BenchLines: Benchmarking Interactive Web
Graphics for Parallel Coordinates

Information Architecture and Web Usability (WS 2025/2026)

Group 4

Michael Anderson
Jyothish Atheendran
Filip Ljubotina

27 Jan 2026 1/25

BenchLines - Overview

+ BenchLines benchmarks polyline rendering in parallel coordinates.
+ Compares rendering speed across dataset sizes.

« Compares interactive features across technologies.

2/25

Parallel Coordinates - Overview

Personal Finances Dataset

* A visualization technique for E a ki K
exploring high-dimensional data.
+ Each vertical axis represents a et N XS . { =
variable (dimension). ,
+ Each polyline represents one data - < \
Victor 2700 s0 ¥ 88

item across all dimensions.

Image taken from https://tugraz-isds.github.io/pcee/ under MIT license.

3/25

BenchLines - Benchmarking

+ Select technology, dataset, and iterations to run a benchmark.
+ BenchLines re-renders continuously and records performance.

+ Average render time is shown, with past results below the plot.

4/25

BenchLines - Plot Layers

3) Interactivity \/\/\ /‘/ :

2) Rendering

1) Background

5/25

Demo

Rendering: (WebGL V) Hover: [WebGPUv| Dataset: |[student datasetv| / ~

Avg. rendering time benchmark: Start benchmark

Live Site: https://filip-ljubotina.github.io/benchlines/
Github Repo: https://github.com/filip-ljubotina/BenchLines
Showcase Video: https://youtu.be/TX7kKLXGYXA4 6/25

https://filip-ljubotina.github.io/benchlines/
https://github.com/filip-ljubotina/BenchLines
https://youtu.be/TX7kLXGYXA4

1) Background

V.-
ey
N

N B
= ’I/‘:’,’:‘ / W,

7/25

Background Raster Image

« Charts can have thousands of lines.

Rendering all lines can be slow if done every frame.

+ Separate inactive lines from the active interactive lines.

Rasterization is the process of converting shapes into pixels on a 2D grid.

+ Using WebGL for fast rasterization and 2D canvas for the background.

If WebGL is unavailable renders lines using Canvas2D.

8/25

Background Rasterization

* Render background lines once in an off-screen WebGL canvas.
+ Rasterized to a background image and interactive lines rendered above.
+ Eliminates cost for rendering inactive lines.

+ Background lines are re-rendered once after augmenting the data.

9/25

Rasterization Example

o NoOo g WN =

=N = 8 S
A OWN -2 O© O

// Create offscreen WebGL canvas

const bg = document.createElement("canvas");
bg.width = mainCanvas.width;

bg.height = mainCanvas.height;

// Render lines offscreen
const bgGl = initLineTextureWebGL (bg);
drawInactivelLinesTexture(dataset, parcoords);

// Rasterize into 2D canvas

const ctx = inactivelinesCanvas.getContext("2d")!;

const pixels = new Uint8Array(bg.width * bg.height * 4);
bgGl.readPixels(0,0,bg.width,bg.height, bgGl.RGBA, bgGl.UNSIGNED_BYTE, pixels);
ctx.putImageData(flipY(pixels,w,h),0,0);

10/25

2) Rendering

11/25

Rendering Technology

We utilize four core technologies to render graphics:
+ SVG-DOM

+ Canvas2D

+ WebGL

+ WebGPU (Successor to WebGL)

12/25

Rendering Libraries

Additionally we utilize two libraries:
* Three.js

- Pixijs

13/25

SVG-DOM Implementation

0 N O U WN =

= 8 N
WN =2 ® v

const svg = document.createElementNS("http://www.w3.0rg/20008/svg", "svg");
svg.setAttribute("width", canvas.width);

svg.setAttribute("height", canvas.height);

document .body.appendChild(svg);

for (const d of dataset) {
const polyline = document.createElementNS("http://www.w3.0rg/2000/svg",
polyline.setAttribute("points", getPolylinePoints(d));
polyline.setAttribute("stroke", "steelblue");
polyline.setAttribute("stroke-width", "2");
polyline.setAttribute("fill", "none");
svg.appendChild(polyline);

"polyline");

14/25

Canvas2D Implementation

o NOoO U WN =

11
12
13
14
15
16
17
18

function initCanvas2D(dpr: number) {
ctx = canvaskEl.getContext("2d")!;
ctx.setTransform(dpr, @, @, dpr, 0, 90);

return ctx;

}

function redrawCanvasLines(dataset, parcoords) {

for (const d of dataset) {

const pts = getPolylinePoints(d, parcoords);

ctx.beginPath();

ctx.moveTo(pts[0][0], pts[B][1]);

pts.slice(1).forEach(p => ctx.lineTo(p[@], pl[1]));

ctx.lineWidth = 2;

ctx.strokeStyle = (lineState[getLineName(d)]?.active ?? true)

? "rgba(@,129,175,0.5)"
ctx.stroke();

"rgba(211,211,211,0.4)";

15/25

WebGL Implementation

1 function redrawWebGLLines(dataset: any[], parcoords: any) {

2 gl.useProgram(program) ;

3 gl.clear(gl.COLOR_BUFFER_BIT);

4

5 //Loop through dataset points creating an array of vertices...
6

7 const vertexData = new Float32Array(vertices);

8

9 gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);

10 gl.bufferData(gl.ARRAY_BUFFER, vertexData, gl.DYNAMIC_DRAW);
11 gl.vertexAttribPointer(posLoc, 2, gl.FLOAT, false, 0, 0);

13 gl.drawArrays(gl.LINES, 0, vertexData.length / 2);

“Example WebGL code; not from the final implementation.

16/25

WebGPU Implementation

function redrawWebGPULines(dataset: any[], parcoords: any) {
// Setup render pass (WebGPU specific)

const pass = encoder.beginRenderPass({ /* attachment config */ });

// Batch all vertices into a single Float32Array
const allVerts = new Float32Array(totalVertexCount * 2);
let offset = 0;
for (const line of hoveredLines) {
// convert segments to triangles with HOVER_LINE_WIDTH
for (let i=@;i<line.pts.length-1;i++){ ... fill allVerts ... }}
// ... fill with normalized coordinates
// Convert vertices to two triangles and single buffer upload
const vertexBuffer = device.createBuffer({
size: totalBufferSize,
usage: GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST,
B8

17/25

WebGPU Implementation (contd.)

17
18
19
20
21
22
23
24
25
26
27
28
29
30

device.queue.writeBuffer(vertexBuffer, 0, allVerts);
pass.setPipeline(pipeline);
pass.setVertexBuffer (0, vertexBuffer);

let vertexOffset = 0;

for (const line of alllLines) {
pass.setBindGroup (0, getColorBindGroup(line));
pass.draw(line.vertexCount, 1, vertexOffset, 0);
vertexOffset += line.vertexCount;

}

pass.end();
device.queue.submit([encoder.finish()]);

18/25

3) Interactivity

Maths English PE Art History T Biclogy German
t 1 1 t t
98 3 - o7, 100 [
82 =
\ 73 a =
52 61
42
65 ; 43
)
50 0
20%
2 1 51 4 15

19/25

Interactions on Dimensions

+ Reordering
* Inversion
* Filtering

*Cascade effect: change requires update to lower layers

20/25

Hover and Selection Algorithms

+ From-scratch implementation equivalent to library raycasting solutions.
+ Raycasting logic decoupled from rendering technology.

+ Two implementations: JS and GPU.

+ GPU compute shaders via WebGPU API for parallel processing.

+ 256 threads per workgroup, one thread per polyline.

21/25

Hover

+ Point-to-line distance detection
onh mouse move. X

=

+ GPU calculates distance from
cursor to all polyline segments in -
parallel.

+ JS only considers segments >
between the two dimensions ><
surrounding the cursor. /

+ Configurable threshold (Fuzzy
selection). 22/25

Selection Algorithms

+ Line selection: detects all polylines intersecting a drawn line.

+ Box selection: detects polylines inside or crossing a rectangle.

D1 D2 D3

<
~

D1 D2 D3

23/25

Conclusion

+ Use WebGPU if available as its the fastest (requires GPU programming).
+ Use WebGL if WebGPU is not available.
+ Use Pixi.js or Three.js to avoid GPU programming.

+ Use Canvas2D to work with just the CPU.

24/25

Thank Youl!

Questions?

25/25

