admin
experiences. The following functionality was already provided in the original SelfMemo 1.0 [Juri et al.
2024], and was reimplemented in the new system architecture based on Next.js[Vercel 2025b]:

• Admin Management: Admins can create and manage users.

• User Reminder Management: Users have the ability to create, update, and manage their own
reminders.

• Multiple Reminder Types: Various reminder types including one-time, daily, weekly, n-weekly,
monthly, yearly and n-yearly.

The following new functionality was added to SelfMemo 2.0 to improve the overall experience and
resolve some of issues of SelfMemo 1.0:

• Backend Improvements: The system’s backend was optimized with the integration of cron-job.org,
ensuring reliable and accurate scheduling of reminders.

• Multiple Admins: Multiple admins can now be created, allowing for better management and distri-
bution of responsibilities.

• Warning Reminders: Users now receive warning reminders before their scheduled reminders, giving
them time to adjust or cancel if needed.

• Editable Email Templates: Admins can customize the content of email notifications by editing the
email templates, providing flexibility for branding or communication preferences.

• Reminder Statistics Page: A dedicated page has been added to track the statistics of reminders,
offering valuable insights into usage patterns.

• Disabling Reminders: Admins and users now have the option to disable reminders, ensuring greater
control over the system and its notifications.

• User Credential Management: Users can now change their credentials, including their email, name,
and password, improving the overall flexibility and security of the system.

The new SelfMemo 2.0 is designed to provide a more streamlined and customizable experience for both
admins and users, with better management capabilities, user-friendly controls, and improved backend
stability.

Chapter 4

Setup and Deployment

This chapter explains how to run the local development environment and how to deploy the application.
Please note that this software is released under MIT license and is provided as-is, without warranty of
any kind.

4.1 Local Development Environment
SelfMemo 2.0 has been developed and tested in macOS Sequoia 15.1, but there should be no issues with
developing on Windows or Linux. In order to run the application locally, the following prerequisites are
needed:

• GitHub account.

• SMTP account, able to send secure mails via port 465.

• Basic familiarity with TypeScript and Next.js.

• Node and NPM installed.

• PostgreSQL database (either locally or in the cloud).

In summary, a basic TypeScript/JavaScript development environment must be installed and a database is
needed. If a local PostgreSQL database is used, please read up on how to connect to a local database
with the Prisma ORM. To test the project, Neon [Neon 2025] was used as a hosted PostgreSQL database,
and the app was hosted on Vercel [Vercel 2025c].

These are the steps necessary to install a development environment for SelfMemo 2.0:

1. Fork or clone the repository, as shown in Figure 4.1.

2. cd into the repository

3. cp .env.example .env : Copy the example file.

4. Fill out the necessary environment variables, shown in Table 4.1, in the .env file.

5. npm install : Install application dependencies.

6. npx prisma migrate dev : Create the database schema in the connected database.

7. npm run dev : Start the application.

8. Visit http://localhost:3000/api/seed once in order to create the initial admin account.

9. The application should now be up and running.

11

http://localhost:3000/api/seed

12 4 Setup and Deployment

Environment Variable Description

NEXTAUTH_URL The URL where your application runs, typically http://localh
ost:3000 for Next.JS applications.

AUTH_SECRET The secret needed for authentication. Can be generated at
https://generate-secret.vercel.app/32.

DATABASE_URL The connection string to the PostgreSQL database. Put the
connection string inside double quotation marks in the .env
file. See the Prisma website [Prisma 2025] for more informa-
tion. In testing, the connection string to Neon [Neon 2025] had
the following format: postgres://neo...ner:h...Nep...pooler.eu-
central-1.aws.neon.tech/ne...bsslmode=require.

SMTP_USER The SMTP username (e.g., mailUser1).
SMTP_PASS The SMTP password (e.g., 123456789).
SMTP_MAIL The SMTP email address (e.g., mail@example.com).
SMTP_HOST The SMTP host address (e.g., mail.smtp2go.com).
ADMIN_EMAIL The initial admin email address, needed to log in to the applic-

ation (e.g., user@example.com).
ADMIN_NAME The initial admin name (e.g., "Test User").
ADMIN_PASSWORD The initial admin password (e.g., 123456789).

Table 4.1: The environment variables required to set up SelfMemo 2.0

4.2 Hosting a Production Instance with Vercel
There aremany alternatives for hosting aweb app and an online database. One good choice is to useVercel
for deployment and Neon.tech for database management, ensuring a scalable and efficient infrastructure.
This requires:

• GitHub account.

• Vercel account [Vercel 2025c].

• Neon account and database [Neon 2025].

• SMTP account, able to send secure mails via port 465.

Then, follow these steps:

1. Fork the repository on GitHub. See Figure 4.1.

2. Login (or create an account) on Vercel and import a repository. See Figure 4.2.

3. Connect your GitHub account to Vercel by clicking on Add GitHub Account. See Figure 4.3.

4. A small installation window will appear. Either grant Vercel access to all your repositories or only
selected ones. See Figure 4.4.

5. Select your SelfMemo 2.0 fork and click on Import. See Figure 4.5.

6. Choose all default settings and hit Deploy. See Figure 4.6.

7. Click on Continue to Dashboard. See Figure 4.7.

http://localhost:3000
http://localhost:3000
https://generate-secret.vercel.app/32

Hosting a Production Instance with Vercel 13

Figure 4.1: Step 1: Fork the repository on GitHub. [Created by the author(s) of this report.]

8. Visit Neon [Neon 2025] and create an account or connect your Vercel account. Then create a new
project. See Figure 4.8.

9. You should see a popup that says “Your database is live”. Now select "Prisma" and the ".env" tab
and click on Copy code. Paste this code into a text editor and copy everything inside the quotation
marks from DATABASE_URL="...". See Figure 4.9.

10. Go back to Vercel → Settings → Environment Variables and insert the copied connection string. See
Figure 4.10.

11. Create all other environment variables shown in Table 4.1. Make sure that your NEXTAUTH_URL is
set to the production URL, which can be found on the project dashboard under Production Deployment
under Domains. See Figure 4.11.

12. Go to Settings → General and insert the build command:
prisma generate && prisma migrate deploy && next build . Don’t forget to save the
changes. See Figure 4.12.

13. Finally, go to Deployments and redeploy your application. Your application should be set up correctly.
You can now make a GET request to https://your-application-url.com/api/seed and then go to
https://your-application-url.com/login to login. See Figure 4.13.

https://your-application-url.com/api/seed
https://your-application-url.com/login

14 4 Setup and Deployment

Figure 4.2: Step 2: Import the forked repository on Vercel. [Created by the author(s) of this report.]

Figure 4.3: Step 3: Connect GitHub to Vercel. [Created by the author(s) of this report.]

Hosting a Production Instance with Vercel 15

Figure 4.4: Step 4: Confirm connection from GitHub to Vercel. [Created by the author(s) of this report.]

Figure 4.5: Step 5: Select SelfMemo 2.0 fork and click on Import. [Created by the author(s) of this report.]

16 4 Setup and Deployment

Figure 4.6: Step 6: Do not change default settings and deploy. [Created by the author(s) of this report.]

Figure 4.7: Step 7: Click on Continue to Dashboard. [Created by the author(s) of this report.]

Hosting a Production Instance with Vercel 17

Figure 4.8: Step 8: Create a new Neon project. [Created by the author(s) of this report.]

Figure 4.9: Step 9: Copy the database URL. [Created by the author(s) of this report.]

18 4 Setup and Deployment

Figure 4.10: Step 10: Create environment variable. [Created by the author(s) of this report.]

Figure 4.11: Step 11: Create other environment variables. [Created by the author(s) of this report.]

Hosting a Production Instance with Vercel 19

Figure 4.12: Step 12: Update the build command in Vercel. [Created by the author(s) of this report.]

Figure 4.13: Step 13: Redeploy the application. [Created by the author(s) of this report.]

20 4 Setup and Deployment

Chapter 5

Concluding Remarks

This report described SelfMemo 2.0, an open-source, self-hosted, web-based email reminder service.
The software is freely available on GitHub [Lorber et al. 2025].

SelfMemo 2.0 is functional, but could be improved or extended in numerous ways:

• Import and Export for Reminders: One major improvement would be to add the ability for users
to export and import reminders in common formats like CSV or JSON. This would enable easier
data transfer between platforms and allow users to back up or migrate their reminders. Additionally,
providing a customizable field mapping feature during imports would help ensure that data is
imported correctly, particularly if users are moving from a different reminder system.

• Visualize Reminders in Calendar: A significant feature improvement would be the introduction of a
visual calendar view for reminders. This would offer a more intuitive way to track upcoming events.
Integration with external calendars, such as Google Calendar, Outlook, and Apple Calendar, would
further enhance usability by enabling users to sync their SelfMemo 2.0 reminders with their existing
scheduling tools. Additionally, implementing drag-and-drop functionality within the calendar view
would let users easily reschedule reminders.

• Customizable Email Notification Templates: Currently, email reminders follow a generic format only
adaptable by the system admin. To improve user experience, allowing users to customize the email
notification templates would be a useful feature. This could include modifications to the subject
line, body content, and style of the email, using a simple WYSIWYG (What You See Is What You
Get) editor [Wikipedia 2025b]. For those who prefer not to create their own templates, predefined
options for different styles could be provided.

• Adapting Reminders to Current Timezone: Time zone management is crucial for users in different
locations. Automatically detecting a user’s local time zone and adjusting reminder times accordingly
would greatly improve accuracy. Users should also be able to manually set their time zone if needed.
For frequent travellers, enabling the ability to convert reminder times when crossing time zones
would ensure they never miss an important task. Additionally, ensuring reminders are displayed
in the correct time zone for all recipients, especially in group settings, would reduce confusion.
Finally, email notifications should clearly display the time zone in which a reminder is set to ensure
transparency.

21

22 5 Concluding Remarks

Bibliography

Andrews, Keith [2025]. Information Architecture and Web Usability. 25 Feb 2025. https://courses.isd
s.tugraz.at/iaweb (cited on page 1).

Apple [2025]. Reminders. 01 Feb 2025. https://icloud.com/reminders (cited on page 3).

cron-job.org [2025]. Scheduled Execution of Your Websites and Scripts. 31 Jan 2025. https://cron-job
.org/ (cited on pages 8–9).

EasyCron [2025]. EasyCron. 03 Feb 2025. https://easycron.com/ (cited on page 9).

FastCron [2025]. FastCron. 03 Feb 2025. https://fastcron.com/ (cited on page 9).

GitHub [2025]. GitHub. 03 Feb 2025. https://docs.github.com/en/get-started/using-git/about-git
(cited on page 9).

GitLab [2025]. GitLab. 03 Feb 2025. https://about.gitlab.com/ (cited on page 9).

Google [2025]. Keep. 01 Feb 2025. https://keep.google.com/ (cited on page 3).

JJ Zone [2025]. MemoToMe. 01 Feb 2025. http://memotome.com/ (cited on pages 1, 4).

Juri, Joseph, Corentin Lebleu, Sanja Marinkovic and Luka Serdar [2024]. SelfMemo. 06 Dec 2024.
https://github.com/Self-Memo (cited on pages 5, 7–8, 10).

Lorber, Niklas, Maria Seiser and Kilian Weisl [2025]. SelfMemo2. 03 Feb 2025. https://github.com/sel
fmemo2/SelfMemo2 (cited on pages 1, 7, 21).

Microsoft [2025]. TypeScript. 31 Jan 2025. https://typescriptlang.org/ (cited on pages 7–8).

Neon [2025]. Neon DB. 31 Jan 2025. https://neon.tech/ (cited on pages 1, 8–9, 11–13).

Prisma [2025]. Prisma ORM - PostgreSQL Connection URL. 03 Feb 2025. https://prisma.io/docs/orm
/overview/databases/postgresql#connection-details (cited on page 12).

React [2025]. React. 31 Jan 2025. https://react.dev/ (cited on pages 7–8).

Supabase [2025]. Supabase. 03 Feb 2025. https://supabase.com/ (cited on page 9).

Vercel [2025a]. Deploying Next.js Applications. 2025. https://nextjs.org/docs/pages/building-your-a
pplication/deploying (cited on page 9).

Vercel [2025b]. Next.js. 31 Jan 2025. https://nextjs.org/ (cited on pages 7–8, 10).

Vercel [2025c]. Vercel. 31 Jan 2025. https://vercel.com/ (cited on pages 1, 8–9, 11–12).

Wikipedia [2025a]. PostgreSQL. 31 Jan 2025. https://wikipedia.org/wiki/PostgreSQL (cited on page 8).

Wikipedia [2025b]. WYSIWYG. 01 Feb 2025. https://wikipedia.org/wiki/WYSIWYG (cited on page 21).

23

https://courses.isds.tugraz.at/iaweb
https://courses.isds.tugraz.at/iaweb
https://icloud.com/reminders
https://cron-job.org/
https://cron-job.org/
https://easycron.com/
https://fastcron.com/
https://docs.github.com/en/get-started/using-git/about-git
https://about.gitlab.com/
https://keep.google.com/
http://memotome.com/
https://github.com/Self-Memo
https://github.com/selfmemo2/SelfMemo2
https://github.com/selfmemo2/SelfMemo2
https://typescriptlang.org/
https://neon.tech/
https://prisma.io/docs/orm/overview/databases/postgresql#connection-details
https://prisma.io/docs/orm/overview/databases/postgresql#connection-details
https://react.dev/
https://supabase.com/
https://nextjs.org/docs/pages/building-your-application/deploying
https://nextjs.org/docs/pages/building-your-application/deploying
https://nextjs.org/
https://vercel.com/
https://wikipedia.org/wiki/PostgreSQL
https://wikipedia.org/wiki/WYSIWYG

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Email Reminder Services
	2.1 MemoToMe
	2.2 SelfMemo 1.0

	3 SelfMemo 2.0
	3.1 System Requirements
	3.2 Software Architecture
	3.3 Implemented Features

	4 Setup and Deployment
	4.1 Local Development Environment
	4.2 Hosting a Production Instance with Vercel

	5 Concluding Remarks
	Bibliography

