
BenchLines: Benchmarking Interactive Web
Graphics for Parallel Coordinates

Information Architecture and Web Usability (WS 2025/2026)

Group 4
Michael Anderson
Jyothish Atheendran
Filip Ljubotina

27 Jan 2026 1/25



BenchLines - Overview

• BenchLines benchmarks polyline rendering in parallel coordinates.

• Compares rendering speed across dataset sizes.

• Compares interactive features across technologies.

2/25



Parallel Coordinates - Overview

• A visualization technique for
exploring high-dimensional data.

• Each vertical axis represents a
variable (dimension).

• Each polyline represents one data
item across all dimensions.

3/25



BenchLines - Benchmarking

• Select technology, dataset, and iterations to run a benchmark.

• BenchLines re-renders continuously and records performance.

• Average render time is shown, with past results below the plot.

4/25



BenchLines - Plot Layers

5/25



Demo

Live Site: https://filip-ljubotina.github.io/benchlines/
Github Repo: https://github.com/filip-ljubotina/BenchLines
Showcase Video: https://youtu.be/TX7kLXGYXA4 6/25

https://filip-ljubotina.github.io/benchlines/
https://github.com/filip-ljubotina/BenchLines
https://youtu.be/TX7kLXGYXA4


1) Background

7/25



Background Raster Image

• Charts can have thousands of lines.

• Rendering all lines can be slow if done every frame.

• Separate inactive lines from the active interactive lines.

• Rasterization is the process of converting shapes into pixels on a 2D grid.

• Using WebGL for fast rasterization and 2D canvas for the background.

• If WebGL is unavailable renders lines using Canvas2D.

8/25



Background Rasterization

• Render background lines once in an off-screen WebGL canvas.

• Rasterized to a background image and interactive lines rendered above.

• Eliminates cost for rendering inactive lines.

• Background lines are re-rendered once after augmenting the data.

9/25



Rasterization Example

1 // Create offscreen WebGL canvas
2 const bg = document.createElement("canvas");
3 bg.width = mainCanvas.width;
4 bg.height = mainCanvas.height;
5
6 // Render lines offscreen
7 const bgGl = initLineTextureWebGL(bg);
8 drawInactiveLinesTexture(dataset, parcoords);
9

10 // Rasterize into 2D canvas
11 const ctx = inactiveLinesCanvas.getContext("2d")!;
12 const pixels = new Uint8Array(bg.width * bg.height * 4);
13 bgGl.readPixels(0,0,bg.width,bg.height,bgGl.RGBA,bgGl.UNSIGNED_BYTE,pixels);
14 ctx.putImageData(flipY(pixels,w,h),0,0);

10/25



2) Rendering

11/25



Rendering Technology

We utilize four core technologies to render graphics:

• SVG-DOM

• Canvas2D

• WebGL

• WebGPU (Successor to WebGL)

12/25



Rendering Libraries

Additionally we utilize two libraries:

• Three.js

• Pixi.js

13/25



SVG-DOM Implementation

1 const svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");
2 svg.setAttribute("width", canvas.width);
3 svg.setAttribute("height", canvas.height);
4 document.body.appendChild(svg);
5
6 for (const d of dataset) {
7 const polyline = document.createElementNS("http://www.w3.org/2000/svg", "polyline");
8 polyline.setAttribute("points", getPolylinePoints(d));
9 polyline.setAttribute("stroke", "steelblue");

10 polyline.setAttribute("stroke-width", "2");
11 polyline.setAttribute("fill", "none");
12 svg.appendChild(polyline);
13 }

14/25



Canvas2D Implementation

1 function initCanvas2D(dpr: number) {
2 ctx = canvasEl.getContext("2d")!;
3 ctx.setTransform(dpr, 0, 0, dpr, 0, 0);
4 return ctx;
5 }
6
7 function redrawCanvasLines(dataset, parcoords) {
8 for (const d of dataset) {
9 const pts = getPolylinePoints(d, parcoords);

10 ctx.beginPath();
11 ctx.moveTo(pts[0][0], pts[0][1]);
12 pts.slice(1).forEach(p => ctx.lineTo(p[0], p[1]));
13 ctx.lineWidth = 2;
14 ctx.strokeStyle = (lineState[getLineName(d)]?.active ?? true)
15 ? "rgba(0,129,175,0.5)" : "rgba(211,211,211,0.4)";
16 ctx.stroke();
17 }
18 }

15/25



WebGL Implementation

1 function redrawWebGLLines(dataset: any[], parcoords: any) {
2 gl.useProgram(program);
3 gl.clear(gl.COLOR_BUFFER_BIT);
4
5 //Loop through dataset points creating an array of vertices...
6
7 const vertexData = new Float32Array(vertices);
8
9 gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);

10 gl.bufferData(gl.ARRAY_BUFFER, vertexData, gl.DYNAMIC_DRAW);
11 gl.vertexAttribPointer(posLoc, 2, gl.FLOAT, false, 0, 0);
12
13 gl.drawArrays(gl.LINES, 0, vertexData.length / 2);
14 }

*Example WebGL code; not from the final implementation.

16/25



WebGPU Implementation

1 function redrawWebGPULines(dataset: any[], parcoords: any) {
2 // Setup render pass (WebGPU specific)
3 const pass = encoder.beginRenderPass({ /* attachment config */ });
4
5 // Batch all vertices into a single Float32Array
6 const allVerts = new Float32Array(totalVertexCount * 2);
7 let offset = 0;
8 for (const line of hoveredLines) {
9 // convert segments to triangles with HOVER_LINE_WIDTH

10 for (let i=0;i<line.pts.length-1;i++){ ... fill allVerts ... }}
11 // ... fill with normalized coordinates
12 // Convert vertices to two triangles and single buffer upload
13 const vertexBuffer = device.createBuffer({
14 size: totalBufferSize,
15 usage: GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST,
16 });

17/25



WebGPU Implementation (contd.)

17 device.queue.writeBuffer(vertexBuffer, 0, allVerts);
18 pass.setPipeline(pipeline);
19 pass.setVertexBuffer(0, vertexBuffer);
20
21 let vertexOffset = 0;
22 for (const line of allLines) {
23 pass.setBindGroup(0, getColorBindGroup(line));
24 pass.draw(line.vertexCount, 1, vertexOffset, 0);
25 vertexOffset += line.vertexCount;
26 }
27
28 pass.end();
29 device.queue.submit([encoder.finish()]);
30 }

18/25



3) Interactivity

19/25



Interactions on Dimensions

• Reordering

• Inversion

• Filtering

*Cascade effect: change requires update to lower layers

20/25



Hover and Selection Algorithms

• From-scratch implementation equivalent to library raycasting solutions.

• Raycasting logic decoupled from rendering technology.

• Two implementations: JS and GPU.

• GPU compute shaders via WebGPU API for parallel processing.

• 256 threads per workgroup, one thread per polyline.

21/25



Hover

• Point-to-line distance detection
on mouse move.

• GPU calculates distance from
cursor to all polyline segments in
parallel.

• JS only considers segments
between the two dimensions
surrounding the cursor.

• Configurable threshold (Fuzzy
selection). 22/25



Selection Algorithms

• Line selection: detects all polylines intersecting a drawn line.

• Box selection: detects polylines inside or crossing a rectangle.

23/25



Conclusion

• Use WebGPU if available as its the fastest (requires GPU programming).

• Use WebGL if WebGPU is not available.

• Use Pixi.js or Three.js to avoid GPU programming.

• Use Canvas2D to work with just the CPU.

24/25



Thank You!
Questions?

25/25


