
Mobile Web Performance

Version of 06 Dec 2011

Paul Picher, Matthias Rella, Farhan Sahito and Mario Zupan

Abstract

Web performance in general is a big issue, particularly on mobile devices the performance is even more impor-
tant. The connection to the Internet is not the major reason for low performance on websites, the way how a
website is implemented is more important than the internetconnection. This survey will give a short overview
on Mobile Web and how it is used and where the mobile devices are limited. Furthermore a detailed view on
the best practice rules for web performance will be given and discussed in detail with given examples. In the
last section will be a detailed view on two tools to evaluate the mobile and the desktop version of the popular
website Amazon.com.

Contents

1 Introduction 1

2 Mobile Web 3
2.1 The Benefits of the Mobile Web . 3
2.2 Limitations and Challenges . 4
2.3 Performance and Optimization . 6

3 Mobile Web Performance Optimization 7
3.1 Making few (HTTP) requests . 7

3.1.1 Combining Images . 7
3.1.2 Combining Scripts and Stylesheets . 9
3.1.3 Caching . 10
3.1.4 Avoiding redirects . 10
3.1.5 Minimizing DNS lookups . 11

3.2 Parallelizing downloads . 11
3.2.1 Sharding domains . 11
3.2.2 Loading scripts asynchronously . 12

3.3 Reducing size . 12

4 Evaluation of Tools 15
4.1 Google Page Speed . 15

4.1.1 Google Page Speed Service . 15
4.1.2 Google Page Speed - Apache Module . 16
4.1.3 Google Page Speed Online . 17

4.2 Fiddler . 21
4.2.1 Origins . 21
4.2.2 Features . 21
4.2.3 Test of amazon.com . 24

4.3 Comparison . 27
4.3.1 Google Page Speed . 27
4.3.2 Fiddler . 27
4.3.3 Conclusion . 27

References 30

i

ii

Chapter 1

Introduction

Mobile Web is a paradigm in recent years with approximately 726 million users having access to it with a
forecasted increase growth in it. The present period of mobile Web revolution provides a big opportunity for
businesses to capitalize on the mobile marketing strategies to connect with large population and generate huge
traffic. It also provides around-the-clock access to the Internet users regardless of location and in recent times,
we have seen the tremendous power of the mobile Web as a tool for social change which became a modern
revolution in the Middle East and North Africa. In spite of all benefits, mobile Web also has its share of
challenges that present unique problems due to that reasons the performance is falling short of expectations.
This survey paper will first explore the definition of mobile Web with its history. In the first chapter this
paper will spot the benefits mobile Web can bring such as constant connectivity, limitless access and interactive
capabilities and the revolution it has bring in the country like Egypt. The second part of this chapter will
focus on the limitation and challenges related to mobile Web and explain the problems users are facing with
this emerging technology. This chapter will finally discuss the performance and optimization and will define
that how Performance is the crucial to the success of mobile Web and how it can meet with user expectations.
Chapter 2 is concerned with Best Practices for Web Performance Optimization and have a look at issues with
mobile where needed. The last chapter will deal with the evaluation and comparison of two web performance
measurement tools.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Mobile Web

The Mobile Web refers to accessing and interacting with Web content or the use of Internet-connected appli-
cations (connected to a wireless network) from mobile devices, for instance, tablet computer or Smartphone
[W3Mobile, 2008]. Today it is a most popular, rapid and widespread personal technology allows Internet use
away from a computer, completing the communication continuum and constitutes the entirety of the Internet
[MogisticCondition, 2007]. In 1996, the first access to the mobile web was commercially offered in Finland on
the Nokia 9000 Communicator phone on the Radiolinja and Sonera networks [NokiaFirst, 2011] and in 1999
the first commercial mobile-specific browser-based web service was launched when NTT DoCoMo introduced
i-mode in Japan [Telecomvisions, 2011].

The growth of this technology is staggering, with approximately 726 million users having access to a mobile
Web with a forecasted increase growth in it [Matt Murphy, 2011]. According to a recent study, of the top 100
Web sites most visited on the internet, it is interesting to see that 71 of them have content specifically designed
for mobile devices. The remaining 29 either prompt the user about a device specific application or do not
support mobile devices [QuantcastTop, 2011]. This study further reveals that within the top million most visited
sites on the Internet, approximately 39,000 sites (3.9%) reported the content as non-scaleable. It is a strong
indicator that the Web content is designed specifically for a mobile device and only 6% of the sites reported
that they are at a minimum, aware of mobile users [QuantcastTop, 2011]. These numbers illustrate the potential
of the mobile platform as the right solution compared to other existing and emerging technologies and the
increasing usage is predicted more websites will support mobile devices in the years to come [BuildwithMobile,
2011].

Mobile Web is a paradigm shift from how the web has been built in recent years and website developers and
designers are beginning to spot the benefits it can bring [BuildwithMobile, 2011]. According to Maximilien,
today, there are more mobile computers than there are any other forms of computing devices [Maximilien, 2008]
and Morgan [2009] further argue that, due to the convergence of five advanced trends mobile Web is nowadays
ramping faster than desktop Web such as: 3G Internet connection, video, VoIP, social networking, and high-end
mobile devices. According to him it is expected that within 5 years mobile devices will become the number one
gate to access the Web due to these trends and the number of devices such as smart phone or tablet computer
will be over 10 times the number of fixed devices accessing the Web [Morgan, 2009]. The recent growth and
production of devices such as: the BlackBerry, Apple iPhone, Microsoft Windows Phone and Google’s Android
Stack, supporting new methods of interaction with website with high resolution [BuildwithMobile, 2011]. In
spite of many challenges, limitations and hardware constraints the mobile Web suffer, the revolutionary Web
browser developed by Apple for the Safari mobile, iPod Touch, iPhone has been proven to be a user-friendly
way of surfing Web [Maximilien, 2008].

2.1 The Benefits of the Mobile Web

Some of the more important benefits of the Mobile Web are:
Business and Marketing: The present period of mobile Web revolution provides a big opportunity for

3

4 CHAPTER 2. MOBILE WEB

businesses to capitalize on the mobile marketing strategies to connect with large population and generate huge
traffic. The rise of Smartphone and tablets devices has also made a multi-faceted web presence to reach wider
audience and its usage has made mobile web presence a competitive necessity for every business in the world
[BusinessWeek, 2008; NubiqGrowing, 2011].

Constant Connectivity: Mobile Web provide around-the-clock access to the Internet regardless of location.
Devices like smartphone provide a continual link to the wealth of information such as users can verify on the
status of a flight while on road to the airport, check traffic reports, and even access a map and directions if they
decide to take an alternate route [Kroski, 2009].

Limitless Access: The mobile Web encompasses the whole Web and online resources that they would find
via their desktop computer, not only those Web sites which have been designed for mobile browsing [Kroski,
2009].

Interactive capabilities: The world of mobile web holds immense potential as it is an easy and convenient
way to get access to information on the run such as looking at the price of stocks, reading news and accessing
email are typical examples of the kind of activities that users perform while they are mobile. Users can also tag
resources, write blog posts, and form connections on social networks [Kroski, 2009].

Web 2.0 and Mobile Web: Web 2.0, the next generation web is considered to be as the next big wave
riding in the field of mobile computing that use web as platform to provide users a rich experience as they
enjoy on desktop with all characteristics available on personal Web. This is coincides with W3C vision for the
web-The Web Anywhere, for Everyone, at Anytime, on Everything [Hiren, 2008].

Revolution and the Mobile Web: In recent times, we have seen the tremendous power of the mobile
Web as a tool for social change which became a modern revolution in the Middle East and North Africa – in
countries such as Egypt, Tunisia, and now Libya. More and more users are becoming accustomed to the mobile
Web as their primary news source to get up-to-date information in hot spots around the world and organizing
themselves in collective action or communicating their message at large, and garnering support from people
in far away nations. According to a survey there was a sharp uptake in Egypt the use of the mobile Web
and a sustained increase in traffic to certain sites due to the circumstances in that country during the month
of February. According to Ayman Shokr, “The key success for the revolution was the way we connected, via
Facebook and other social media via Internet, to mobile phones,” The mobile Web provided a platform for those
voices in the midst of conflict that might otherwise not have been heard [OperaMobile, 2011].

Performance has always been crucial to the success of Mobile Web sites. Users on mobile Web expect
performance to be good as what they experience on their work or home computer. However, with its series
of benefits, mobile Web also has its share of challenges that present unique problems due to that reasons the
performance is falling short of expectations [OperaMobile, 2011]. Studies have indicated that even small delay
in page load times lead to less ad revenue, less stickiness, and less customer satisfaction. According to Zhang
[2005] the issues associated with mobile devices are a function of the devices and standard usability issues
raise challenges for Web designers [Zhang, 2005]. Challenges such as fragmentation of mobile devices, lower
bandwidth, higher latency, smaller memories, and lower processing power of mobile devices have imposed a
heightened need to optimize site performance to meet consumer expectations [Zhang, 2005].

2.2 Limitations and Challenges

Fragmentation of Mobile Devices: It is evident that mobile Web access still suffers today from usability and
interoperability issues. Usability issues are focused around the physical size of the mobile devices such as
limits on display resolution and user input/operating. Interoperability problems are centered on the platform
fragmentation of mobile devices such as browsers and mobile operating systems [VisionMobile, 2011]. On the
other side the performance of mobile Web is a consequence of fragmentation in the market of mobile devices.
For example, a number of different operating Systems available these days fro smartphones, such as Android
from Google, Windows Mobile from Microsoft, Symbian and Maemo from Nokia iOS for Apple’s iPhone,
iPod and iPad, WebOS from Palm (now HP), Bada from Samsung and Blackberry. These different Application
Frameworks incompatible between each other and unfortunately any application develop in one platform does

2.2. LIMITATIONS AND CHALLENGES 5

not work in any of the other platforms [Cristobal, 2010].
Due to device fragmentation, mobile Web developers encounter challenges when creating content for these

devices but usually these new channel are confronted with numerous development standards and with varying
functional capabilities, distinct mobile browsers, sizes as well as screen resolutions. This lack of uniformity
cause universal compatibility a near impossibility [Kroski, 2009]. According to Passani [2010], due to this de-
vice diversity the mobile Web development has become a very complex issue as different devices have different
features and different dimensions such as hardware characteristics, network characteristics, multimedia formats
and behavior of the browser. He also argued that device fragmentation is the consequences of several aspects
such as:

• Rapid innovation, spread and advancement in underlying mobile technologies and standards.

• Mobile device manufacturers’ drive to differentiate from market competitors.

• Network operators’ request to have mobile devices that are mostly customized to their networks.

• Device software is typically not upgraded and poorly performing software stays around longer.

• Mobile devices require an average 18 months to change the first device in the business market [Passani,
2010].

Small Screen: Mobile devices have smaller screen so navigating with a mobile device is not very pleasant
experience and this is the most visible difference between a mobile device and a desktop. Mobile phone screen
sizes have also been increasing since few years, but even the screen of the iPhone 4 is still small in comparison
to a standard 1024x768 desktop that inadvertently break the user experience by making zoom in and out.
Similarly, most mobile displays have fewer pixels than desktop ans users spend more time attempting to locate
information rather than simply browsing. An iphone retina display is 960x640 and iMac with its smallest screen
has 1920x1080 display [Passani, 2010].

Limited Input Capability: One important aspect of mobile devices is touch based input rather using
mouse or keyboard to get access to mobile Web. While this is sufficient for dialing phone number or entering
text but with Web it is an annoying activity, when users have to type on a fiddly little plastic keyboard or tapping
a minuscule on screen keyboard. Most modern touch devices allow the user to perform gestures using one or
more fingers, such as using pinching, swiping and so on. For instance, users swipe left to right to move between
folders in a gallery. jQuery mobile with JavaScript framework can generate events for such gestures to support
mobile Web [Maximilien, 2008; Passani, 2010].

Slow processors: Mobile devices generally have less processing power and smaller caches than desktop
computer. Thus Web browsers take longer to render pages and payloads. Mobile browsers are slower to parse
HTML and JavaScript intensive pages can run very slowly [Cristobal, 2010; Passani, 2010].

Less Bandwidth: Mobile devices have little bandwidth available when compared with desktop. While
cellular network speeds are improving and with the advent of 3G mobile devices (EDGE, UMTS, HSDPA)
the situation is improving for some users, a typical 3G device will be lucky to get more than 1MB/s download
rate: Some time lot of users can count on a speed down to just a few KB/s compared to between 1.5MB/s and
20MB/s for ADSL link and even faster for Wi-Fi access [Passani, 2010].

Limited multitasking: Multitasking describes user performance of being able to run more than one appli-
cation at once or switching of application from one task to another. Unfortunately many devices still cannot
multitask as desktop. Desktop allow you to see several app windows at the same time. Some mobile devices
such as iPad and iPhone 4 allow you to swap between running application by double clicking the Home button,
but sometimes a limited number and not multiple windows in the same screen; it is also not as quick as desktop
[Morgan, 2009].

No, or Poor, Flash Support: Flash is almost ubiquitous on the desktop with more than 90% browser
installed with Flash player. However, the story is different with mobile Web as no iOS devices run Flash.
Devices like Android with version 2.2 or later can run Flash but it causes performance and stability problems
and many users choose to turn it off as it is usually not a pleasant experience [ElatedTen, 2011].

6 CHAPTER 2. MOBILE WEB

2.3 Performance and Optimization

Performance is the crucial to the success of mobile Web and above limitations have imposed a heightened
need to optimize site performance to meet user expectations. Studies have indicated that small improvement
in page loads lead to more customer satisfaction and more sales, and no matter how beautiful, interesting and
interactive Web pages are, users become impatient if Web page is taking more than 2 or 3 seconds to render
[StrangeloopMobile, 2011]. Users expect performance as good as desktop computer, despite the slower net-
works and lower-powered hardware and they are less likely to convert from browsing to buying in delay and
may even close the browser before the page ever loads [StrangeloopMobile, 2011]. The Harris Interactive Mo-
bile Transactions Survey in 2011, reported that (mobile site optimization) 85% of users who had made a mobile
transaction in the last year expected the mobile experience to be better or equal to shopping online, and 63%
reported that they would be less likely to buy from the same Website if they experienced a transaction prob-
lem on their mobile devices [StrangeloopCustomers, 2011]. Another study published by Equation Research in
February 2011 stated that 46% of users reported that websites on their phone load more slowly than expected
and nearly 60% mobile users expect load pages in 3 seconds or less. Almost 74% said they would leave a site
if a Website took 5 seconds or more to load. This research also reveals that 77% of the top companies have
mobile page load times of more than 5 seconds.

Eric Schurman (Bing) and Jake Brutlag (Google Search) also co-presented results from latency experiments
in Velocity conference-2009 in San Jose [OReillyFast, 2009]. Eric Schurman from Bing found that a 2 second
delay changed searches/user by -1.8% and revenue/user by -4.3%. Jake Brutlag from Google found that a 400
millisecond slowdown resulted in a -0.59% change in queries. Google further revealed after the delay was
solved, users still had -0.21% fewer queries that indicates long term behavior in case of slower user experience
[OReillyFast, 2009].

Phil Dixon, from Shopzilla presented a case study in Velocity 2009 that provides real world numbers that
show the benefits of making mobile Web faster. Phil Dixon presented several suggestions about the impact of
performance on the bottom line with most takeaway statistics. He concluded that a 5 second speed up (from 7
sec to 2 sec) was resulted after a yearlong redesign performance that further resulted win-win of performance
improvements with 25% increase in page views, a 50% reduction in hardware and 7-12% increase in revenue
[OReillyFast, 2009].

Chapter 3

Mobile Web Performance Optimization

This chapter will explain best practices for optimizing web performance and pay additional attention to mobile
issues where needed. Most of the ideas and approaches presented here originate from Souders [2007], Souders
[2009] and from a bunch of Google Page Speed optimization rules [GoogleBestPractices, 2011]. The chapter
is divided into three sections: Roughly spoken the first is concerned with the reduction, the second with the
parallelization and the last with the size of requests. Tackling these three parameters affects client-side web
performance most effectively.

3.1 Making few (HTTP) requests

A web page usually is built up of several more or less independent components. The bare HTML document
may be the most important one but effectively not the first to concern with when it comes to web performance
optimization. To mention only the most common components, there may be images, stylesheets and script
files included into the page by referencing an external sources. Downloading many instances of these through
separate HTTP requests will likely result into a slowly building up web site. Especially on mobile devices
network latency usually is quite high and the overhead for each of many requests can become a dominating
factor in the total downloading time.

For example assuming a round-trip time (RTT)1 of 100 ms for a web site with 20 external resources (images,
stylesheets and script files) 2000 ms of the total downloading time will be spent on network overhead without
a single byte representing content being transferred. Assuming a bandwidth of 1 Mbs and an average size of
30 KB per resource will result into the content being downloaded in estimated 5 seconds. Hence, nearly a third
of the total transmission time is “lost” for not being used for content. Therefore the probably most important
point in speeding up page loading is the reduction of overhead by making as few HTTP requests as possible.

However, requests for components are not the only ones which cost loading times. Redirects and DNS
lookups also affect client-side requesting behaviour on different levels of network communication. Before
focussing on these, this section deals with performance techniques on the application level, i.e. concerning
static resources.

3.1.1 Combining Images

There are three ways of optimizing requests for images: image maps, CSS sprites and inline images. This
subsection will summarize these approaches according to Souders [2007, chap. 1].

Image maps can be used for parts of a web page which contain several links near to each other with each
being decorated by an image. Navigation bars are the most prominent examples for such page components (see
??).

1The round-trip time is the time needed for sending a request and receiving a response without taking data transfer of the payload
into account.

7

8 CHAPTER 3. MOBILE WEB PERFORMANCE OPTIMIZATION

Figure 3.1: Several adjacent images in a navigation bar for linking purposes [YouToArtNavBar, 2011].

Instead of using separate images for each of the navigational buttons and hence producing separate HTTP
requests, one could transmit the images as a whole and apply the HTML MAP tag to it. Usually the map will
associate certain areas within the image to links or Javascript event handlers.

<map name="map1">

<area shape="rect" coords="0,0,116,70" href="home.html"/>
<area shape="rect" coords="116,0,232,70" href="about.html"/>
<area shape="rect" coords="232,0,348,70" href="gallery.html"/>
<area shape="rect" coords="348,0,464,70" href="career.html"/>
<area shape="rect" coords="464,0,580,70" href="contact.html"/>

</map>

This technique can be leveraged to map circular and polygonal areas too by shape="circle" or
shape="poly" respectively.

CSS sprites function in a similar way but without being restricted to adjacent images. In fact, sprites can
combine all types of presumably non-photographic images together, for instance decorative shades, background
tiles and icons. Leveraging width, height and offset attributes in the CSS styling of an element web designers
can cut out pieces from the sprite and display it separated at any location of the web page (see 3.2).

Besides the reduction of HTTP requests and a more flexible markup with CSS sprites compared to image
maps Souders [2007, chap. 1] mentions the additional advantage that sprites typically need less file size than
the sum of the combined images as such. This results from the fact that a single image contains a more or less
fixed amount of compression specific meta-data in the header field of the file. As with sprites several images
can share this overhead without reduplication.

Furthermore GoogleRTT [2011] recommend to combine images to sprites, if they

• are loaded together on the same page, which will result in the most efficient use of the image.

• can be compressed efficiently using GIF or PNG for the borders between the pieces of images will not
be blurred as with JPEG.

• are cacheable and do not change dynamically with each page view.

• rely on similar 256 color palettes because truecolor PNG will result in a larger file size of the sprite
image.

• are small for the per-request overhead for each of them will be eliminated most effectively.

Inline images relieve the web designer from referencing the resource by an external URL with an http:
scheme. Instead the data: scheme can be applied which contains the raw data of the image, for example:

Nowadays most browsers support this type of URL scheme including Internet Explorer (IE) 8 and 9. IE
browsers up to version 7 do not. Inlining is well suited for dynamic and/or small images which must not be
cached. However, one can enforce caching the data by writing the data:-URL into a cachable CSS file like
in the following example and leveraging both performance benefits of caching and request reduction.

3.1. MAKING FEW (HTTP) REQUESTS 9

<style>
#icon {

height: 30px;
width: 30px;
background-image:

url("mysprite.png");
background-position:

-60px -30px;
}
</style>

Figure 3.2: Icons being combined in a single sprite image [YouToArtSprite, 2011] and displayed by CSS.

<img src="
AAAFCAYAAACNbyblAAAAHElEQVQI12P4//8/w38GIAXDIBKE0DHxgljNBAAO
9TXL0Y4OHwAAAABJRU5ErkJggg==" alt="Red dot"/>

Figure 3.3: An image of a red dot displayed using a data:-URL [WikipediaDataURL, 2011].

#image {
background-image: url( ...);

}

One considerable drawback concerning performance is mentioned by WikipediaDataURL [2011]. Base64
encoding maps binary data to a subset of URL safe characters which results in a data stream which is approxi-
mately one third larger. Nevertheless, this can be overcome by using GZip-compression.

3.1.2 Combining Scripts and Stylesheets

As with images externally referenced Javascript and CSS files can be combined together into one file to min-
imize the amount of HTTP requests. While being good development practice to split up code into separate
modules clients usually do not care for the modularity of a stylesheet or a script. Web developers therefore
should implement techniques to concatenate modules to one file on the server side. Souders [2007, chap. 1]
exemplifies the gain in loading times through an experimental setup and states a 38% faster response.

10 CHAPTER 3. MOBILE WEB PERFORMANCE OPTIMIZATION

Furthermore GoogleRTT [2011] recommends to split up scripts and stylesheets into two files: one for code
which is inevitably needed at startup for rendering the page and one for the rest of the logic which may not be
needed immediately.

3.1.3 Caching

After combining scripts and stylesheets the next step in speed-up web sites may be the adoption of reasonable
caching techniques. Some static resources like images or other external files which do not change often can be
taken into account for caching, i.e. storing and retrieving them locally instead of kicking off additional requests.

As for the HTTP header there are several ways to induce client-side caching. Since HTTP/1.0 there exists
the Expires field accompanied by a fixed future date denoting until when the cache of the requested resource
will be valid. However, for being limited to a fixed value the expiration date has to be reset to a new future
date as soon as the component is retrieved again. A server side module like mod expires can be leveraged
to generate such dates automatically:

<FilesMatch "\.(gif|jpg|js|css)">
ExpiresDefault "access plus 10 years"

</FilesMatch>

Figure 3.4: Automatic generation of future dates through mod expires directives [Souders, 2007, chap.
3].

Beneath a field like Expires: Sun, 5 Dec 2021 23:18:33 GMT this directive will also add
a Cache-Control: max-age=315360000 to the HTTP header. This field has been introduced in
HTTP/1.1 and provides additional cache control. In this example it overcomes the fixed date restriction of
Expires and sets the number of seconds relative to the time of requesting until when the resource should be
cached [Souders, 2007, chap. 3].

With the coming of HTML5 more flexible caching techniques are available on the client side. On the one
hand web programmers can make use of a cache-manifest where cacheable resources can be listed and on the
other hand different forms of persistent storages can be leveraged like the so-called WebStorage, the Web SQL
database and the IndexedDB.

3.1.4 Avoiding redirects

Especially with high latency times avoiding redirects can be an effective way to enhance web performance.
Redirects take a whole RTT but do not serve any content to the user. Therefore removing them will not affect
the appearance of a web site. Souders [2007, chap. 11] states that the most useless redirect is the one caused
by many web servers which add missing trailing slashes to URLs to match the root of a given directory and
hence support auto-indexing. However, in many cases this feature is not needed and can be turned off using the
appropriate directives in the configuration of the server.

Both Souders [2007, chap. 11] and GoogleRTT [2011] mention the common use of redirects for logging
page views. In this case users are accessing a resource which actually performs some logging or tracking logic
and afterwards redirects the user to the actual content. This request flow can be avoided either by implementing
the logging function within the application logic on the server side or inserting a Javascript snippet at the end
of the page which will request the logging resource asynchronously.

When it comes to mobile, GoogleMobile [2011] draws attention to the practice of many web sites to redirect
mobile clients to designated versions of the page, for example www.example.com to m.example.com. One
could work around this redirect by either removing it and serving the content of the mobile version instead
or by making the redirect cacheable. GoogleMobile [2011] recommends to add Vary: User-Agent and
Cache-Control: private to the HTTP header of the redirect. The next time the mobile agent will try

3.2. PARALLELIZING DOWNLOADS 11

to access the desktop version of the web site its client should retrieve the hostname of the mobile one from
cache redirect the agent internally.

3.1.5 Minimizing DNS lookups

In the retrieval of a web site DNS lookups show up as an additional request with the full RTT being involved.
Therefore avoiding the DNS request may be a feasible approach to reduce overall response times. However,
according to Souders [2007, chap. 9] caching of DNS queries resides outside of a web designer’s control. It are
the Internet Service Provider (ISP), the operating system and the browser which decide upon the Time-To-Live
(TTL) of DNS lookups. “The maximum TTL values sent to clients for 10 top U.S. web sites range from one
minute to one hour” [Souders, 2007, p. 65].

However, there are two ways of controlling DNS requests from the application side. The first is to reduce
DNS lookups simply by reducing the number of different hostnames appearing on a page and referring to exter-
nal resources. GoogleMobile [2011] recommends further to use URL paths instead of hostnames, for example
www.example.com/developer instead of developer.example.com. The second technique Souders [2007, chap.
9] proposes is to leverage the Connection: keep-alive HTTP header field which advices clients to
keep sockets open for further connections and avoid repeating overhead procedures like DNS lookups. Accord-
ing to Souders [2009] however a caveat is to be concerned: keep-alive needs to be set in HTTP/1.0 only
for HTTP/1.1 uses persistent connections by default. Additionally a Content-Length header field must be
set but its value may be unknown for dynamic content.

The next section will be concerned with another paradigm of speeding up web performance: parallelizing
downloads. One technique presented there will do the contrary as the last one presented in this section, namely
using multiple different hostnames. However, the situations in which such an approach would be useful will be
discussed in the next section.

3.2 Parallelizing downloads

Older browsers (for instance IE up to 7 and Firefox up to version 2.x) adhere to the RFC-HTTP [1999, sec.
8.1.4] and do not allow more than two parallel connections per hostname whereas newer browsers already use
up to six. In the worst case, a web page consisting of several components (i.e. more than two) will be adding
up RTTs per every two components requested for downloading. Souders [2009, chap. 11] coined the term
“sharding” domains for the practice of serving resources from several different (sub-)domains.

3.2.1 Sharding domains

As the restriction of RFC-HTTP [1999, sec. 8.1.4] is defined on a per-hostname basis using different CNAME
records for the same domain will fulfill the goal of parallelizing downloads. The IP address a hostname resolves
to is not taken into account in this policy. GoogleParallelize [2011] additionally suppose to ask the Content
Delivery Network (CDN) one’s web site may be using for support of this technique.

Nevertheless the restriction to two connections per hostname is well-grounded on thoughts of careful server
treatment. As Souders [2009, chap. 11] states persistent connections (keep-alive) being used in HTTP/1.1
by default cause higher workload for servers. Forcing multiple concurrent connections by sharding domains
may result in a denial of service (DOS) especially with newer browser which do not stick with the RFC. Souders
[2009, chap. 11] therefore proposes to adapt the sharding behaviour depending on the User-Agent and hence
balance connections over older and newer browsers.

As already mentioned in the previous section there is a tradeoff between the number of DNS lookups and the
number of parallel connections. The question in concern here is about the so-called “critical path”: “We define
the critical path as the code and resources required to render the initial view of a web page.” [GoogleDNS,
2011]. According to this term these are the resources which should be loaded first and fastest. Knowing the
number of components which are needed for displaying the web page one can easily determine the optimum
between performance loss caused by DNS lookups and performance gain caused by sharding domains.

12 CHAPTER 3. MOBILE WEB PERFORMANCE OPTIMIZATION

However, mobile versions should not use domain sharding anyway for mobile browsers are limited to a
low absolute maximum of around five parallel connections. Splitting requests over several domains therefore
will not lead to more connections and the additional RTTs for the DNS lookups could take down the overall
performance instead of rising it [SoudersVelocity, 2011, 22:23].

3.2.2 Loading scripts asynchronously

When it comes to Javascript (JS) files there is caveat for parallelizing downloads. GoogleParallelize [2011]
puts forward that “many browsers do not download JavaScript files in parallel, so there is no benefit from
serving them from multiple hostnames.” Other approaches need to take place in setting up concurrent script
downloads which rely on re-ordering of external components, JS snippets or HTML5 attributes. Downloading
asynchronously (i.e. in parallel) is the one thing tackled in this section. The other is controlling for the pars-
ing and execution of scripts which usually blocks the rendering of the page and becomes an important issue
especially for mobile web performance.

First to mention is the easiest and most straight forward way of avoiding blocking script downloads. Souders
[2007, chap. 6] advices to put scripts at the bottom of a page in order to let the browser fetch the presentational
content first and render it before arriving at the external script source. However, this re-ordering will not solve
the problem of sequential script downloads.

Therefore Souders [2009, chap. 4] favours several feasible asynchronous approaches. One is to use an asyn-
chronous XmlHttpRequest (XHR) to retrieve the code and consecutively pass it to Javascript’s eval()
function or inject it into a dynamically created <SCRIPT> tag. Both of it will parse and execute it finally.
From a browser’s perspective the response of the XHR does not appear as a script and by this cannot cause any
blocking behaviour. The main disadvantage may be that due the Same Origin Policy [WikipediaSOP, 2011] re-
quest URLs of XHRs must reside within the same domain as the application. This can be overcome by defining
a src of the dynamically created <SCRIPT> tag instead of retrieving the code through XHR. Sources in this
tag may be located on any domain.

Another <SCRIPT> attribute is DEFER which defers the download and execution of a script to the end
of the rendering process. Furthermore, with HTML5 an additional attribute is made available: <SCRIPT
ASYNC> will induce the browser to load the script in parallel to other components and execute it as soon it
has arrived. However, again during the execution of the script the browser will block rendering. With fast
processing client nodes this issue may not narrow the user experience but mobile devices with generally low
processing power are more likely to cause a noticeable rendering lag.

GoogleCodeMobile [2009] proposes some kind of Lazy Loading approach for slow processors. Javascript
code is downloaded asynchronously using an XHR for instance but as a string literal instead of plain code. This
type of text is kept in storage and as soon as the user demands for certain functionality only a part of the text is
passed to eval() to parse and execute the desired module. This may reduce response times on mobile devices
especially if there is a good deal of code which may not be needed and hence needs not to be parsed.

3.3 Reducing size

The last section of the best practices presented here deals with the reduction of the size of the request and of
the payload to enhance loading performance. For the first GoogleRequest [2011] recommends to minimize the
request overhead by trying to keep HTTP packages as small as possible so it fits in a TCP package of usually
1500 bytes of size. One can achieve this by avoiding unnecessary header fields which may be set automatically
by frameworks in use or default configurations of web servers. Cookie headers may be reduced to a minimum
by sending an identifier for a server-side cookie data storage only instead of sending a trail of cookie data
through the HTTP header.

Moreover cookie header can be removed from requests for static content like images or scripts. Clients can
be induced to not sending cookie data by serving static content from a designated domain. Cookies which may
be set for the dynamic part of a web site will not be sent in requests for the static domain for cookies being

3.3. REDUCING SIZE 13

associated with domain names.
For the second, Souders [2007] mentions several good practices for minimizing payload data, for instance

to use Gzip compression of textual resources and to “minify” Javascript, CSS and HTML content. To minify
means to remove insignificant whitespaces and linebreaks and to shorten identifier for variables, functions and
DOM elements.

The third thing to mention here is the usage of the Last-Modified and the ETag HTTP header fields as
described by Souders [2007, chap. 13]. As a resource being cached with an expiration date will expire finally
these fields deal with requests for a renewal of the component. Setting a Last-Modified header along with
the request for a resource the denoted date will be cached too. After expiration (set through an Expires field)
the client can send a conditional GET request using the If-Modified-Since field and asking whether the
resource has been modified since the earlier given Last-Modified value. The server then may response
either with an HTTP 304 code (Not Modified) or serve the full payload of the modified component. This
technique will also reduce loading times as cached stuff may not having been changed even after expiration.

On the contrary ETag can be used to associate some kind of unique hash value with a cached resource.
Instead of an If-Modified-Since request the client may ask for If-None-Match accompanied by the
cached ETag. Depending on whether the ETag of a resource has changed the server serves the new resource or
not. Unfortunately, by default ETags are server-specific. This means that one and same resource will be asso-
ciated with different ETags when located on different machines. However, there are ways to configure ETags
to rely on more generic file attributes like the file size and a timestamp. Souders [2007, chap. 13] also sup-
poses web programmers to consider removing ETags completely and leveraging the simpler Last-Modified
header instead.

14 CHAPTER 3. MOBILE WEB PERFORMANCE OPTIMIZATION

Chapter 4

Evaluation of Tools

In this section two performance measurement tools will be presented and evaluated. The first section deals with
Google Page Speed, the second with Fiddler and the last section will compare the two and draw a conclusion.

4.1 Google Page Speed

There is a tool from Google to Test the speed of websites. This is called Google Page Speed. Google provides
basically three types of services.

1. Apache - Module

2. Google Page Speed Service

3. Google Page Speed Online / Browserplugin

These services have advantages and disadvantages which will all be discussed in more detail in the follow-
ing pages but the main focus will be on the Google Page Speed Online tool. This tool is used to evaluate a
popular website:amazon.com

4.1.1 Google Page Speed Service

[Google, 2011d] The basic idea of this Service is, that a website provider does not have to deal with the speed
issue at all because Google will take total care of this issue by hosting the website. This is done in the following
way. The provider of the Website signs up with the domain, verifies the ownership of the domain by a DNS-
Entry and redirects the requests set a CNAME DNS-Entry to the Google-servers. The Google-Servers gets
all the content from the signed domain and all the HTML-sites are rewritten to increase the load speed. After
setting up the Google Page Speed Service the provider has access to the Google APIs Console, where several
settings can be made or changed on the Rewrite Service. The provider can enable or disable the following
settings:

• Combine CSS

• Move CSS to Head

• Combine Javascript

• Optimize Javascript

• Optimize Images

• Resize Images

15

16 CHAPTER 4. EVALUATION OF TOOLS

• Proxy CSS

• Proxy Images

• Proxy Javascript

Advantages

• Provider does not have to know anything about best practice on web performance

• Google-Servers automatically fetch content and optimize it

• Google-Servers serve requests

• Google-Servers are more fail-safe than private servers

Disadvantages

• Google has all content of the website.

• Depending on Google

4.1.2 Google Page Speed - Apache Module

[Google, 2011a] Google implemented a loadable module for the Apache Webserver. The idea is that the server
rewrites the HTML sites on-the-fly to improve the speed of the page. The module is open-source and uses filters
to rewrite the resources. The webmaster only has to load the module on the Server and change some settings
in a special configuration file. The benefit on this technique is that the web developer does not have to think or
even have to know the best practice on web performance. The developer only implements the website and the
server does the rest. The module implements the following filters to increase web performance:

• JavaScript optimization

• HTML optimization

• CSS optimization

• Image optimization

• Caching optimization

Advanteges

• The Web developer does not need to know web performance best practice

• The Server does all the optimization with filters

Disadvantages

• The Webmaster has to load the module and configure it

• Only available for Apache Webservers

4.1. GOOGLE PAGE SPEED 17

4.1.3 Google Page Speed Online

[Google, 2011b] Google Page Speed is a tool which evaluates a website. It can be used in an online version or
as a plug-in for Google Chrome or Mozilla Firefox. Here the online version will be looked at in more detail.
Google Page Speed Online is basically a stopwatch. It measures the time it takes to load the page. The tool
returns a Score between zero and one-hundred according to the HTML-code of the site. It analyses the HTML-
code and gives recommendations to improve the performance. The tool can work in two different modes. First
in the Desktop-Mode which means that the tool tests the desktop version of the Website. Second it can work
in Mobile-Mode; in this mode the mobile version of the Website is tested, which is rather useful since almost
every website has a mobile version.

Userinterface

The Userinterface of the Google Page Speed Online is very simple. Basically, the Userinterface consists of a
text field where the URL is entered. A simple click on ”Analyze” and the tool starts to evaluate the Website.

This takes a few moments and after the Website was evaluated the User gets the results and recommenda-
tions of how to improve it. If one wants to switch between the mobile and the desktop mode, the analysis has
to be done since it is only possible to switch between the modes in the analysis summary.

Figure 4.1: Google Page Speed - Userinterface

18 CHAPTER 4. EVALUATION OF TOOLS

Recommendation

After the analysis the tool shows the recommendations separated in high, medium and low priorities. There
is also a section for ”Experimental rules”; in this section rules are displayed which are not yet approved.
The recommendations with the highest priority will increase the performance best and in the ”Already done”
section the tool shows rules which have already been applied to the website. All the suggestion will increase
the performance of the webpage in different way. To get detailed information on how this is done, it is possible
to click on each of the single recommendations.

Figure 4.2: Google Page Speed - Suggestion Summary

Figure 4.3: Google Page Speed - Recommendation in Detail

4.1. GOOGLE PAGE SPEED 19

Amazon.com in Desktop-Mode

[Google, 2011c] To show the features of the tool an analysis on the Amazon.com Website was done. The
analysis of Amazone.com ended with the result of 92 points out of 100. The good result leads to a small
amount of recommendations.

• High priority:

– Combine Pictures in CSS-Sprites

• Medium priority:

– Minimize Redirections

• Low priority:

– Compress Images

– Minimize Javascript, HTML, CSS

– Use Browser-Caching

– Activate Compression

– Move CSS to Head

– Define Encoding

• Experimental rules:

– Avoid Serialized Requests

– Avoid unnecessary Layout-updates

Figure 4.4: Google Page Speed - Desktopmode: Amazon.com

20 CHAPTER 4. EVALUATION OF TOOLS

Amazon.com in Mobile-Mode

[Google, 2011c] The major difference in the Mobile-Mode is that, the analysis is made on the mobile version
of the website. These websites differ to the desktop versions in many ways for instance in the screen resolution.
On mobile devices is even more important that the website works at its best due the high Round-Trip-Time and
the low CPU performance. The analysis on Amazon.com returned 64 Points out of 100. This result leads to a
list of recommendations.

• High priority:

– Combine Pictures in CSS-Sprites

• Medium priority: NO Suggestions

• Low priority:

– Cacheable Redirections

– Use Cache-Validator

– Use Browser-Caching

– Optimize Images

– Remove ? from Static Requests

• Experimental rules:

– Use Applicationcache

Figure 4.5: Google Page Speed - Mobilemode: Amazon.com

4.2. FIDDLER 21

4.2 Fiddler

4.2.1 Origins

[Fiddler, 2011a]
The Fiddler Web Debugger is a Proxy Server which logs HTTP and HTTPS traffic. The tool allows the user to
extend the provided functionality with a powerful event-based scripting subsystem using any .NET language.
The name of the software derives from ”fiddling” with incoming and outgoing data, because the user can ma-
nipulate requests and responses as well as any other information that goes through the proxy.

[Eric Lawrence, 2009]
Fiddler is the brainchild of Eric Lawrence, a Program Manager at Microsoft, responsible for Internet Explorer
security. He first released Fiddler in 2003 with very limited functionality, but it was the best option at the
time, as HTTP-Request debugging back then usually consisted of using a packet-sniffer and manually looking
through all the headers and the packets. Lawrence worked with the ClipArt team at Microsoft at the time and
was looking for a more efficient way to analyse and debug HTTP-Traffic and thus Fiddler was born.

Six years after the first release of the tool in 2003, Lawrence released Fiddler2, a very sophisticated web
debugging software written completely in .NET. It was designed for extensibility, allowing users to write their
own filters and such, so that he, because Lawrence was working on the project alone, wouldn’t have to imple-
ment a routine for every possibility.
Today there is a huge community behind the tool and there are very complex third party extensions as well such
as neXpert [neXpert, 2011].

4.2.2 Features

[Eric Lawrence, 2009], [John Hrvatin, 2009], [Eric Lawrence, 2011]

Traffic Monitoring and Archiving

Fiddler can capture traffic, save it, reuse it and compress it into different formats in order to send it to another
location. The tool is a proxy server, and thus can be used from every possible endpoint such as mobile phones,
desktops or other servers. It uses the WINInet Stack, which is used by every commonly used browser except
Mozilla Firefox, but there is an addon for that as well. The user can basically set every application to the proxy
and let the generated traffic run through Fiddler.

Once some HTTP-traffic is captured, it can also be archived and saved into various binary formats and es-
peciall into the SAZ, the Session Archive ZIP, which is a very efficient way to distribute traffic.
For example, for testing in an external Intranet, one could capture the traffic internally, save it and then send it
to the responsible IT-engineers for further analysis using Fiddler.

Traffic Analysis and Manipulation

The main part of the functionality revolves around the analysis and manipulation of the captured traffic. Users
can filter HTTP traffic in every imaginable way (because of the high extensibility) and even create automated
routines to filter out certain aspects. The traffic can also be easily compared, for example to see what changed
between two identical requests when executed at different times.

To further improve the efficiency in finding errors, Fiddler provides many features to manipulate the active
traffic, such as breakpoint-debugging, making it possible to edit every request before it leaves and every re-
sponse before it returns, thus opening endless possibilities to test different settings of headers, hardware and

22 CHAPTER 4. EVALUATION OF TOOLS

software, without actually changing any of these things.

The Requestbuilder and Autoresponder are two other features which can be used for automated manipulation
of the traffic, with these tools you could, for example, change every picture on a website to a certain picture
you define. The timeline gives a nice overview of what takes how long and where the bottlenecks appear to be.

Figure 4.6: Fiddler built-in timeline

Performance (Mobile)

The tool provides some built-in functionality for performance-testing such as the simulation of slower net-
work speeds, compression and caching manipulation. Furthermore there are many extensions dealing with the
different facettes of performance testing, especially neXpert.

Figure 4.7: Fiddler built-in performance tools

4.2. FIDDLER 23

Test Integration

Fiddler provides the user with FiddlerCore, a .NET library for integration into applications. Using this library
makes it possible for web-applications to access Fiddler-Features and simulate trafic using all available filters
and modifications available to the software. It can be integrated very easily.

Before FiddlerCore, this was only able through the ExecAction.exe tool provided by Eric Lawrence, which
made it possible to use certain Fiddler features from externally.

List of popular Extensions

[Fiddler, 2011b]

• SyntaxView, Syntax-Highlighting

• neXpert, Performance

• stressStimulus, load testing

• Gallery, Pictures

• AnyWHERE, locale spoofer

• Ammonite / Watcher, security

• HTML Inspector, checks HTML responses for inefficiencies

• Request-to-code, translates a request to .NET code

24 CHAPTER 4. EVALUATION OF TOOLS

4.2.3 Test of amazon.com

Setup and Motivation

Finding an appropriate website to test a tool such as Fiddler is no easy task, there are many and more pages
in the web in need of some serious optimization. By using a huge site like amazon.com, the tester can be
fairly certain that, with millions of users visiting and actively using the application every hour of every day, the
webteam of Amazon already did some testing on their own and probably removed all obvious problems which
would otherwise lead to a laggy and slow experience for their customers.

Using Fiddler [Fiddler, 2011a] with the extension neXpert [neXpert, 2011] provides the tester with a lot of
options. NeXpert itself includes the ability to divide the whole traffic into steps in order to split up the more
and less performance-relevant parts of the timeline and thus having a better overview of the parts which are
causing the problems. Through other extensions, self-made or downloaded, the tester can filter or manipulate
some of the incoming traffic as well in order to search for very specific areas of problems (for example large
images).

Once everything is set up and ready, the user can just create a report using the neXpert extension, which is
then saved on the local filesystem. This report is in HTML-format and provides a well structured overview of
the areas neXpert found ways to improve upon.

Figure 4.8: neXpert-Report of the amazon.com mainpage

4.2. FIDDLER 25

Traffic Analysis

Fiddler, or rather neXpert does this by analysing the recorded traffic and checking the data for known problems
such as missing expires-headers or large images. The tester could basically do this by him / herself manually
by just browing through the traffic generated by the opening of amazon.com.

The traffic can be filtered, manipulated and displayed in many different ways, making it easier for the user
to see possible problems. The in-built timeline function of Fiddler is very helpful as well, especially when
trying to figure out where to set neXpert’s Step-Markers. For example, users can iteratively move the step-
markers further forward if there are no problems in the first, for example, 30 milliseconds of the page-request,
thus eliminating unneccessary checking everytime.

Once captured, the traffic can be reused over and over again, so that a tester doesn’t have to rely on the maybe
varying performance of his / her ISP or Computer.

Figure 4.9: Fiddler traffic of the amazon.com website

26 CHAPTER 4. EVALUATION OF TOOLS

Results

During our extensive testing Fiddler and neXpert yielded some very interesting results. The report showed the
following areas:

• HTTP Response Codes
If a request returns a non-HTTP 200 response code, that can be very costly, so in this section, these
occurences are shown with their respective files. The tested website amazon.com showed two of these
problems, both coming from external advertising-sites.

• Static Files
The Static-Files section shows all Javascript and CSS files that could be merged together to improve
performance. As expected there are quite a lot of these, especially from dynamic sources.

• Large Image Files
This section is fairly self-descriptive, it just lists images over a certain threshold size the user can config-
ure. In this case, amazon.com had two images with a size over 25 KB, which was the threshold we used
for the test.

• Compression
Here are some recommendations on which files were not compressed with a detailed statistic on how
much bytes could have been saved by using some kind of compression. In the amazon.com example, the
decrease would have been 0,6 %, so it was hardly relevant.

• ETag
The Etag section covers the validation header for objects in a user’s cache. There were three objects that
stood out and there is some helpful information on how to configure Etags on Apache Webserver.

• Cache Headers
This section deals with missing headers on files concerning the caching of objects. Some of these headers
will usually be missing on purpose, for some kind of dynamic content, but caching is a very important
part of web-performance, so the tester should browse through the shown files very carefully and decide
for each and everyone, if it really shouldn’t be cached.

• Connection Header
Two objects on the amazon.com page included a Connection header set to ”close”, which closes the TCP
connection, thus leading to performance issues.

• Cookies
Here a table is created showing each cookie, where it comes from and their respective size

Some of these results are to be expected of almost any website, such as the Static Files and some missing
Cache Headers, others, like weird Connection Headers or ETag settings are not as common. NeXpert provides
the user not only with a detailed statistic of the problems it found, there are all sorts of links to recommenda-
tions and problem-solving possibilities for the problem at hand for each of the mentioned sections, making it
rather easy to get rid of a problem once it has been isolated and found.

Overall though, as expected, the amazon.com website passed with flying colors, the suggested changes were
all pretty minor and are, in some cases unavoidable while retaining the same level of functionality on the site.

4.3. COMPARISON 27

4.3 Comparison

4.3.1 Google Page Speed

Google Page Speed is a light-weight optimization tool which provides the user with a numerical rating between
0 and 100. 0 being the worst and 100 being the best score.

The tool runs in two Modes: Desktop and Mobile. These modes don’t differ in straight functionality, but
the recommendations differ at some points. The main focus of Google Page Speed is to make it a fast and very
easy to use tool, not only for professional web-developers, but also for less experienced users who look for an
efficient way to improve the speed of their web applications.

Google Page Speed is neither easily extensible nor does it provide extended functionality beyond just mea-
suring the time a certain page loads and and giving recommendations on how to speed it up, but users do not
have to download or install anything or read documentation at all, which makes it widely usable.

4.3.2 Fiddler

Fiddler is a well documented, feature- and extension rich Tool which provides nearly endless functionality for
users who are not afraid to play around with it and read some of the well maintained documentation. Especially
neXpert, being the leading performance-optimization extension, provides a whole plethora of detailed informa-
tion and recommendations for improving the speed of a website.

NeXpert does not provide a numerical rating or anything of that kind, but rather focuses on very granular
statistics and details about the problems found by the tool. The generated report includes recommendations and
links leading to best practices and concrete suggestions to solve the problems at hand.

Besides neXpert, Fiddler also provides some built-in features such as a method to simulate slow network speeds
and ways to spoof almost any relevant information, making it very well suited for in-depth analysis of where
there are problems to be found.

4.3.3 Conclusion

To summarize, Google Page Speed is definitely the choice if the user wants some straightforward, easy to use
and fast way to improve the performance of a website. It gives a well compressed overview and the suggestions
provided by the tool are rock solid and will definitely have an improving effect.

Fiddler on the other hand isn’t as simple and users have to actually download and install the core program
itself and any needed extensions themselves. If the user manages to get the program working, it provides a
large amount of functionality and fairly easy to use extensions like nExpert which will provide a detailed report
with recommendations and the exact locations of the concerned files.

References

BuildwithMobile [2011]. Mobile Web Technology Report 2011. http://trends.builtwith.com/

Reports/Mobile-Web-Technology-2011/Mobile-Web-Technology-2011.html.

BusinessWeek [2008]. BusinessWeek.com. http://www.businessweek.com/innovate/content/

jun2008/id20080623_013282.htm.

Cristobal, V. [2010]. Mobile Web Mashups: The long tail of mobile applications. http://www.

mobilemashups.com/Mobile_Web_Mashups.pdf.

ElatedTen [2011]. 10 Ways the Mobile Web is Different. http://www.elated.com/articles/10-ways-
the-mobile-web-is-different/.

Eric Lawrence [2009]. Become a Web Debugging Virtuoso with Fiddler. http://www.microsoftpdc.com/
2009/CL25.

Eric Lawrence [2011]. Fiddler Wiki. http://fiddler.wikidot.com/.

Fiddler [2011a]. Fiddler Blog. http://blogs.msdn.com/b/fiddler/.

Fiddler [2011b]. Useful Extensions for Fiddler. http://www.fiddler2.com/Fiddler2/extensions.

asp.

Google [2011a]. mod-pagespeed Overview. http://code.google.com/speed/page-speed/docs/

module.html.

Google [2011b]. Page Speed Online. http://code.google.com/speed/page-speed/docs/online.

html.

Google [2011c]. Page Speed Online. https://developers.google.com/pagespeed/.

Google [2011d]. Page Speed Service - Google. http://code.google.com/speed/pss/docs/

overview.html.

GoogleBestPractices [2011]. Web Performance Best Practices. http://code.google.com/intl/de-DE/
speed/page-speed/docs/rules_intro.html.

GoogleCodeMobile [2009]. Gmail for Mobile HTML5 Series: Reducing Startup Latency. http://

googlecode.blogspot.com/2009/09/gmail-for-mobile-html5-series-reducing.html.

GoogleDNS [2011]. Minimize DNS lookups. http://code.google.com/speed/page-speed/docs/

rtt.html#MinimizeDNSLookups.

GoogleMobile [2011]. Optimize for mobile. http://code.google.com/intl/de-DE/speed/page-

speed/docs/mobile.html.

GoogleParallelize [2011]. Parallelize downloads across hostnames. http://code.google.com/speed/

page-speed/docs/rtt.html#ParallelizeDownloads.

28

http://trends.builtwith.com/Reports/Mobile-Web-Technology-2011/Mobile-Web-Technology-2011.html
http://trends.builtwith.com/Reports/Mobile-Web-Technology-2011/Mobile-Web-Technology-2011.html
http://www.businessweek.com/innovate/content/jun2008/id20080623_013282.htm
http://www.businessweek.com/innovate/content/jun2008/id20080623_013282.htm
http://www.mobilemashups.com/Mobile_Web_Mashups.pdf
http://www.mobilemashups.com/Mobile_Web_Mashups.pdf
http://www.elated.com/articles/10-ways-the-mobile-web-is-different/
http://www.elated.com/articles/10-ways-the-mobile-web-is-different/
http://www.microsoftpdc.com/2009/CL25
http://www.microsoftpdc.com/2009/CL25
http://fiddler.wikidot.com/
http://blogs.msdn.com/b/fiddler/
http://www.fiddler2.com/Fiddler2/extensions.asp
http://www.fiddler2.com/Fiddler2/extensions.asp
http://code.google.com/speed/page-speed/docs/module.html
http://code.google.com/speed/page-speed/docs/module.html
http://code.google.com/speed/page-speed/docs/online.html
http://code.google.com/speed/page-speed/docs/online.html
https://developers.google.com/pagespeed/
http://code.google.com/speed/pss/docs/overview.html
http://code.google.com/speed/pss/docs/overview.html
http://code.google.com/intl/de-DE/speed/page-speed/docs/rules_intro.html
http://code.google.com/intl/de-DE/speed/page-speed/docs/rules_intro.html
http://googlecode.blogspot.com/2009/09/gmail-for-mobile-html5-series-reducing.html
http://googlecode.blogspot.com/2009/09/gmail-for-mobile-html5-series-reducing.html
http://code.google.com/speed/page-speed/docs/rtt.html#MinimizeDNSLookups
http://code.google.com/speed/page-speed/docs/rtt.html#MinimizeDNSLookups
http://code.google.com/intl/de-DE/speed/page-speed/docs/mobile.html
http://code.google.com/intl/de-DE/speed/page-speed/docs/mobile.html
http://code.google.com/speed/page-speed/docs/rtt.html#ParallelizeDownloads
http://code.google.com/speed/page-speed/docs/rtt.html#ParallelizeDownloads

REFERENCES 29

GoogleRequest [2011]. Minimize request overhead. http://code.google.com/speed/page-speed/

docs/request.html.

GoogleRTT [2011]. Minimize round-trip times. http://code.google.com/speed/page-speed/docs/
rtt.html.

Hiren, N.; Billy B.L. [2008]. Mobile Computing With Web 2.0: Current State-Of-The-Art, Issues and Chal-
lenges. http://www.iacis.org/iis/2008_iis/pdf/S2008_1104.pdf.

John Hrvatin [2009]. Building High Performance Web Applications and Sites. http://channel9.msdn.

com/Events/MIX/MIX09/T53F.

Kroski, Ellyssa [2009]. On the Move with the Mobile Web: Libraries and Mobile Technologies. http:

//eprints.rclis.org/bitstream/10760/12463/1/mobile_web_ltr.pdf.

Matt Murphy, Mary Meeker [2011]. Top Mobile Internet Trends. http://www.techweb.com.cn/

special/download/kpcb.pdf.

Maximilien, M.E. [2008]. Mobile Mashups: Thoughts, Directions, and Challenges. http://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=04597253.

MogisticCondition [2007]. The Condition, Challenges and Opportunities of the Mobile Web.
http://www.mogistic.com/assets/mogistic/pdfs/WhitePaper-TheCondition,

ChallengesandOpportunitiesoftheMobileWeb-v07252007.pdf.

Morgan, S. [2009]. The Mobile Internet Report. http://www.morganstanley.com/institutional/

techresearch/pdfs/Theme_8_Regulatory_Impact.pdf.

neXpert [2011]. neXpert Blog. http://blogs.msdn.com/b/nexpert/.

NokiaFirst [2011]. Nokia.com. http://www.nokia.com/NOKIA_COM_1/About_Nokia/Sidebars_

new_concept/Nokia_firsts/Firsts.pdf.

NubiqGrowing [2011]. Growing Use of Mobile Websites. http://www.nubiq.com/white-papers/

GrowingUseofMobileWebsites.pdf.

OperaMobile [2011]. State of the Mobile Web, February 2011. http://media.opera.com/media/smw/

2011/pdf/smw022011.pdf.

OReillyFast [2009]. Making Your Site Fast. http://radar.oreilly.com/2009/07/velocity-

making-your-site-fast.html.

Passani, Luca [2010]. Global Authoring Practices for the Mobile Web. http://www.passani.it/gap/.

QuantcastTop [2011]. Quantcast Top Sites. http://www.quantcast.com/top-sites-1.

RFC-HTTP [1999]. RFC Hypertext Transfer Protocol – HTTP/1.1 – section 8. http://www.w3.org/

Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4.

Souders, Steve [2007]. High Performance Web Sites. O’Reilly, CA, USA. ISBN 0596529309.

Souders, Steve [2009]. Even Faster Web Sites. O’Reilly, CA, USA. ISBN 9780596522308.

SoudersVelocity [2011]. Steve Souders: High Performance Mobile. http://www.youtube.com/watch?

feature=player_detailpage&v=5ENYA_RCCjM.

http://code.google.com/speed/page-speed/docs/request.html
http://code.google.com/speed/page-speed/docs/request.html
http://code.google.com/speed/page-speed/docs/rtt.html
http://code.google.com/speed/page-speed/docs/rtt.html
http://www.iacis.org/iis/2008_iis/pdf/S2008_1104.pdf
http://channel9.msdn.com/Events/MIX/MIX09/T53F
http://channel9.msdn.com/Events/MIX/MIX09/T53F
http://eprints.rclis.org/bitstream/10760/12463/1/mobile_web_ltr.pdf
http://eprints.rclis.org/bitstream/10760/12463/1/mobile_web_ltr.pdf
http://www.techweb.com.cn/special/download/kpcb.pdf
http://www.techweb.com.cn/special/download/kpcb.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04597253
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04597253
http://www.mogistic.com/assets/mogistic/pdfs/WhitePaper-TheCondition,ChallengesandOpportunitiesoftheMobileWeb-v07252007.pdf
http://www.mogistic.com/assets/mogistic/pdfs/WhitePaper-TheCondition,ChallengesandOpportunitiesoftheMobileWeb-v07252007.pdf
http://www.morganstanley.com/institutional/techresearch/pdfs/Theme_8_Regulatory_Impact.pdf
http://www.morganstanley.com/institutional/techresearch/pdfs/Theme_8_Regulatory_Impact.pdf
http://blogs.msdn.com/b/nexpert/
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Sidebars_new_concept/Nokia_firsts/Firsts.pdf
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Sidebars_new_concept/Nokia_firsts/Firsts.pdf
http://www.nubiq.com/white-papers/GrowingUseofMobileWebsites.pdf
http://www.nubiq.com/white-papers/GrowingUseofMobileWebsites.pdf
http://media.opera.com/media/smw/2011/pdf/smw022011.pdf
http://media.opera.com/media/smw/2011/pdf/smw022011.pdf
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://www.passani.it/gap/
http://www.quantcast.com/top-sites-1.
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4
http://www.amazon.com/exec/obidos/ASIN/0596529309/
http://www.amazon.com/exec/obidos/ASIN/9780596522308/
http://www.youtube.com/watch?feature=player_detailpage&v=5ENYA_RCCjM
http://www.youtube.com/watch?feature=player_detailpage&v=5ENYA_RCCjM

30 REFERENCES

StrangeloopCustomers [2011]. Mobile Site Performance is Turning Customers Away. http:

//www.strangeloopnetworks.com/resources/product-information/whitepaper-

strangeloop-mobile-website-optimization/mobile-site-performance-is-turning-

customers-away/.

StrangeloopMobile [2011]. Mobile Site Optimization. http://www.strangeloopnetworks.com/

assets/PDF/downloads/Whitepaper-Mobile-Site-Optimization.pdf.

Telecomvisions [2011]. Explaining the success of NTT DOCOMO’s i-mode wireless internet service. http:
//www.telecomvisions.com/articles/pdf/fransman_imode.pdf.

VisionMobile [2011]. Developer Economics 2011 – Winners and losers in the platform race.
http://www.visionmobile.com/blog/2011/06/developer-economics-2011-winners-

and-losers-in-the-platform-race/.

W3Mobile [2008]. Mobile Web for Social Development Roadmap. http://www.w3.org/2008/MW4D/

docs/mw4d_roadmap_color.pdf.

WikipediaDataURL [2011]. Data URI scheme. http://en.wikipedia.org/wiki/Data_URI_scheme.

WikipediaSOP [2011]. Same origin policy. http://en.wikipedia.org/wiki/Same_origin_policy.

YouToArtNavBar [2011]. YouToArt.com. http://www.youtoart.com/html/Vector/Icon_Logo/

7999.html.

YouToArtSprite [2011]. YouToArt.com. http://www.youtoart.com/html/Icon/Website/12245.

html.

Zhang, D.; Adipat B. [2005]. Challenges, methodologies, and issues in the usability of testing mobile
applications. International Journal of Human-Computer Interaction, 18(4), 293–308. doi:10.1207/
s15327590ijhc1803 3.

http://www.strangeloopnetworks.com/resources/product-information/whitepaper-strangeloop-mobile-website-optimization/mobile-site-performance-is-turning-customers-away/
http://www.strangeloopnetworks.com/resources/product-information/whitepaper-strangeloop-mobile-website-optimization/mobile-site-performance-is-turning-customers-away/
http://www.strangeloopnetworks.com/resources/product-information/whitepaper-strangeloop-mobile-website-optimization/mobile-site-performance-is-turning-customers-away/
http://www.strangeloopnetworks.com/resources/product-information/whitepaper-strangeloop-mobile-website-optimization/mobile-site-performance-is-turning-customers-away/
http://www.strangeloopnetworks.com/assets/PDF/downloads/Whitepaper-Mobile-Site-Optimization.pdf
http://www.strangeloopnetworks.com/assets/PDF/downloads/Whitepaper-Mobile-Site-Optimization.pdf
http://www.telecomvisions.com/articles/pdf/fransman_imode.pdf
http://www.telecomvisions.com/articles/pdf/fransman_imode.pdf
http://www.visionmobile.com/blog/2011/06/developer-economics-2011-winners-and-losers-in-the-platform-race/
http://www.visionmobile.com/blog/2011/06/developer-economics-2011-winners-and-losers-in-the-platform-race/
http://www.w3.org/2008/MW4D/docs/mw4d_roadmap_color.pdf
http://www.w3.org/2008/MW4D/docs/mw4d_roadmap_color.pdf
http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Same_origin_policy
http://www.youtoart.com/html/Vector/Icon_Logo/7999.html
http://www.youtoart.com/html/Vector/Icon_Logo/7999.html
http://www.youtoart.com/html/Icon/Website/12245.html
http://www.youtoart.com/html/Icon/Website/12245.html
http://dx.doi.org/10.1207/s15327590ijhc1803_3
http://dx.doi.org/10.1207/s15327590ijhc1803_3

	1 Introduction
	2 Mobile Web
	2.1 The Benefits of the Mobile Web
	2.2 Limitations and Challenges
	2.3 Performance and Optimization

	3 Mobile Web Performance Optimization
	3.1 Making few (HTTP) requests
	3.1.1 Combining Images
	3.1.2 Combining Scripts and Stylesheets
	3.1.3 Caching
	3.1.4 Avoiding redirects
	3.1.5 Minimizing DNS lookups

	3.2 Parallelizing downloads
	3.2.1 Sharding domains
	3.2.2 Loading scripts asynchronously

	3.3 Reducing size

	4 Evaluation of Tools
	4.1 Google Page Speed
	4.1.1 Google Page Speed Service
	4.1.2 Google Page Speed - Apache Module
	4.1.3 Google Page Speed Online

	4.2 Fiddler
	4.2.1 Origins
	4.2.2 Features
	4.2.3 Test of amazon.com

	4.3 Comparison
	4.3.1 Google Page Speed
	4.3.2 Fiddler
	4.3.3 Conclusion

	References

