
Static Site Generators

Group 2

Reinhard Egger, Daniel Geiger, Lorenz Leitner and Peter Oberrauner

706.041 Information Architecture and Web Usability WS 2019/2020
Graz University of Technology

02 Dec 2019

Abstract
Static Site Generators are tools to automatically create fully-fledged HTML web pages that
can be served statically to each client with no need for regeneration. In an age of per-client
dynamically created web pages, static web pages offer a valuable alternative, the benefits
of which are discussed in this survey paper. The way in which Static Site Generators work
and what technologies they use is described, as well as how content can be rendered on the
web in general. An overview of the most relevant Static Site Generators and their features is
given, although not all can be mentioned due to the sheer number of Static Site Generators
in existence. A concluding recommendation for people looking to choose a tool suited to
their liking is provided as well.

© Copyright 2019 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents iii

List of Figures v

List of Tables vii

List of Listings ix

1 Introduction 1
1.1 Basics . 1

1.1.1 How They Work . 1
1.1.2 Example . 1

1.2 Alternatives . 1
1.2.1 CMS . 2
1.2.2 Flat-File CMS . 2

2 Methods of Rendering Content on the Web 5
2.1 Server-Side Rendering (SSR) . 5

2.1.1 Strengths . 5
2.1.2 Weaknesses . 5

2.2 Client-Side Rendering (CSR) . 6
2.2.1 Strengths . 6
2.2.2 Weaknesses . 6

2.3 Static Rendering . 6
2.3.1 Strengths . 6
2.3.2 Weaknesses . 7
2.3.3 Rendering of Dynamic Content . 7

3 Templating Engines 9
3.1 Advantages . 9
3.2 Example . 9
3.3 Types of Different Templating Engines . 9
3.4 Consolidate.js . 9
3.5 Syntax Similarities . 10

i

4 Overview of Static Site Generators (Standout Features) 11
4.1 Jekyll (Ruby) . 11

4.1.1 Input Languages . 11
4.1.2 Main Use . 11
4.1.3 Templating Engine . 12
4.1.4 Content Model . 12
4.1.5 Asset Pipeline . 12
4.1.6 Extension Possibility . 12

4.2 Hugo (Go) . 12
4.2.1 Input Languages . 12
4.2.2 Usability . 13
4.2.3 Community . 13
4.2.4 Build Performance . 13
4.2.5 Main Use . 13
4.2.6 Templating Engine . 13
4.2.7 Content Model . 13
4.2.8 Asset Pipeline . 13
4.2.9 Extension Possibility . 13

4.3 Metalsmith (JS) . 14
4.3.1 Input Languages . 14
4.3.2 Usability . 14
4.3.3 Community . 14
4.3.4 Build Performance . 14
4.3.5 Main Use . 14
4.3.6 Templating Engine . 14
4.3.7 Extension Possibility . 14

4.4 Wintersmith (JS) . 15
4.4.1 Input Languages . 15
4.4.2 Usability . 15
4.4.3 Community . 15
4.4.4 Build Performance . 15
4.4.5 Main Use . 15
4.4.6 Templating Engine . 15
4.4.7 Extension Possibility . 15

4.5 Sculpin (PHP) . 15
4.5.1 Input Languages . 16
4.5.2 Usability . 16
4.5.3 Community . 16
4.5.4 Build Performance . 16
4.5.5 Main Use . 16
4.5.6 Templating Engine . 16
4.5.7 Extension Possibility . 16

4.6 Frontend-Framework-Based SSGs (JS) . 16
4.6.1 Input Languages . 16

ii

4.6.2 Usability . 17
4.6.3 Community . 17
4.6.4 Build Performance . 17
4.6.5 Main Use . 17
4.6.6 Extension Possibility . 17
4.6.7 Gatsby . 17
4.6.8 React Static . 18
4.6.9 Next . 18
4.6.10 Nuxt . 19
4.6.11 Gridsome . 19

4.7 Overview of SSG Characteristics . 19

5 Concluding Remarks 25
5.1 Ranking . 25
5.2 Recommendation . 25

Bibliography 27

iii

iv

List of Figures

1.1 Static Site Generator Diagram . 2
1.2 Hugo Example . 3

v

vi

List of Tables

4.1 Characteristics overview of Hugo, Metalsmith, Next.js, Jekyll 20
4.2 Characteristics overview of Nuxt, Mikser, Harp, Wintersmith 21
4.3 Characteristics overview of Roots, Middleman, Kirby, Grav 22
4.4 Characteristics overview of Pico CMS, Gatsby, React Static, Sculpin 23

vii

viii

List of Listings

1.1 Hugo Example . 2

3.1 Pug Syntax Example . 10
3.2 Pug Generated Code Example. 10

4.1 FrontMatter . 12
4.2 GatsbyFileStructure . 17
4.3 GatsbyTemplateExample . 18

ix

x

Chapter 1

Introduction

Static Site Generators are increasingly popular tools to generate Hypertext Markup Language (HTML)
web pages. Before static site generators existed, web developers wrote HTML web pages by hand,
which is time-consuming and does not adhere to the Don’t Repeat Yourself (DRY) principle, as much
of the HTML code is essentially the same, most often only differing in content, while the structure code
necessary for the page setup remains the same.

1.1 Basics
Static site generators take care of much of the leg work web developers used to have to do. Only the
content and some optional metadata need to be entered manually, the surrounding HTML code is created
automatically by the generator. Even fully-fledged websites can be created like this, for example some
additional menus, headers or footers to accompany the content.
This generation of web pages can occur only once on the server, when new content is added, or existing

content is changed. The generated HTML is then stored on the server and can be served to each connecting
client as-is, which is the definition of static web pages. In contrast to that, there are dynamic web pages,
which are generated (differently) for each connecting client on the fly. Static web pages have the benefits
of faster delivery and less workload for the server, but they are by definition the same for each client,
that means there can occur no per-client customization or other dynamic content without some additional
workarounds. See Chapter 2 about all possibilities of rendering content on the web and Section 2.3.3 for
elaborations on how dynamic content can be rendered into static websites.

1.1.1 How They Work
Most static site generators use some form of markup language, like Markdown, for the creation of content
[Gruber 2004]. A templating engine is used to create the HTML. See Chapter 3 for further information
about templating engines. A simplified illustration of this can be seen in Figure 1.1.

1.1.2 Example
Listing 1.1 shows a simple example of an input file used in Hugo [French 2019], a static site generator
written in the Go programming language. The resulting HTML web page generated from this input file
can be seen in Figure 1.2.

1.2 Alternatives
Content Management Systems are usually used when hosting a blog with a full blown interface to work
on. Flat-file Content Managament Systems are an alternative if the use of any command line or writing
code is unwanted.

1

2 1 Introduction

Template

Compile

Content

Website

Figure 1.1: The content is taken by the static site generator, which combines it with a templating
engine to compile it into a fully-fledged static HTML web page, or if needed, a website.
[Redrawn from Kato [2012]]

1 ---
2 author: "Jon Doe"
3 title: "Test Post"
4 date: 2019-11-14T11:04:53+02:00
5 ---
6 # Hello
7 Lorem ipsum dolor sit amet...

Listing 1.1: Hugo Example input file. Metadata is formatted in YAML. Below that is content
formatted in Markdown.

1.2.1 CMS
Content Management Systems are widely known,WordPress [Automattic 2019] is the most popular one.
In a CMS the project is put on a Webserver and a Database is configured in which all the data is. The
configuration of the website, new posts be created, selection of a theme and installing plugins and many
more can done via the web interface.

1.2.2 Flat-File CMS
In a Flat-File CMS the project is uploaded to the webserver. Markdown files can also be used which the
Flat-File CMS will recognize and automatically create the posts from. Some Flat-File CMSs also have
a complete CMS included in which you can create new posts. The advantage of a Flat-File CMS is that
everything is saved in files and not in a sperate database.

In our survey we looked at 3 different Flat-File CMSs:

Alternatives 3

Figure 1.2: Example of Hugo. The input seen in Listing 1.1 is compiled to the rendered HTML seen
here. [Screenshot taken by the authors of this paper using the hugo-classic theme [Kellen 2012] under the
MIT License [MIT].]

• Kirby [Bastian Allgeier GmbH 2019]

• Grav [Miller 2019]

• Pico CMS [Pellegrom 2019]

While Kirby includes a CMS, it is paid and costs 99€ per site. Grav includes a CMS and a CLI to use
it. Pico CMS only works with files, but doesn’t have any community forum to ask questions.

4 1 Introduction

Chapter 2

Methods of Rendering Content on the Web

The basic procedure of how content appears in a user’s browser is simple:
1. The user requests a page on the server.

2. The server responds with some content that is displayed in the user’s browser.
These steps always happen, and they invariably occur in this sequence. However, there are different

methods of rendering which influence the timing of the rendering and the entity that takes care of it.
These methods are described and compared in the following sections.

2.1 Server-Side Rendering (SSR)
Server-Side rendering means that pages are dynamically generated every time they get requested. That
means that the server takes care of fetching the necessary data and the subsequent rendering of a page.
When the server is done, a fully rendered page is transferred to the client, which then only has to take
care of displaying it [Błaszyński 2018].

2.1.1 Strengths
Rendering content on the server at request time has the following advantages:

• Search engine optimization (SEO) can be performed with little effort because crawlers receive
an already rendered web page that can easily be indexed. Some crawlers are not able to execute
JavaScript code, and therefore everything that’s not already rendered in the server’s response can’t
be indexed by them [Góralewicz 2017].

• Dynamic content can be rendered without client JavaScript because the pages are generated at
request time, and the server can always bake the most up-to-date data into the HTML response.

• Given that the major work of rendering is done on the server, this method puts only very light load
on clients.

2.1.2 Weaknesses
Having a central server that handles all the rendering tasks, of course, comes with some disadvantages
which are listed as follows:

• Server-Side rendered websites don’t scale well with traffic. As the amount of traffic grows, the
server has to handle more and more requests. Because of this, it acts as the bottleneck of the whole
setup.

• The application infrastructure is much more complicated in comparison to other rendering meth-
ods because a server, including a server-side rendering framework, has to be set up and maintained.

5

6 2 Methods of Rendering Content on the Web

2.2 Client-Side Rendering (CSR)
A client-side rendered web page is only fully rendered on the client via JavaScript. When such a page
is requested, the server mostly just replies with an empty page containing a single placeholder element
and some attached scripts. The scripts are then executed on the client, and they take care of fetching
necessary data from potential APIs and rendering the final HTML [Błaszyński 2018].

2.2.1 Strengths

Doing all the rendering on the client has some strengths, which include the following:

• A major strength of this method is that it generally leads to an increase in usability because
asynchronous updates of the content can easily be integrated. All the rendering already happens on
the client, and therefore a rerendering can easily be triggered when desired. That leads to greatly
improved usability when compared to full page reloads whenever something changes.

• An application based on CSR scales very well with increasing traffic. A big chunk of the work,
the rendering, is done by the individual clients, and therefore no chokepoint on a central rendering
server exists. In most cases, an API will need to be hosted on a server that could potentially become
a performance bottleneck of such a setup. However, it’s much easier to perform load optimization
of API calls than it is to mitigate performance issues caused by SSR.

• Dynamic content can be integrated with little effort. That is because the pages are generated
dynamically, and the client can fetch the newest data from an API and consider it when rendering.

2.2.2 Weaknesses

The relocation of work to the clients also leads to some disadvantages which are listed as follows:

• SEO can be problematic because some crawlers don’t understand/execute JavaScript code, and
therefore they would only see an empty page with no content. An empty page can not be indexed,
which leads to the page not being ranked in the search engine. According to Góralewicz [2017]
only the Google [Google LLC 2019] and Ask [Ask Media Group, LLC 2019] crawlers are able
to properly index content that’s rendered via JavaScript. Even though Google alone makes up for
62.5% of all search engine queries in the US [Clement 2019], ignoring the other providers still leads
to a great loss in visibility.

• This method puts high load on clients because the rendering has to be performed by them. That
can lead to laggy user experience on weaker devices, especially when the rendering becomes more
complex.

• The rendering of content is highly dependent on JavaScript, which means that the page is more
prone to failures.

2.3 Static Rendering
In this method of rendering the pages are generated in a separate build step, which happens before
deploying the website to a server. The server then receives the already fully rendered HTML pages and
just has to distribute them to the individual clients when requested [Błaszyński 2018].

2.3.1 Strengths

The strengths of static rendering are similar to those of server-side rendering and can be summarized as
follows:

Static Rendering 7

• Statically rendered web pages display very fast. The reason for this is that the expensive task of
rendering has already been done at the time the pages are requested. They just need to be transferred
to the clients without any further transformations. Such pages can also be hosted on a Content
Delivery Network (CDN), which makes the transfer even faster.

• This method takes the heavy load of rendering from the server and the clients because the
content is already prerendered in a separate build step. That means that a potential server is free to
focus on handling API calls, and less performance is demanded of client devices.

• Similar to server-side rendered websites, static rendering also results in effortless SEO. The search
engine crawlers receive already fully rendered HTML content that can be indexed without any
JavaScript-related limitations.

2.3.2 Weaknesses
The weaknesses of static rendering all stem from the fact that every page is generated ahead of time. They
can be listed as follows:

• Dynamic content requires more effort than other methods. That makes sense because the nature
of dynamic content conflicts with static rendering. Different approaches on how dynamic content
can be rendered into statically rendered pages are elaborated in Section 2.3.3.

• Another weakness of static rendering is that build times can get quite long on large websites. This
issue can potentially be mitigated by using a high performing static site generator, but even then, it
can become a burden when the amount of content grows large.

2.3.3 Rendering of Dynamic Content
There are two fundamentally different approaches to how dynamic content can be rendered into websites
generated with a static site generator:

1. Static rendering of dynamic content

2. Dynamic rendering of dynamic content

The first approach is static rendering of dynamic content. That means that the SSG fetches all the
required data at build time and renders it into static pages. The advantages of this approach are the same
as those of static rendering in general, which can be seen in Section 2.3.1. A limiting factor of statically
rendered dynamic data is that the underlying data should only change very rarely as every change would
require a subsequent rerendering of all pages using it. Another potential issue is that, depending on the
amount of data and how it’s rendered, build sizes can quickly become exceedingly large.

The second approach is dynamic rendering of dynamic content. Here, everything that is static is
built into a static frame, which is then filled with dynamic content on the client via JavaScript. That is a
reasonable compromise as it still takes advantage of static rendering while using client-side rendering for
content that changes frequently. In comparison with the static approach, this approach doesn’t suffer from
large build sizes and recurring rebuilds. However, it brings a dependency on client JavaScript execution,
which means that SEO can be problematic.

In summary, neither approach is better than the other. The decision of which one to choose has to be
made in the context of the particular situation. There are, however, static site generators that are better
suited to integrate dynamic content than others. Most of the time, these are SSGs which are based on
JavaScript frontend frameworks.

8 2 Methods of Rendering Content on the Web

Chapter 3

Templating Engines

Templating engines are generating a result document out of a template which fetches some data and
includes it into the template.

3.1 Advantages
The advantages of a templating engine are:

• Variables and functions

• Text replacement

• Conditional evaluation and loops

3.2 Example
Listing 3.1 shows the example of a template file of the templating engine Pug. The code gets converted
to HTML code seen in Listing 3.2.

3.3 Types of Different Templating Engines
There exist many different templating engines and for each programming language there is one most
popular one. For JavaScript there is Pug [Pugjs 2019], which was originally called Jade. For Ruby exists
the default one for Ruby, the ERB (Embedded RuBy) engine [Britt and Neurogami 2019]. For Python
the most popular is Jinja [Ronacher 2019] and for PHP exists Twig [Potencier 2019]. In contrast to other
programming languages there are many more for JavaScript than for any other. As is expected as most
templating engines work for the web. Other popular templating engines for Javascript are Handlebars
[Katz 2019], EJS [Eernisse 2019], Haml [Clarke 2019] and Nunjucks [Mozilla Corporation 2019].

3.4 Consolidate.js
Concolidate.js [Holowaychuk 2019] is a templating engine framework, where a function signature can
be used and one can easily switch between different templating engines, thus it is easy to use another
template engine and not change any code.

9

10 3 Templating Engines

1 doctype html
2 html(lang="en")
3 head
4 title= pageTitle
5 script.
6 if (foo) bar(1 + 5)

Listing 3.1: Example syntax of a template in Pug.

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <title>Pug</title>
5 <script>
6 if (foo) bar(1 + 5)
7 </script>
8 </head>

Listing 3.2: Example of generated code of a template in Pug.

3.5 Syntax Similarities
Certain templating engines are based or inspired by another templating engine. For example Nunjucks
is inspired by Jinja2 which is based on Django [Django Software Foundation 2019]. Switching between
Nunjucks and Jinja2 is therefore very easy, because they have identical syntax. However, there shouldn’t
be any native features for JavaScript in use in the Nunjucks template, so the existing template can easily be
used for Jinja2 [FAQ Nunjucks 2019]. Pug (Jade) is also inspired by Haml and the Twig Syntax originares
also from Jinja2/Django.

Chapter 4

Overviewof Static SiteGenerators (Standout
Features)

Since there are toomany static site generators in existance, in various states ofmaintenance and popularity,
describing all of them in this survey would be an insurmountable task and no benefit to anyone. Some of
the more popular ones have been picked out and the features that make them distinct from the others are
described in more detail. To get a more comprehensive list of many static stite generators, the website
StaticGen [Netlify 2019] could be taken into consideration.

4.1 Jekyll (Ruby)
Jekyll [Maroli et al. 2019] was one of the first static site generators and the one responsible for the reflux
of static websites in the world wide web of today, according to Biilmann [2015].

Jekyll was also the first static site generator to introduce FrontMatter, which is the YAML formatting
used to specify metadata on top of content files, which many other static site generators now also use. A
small example can be seen in Listing 4.1.

4.1.1 Input Languages
• Markdown - For writing the content

• YAML (FrontMatter) - For specifying metadata in posts

• CoffeeScript - To generate JavaScript

• Sass - To generate CSS

4.1.2 Main Use
Jekyll’s main use case is suited to blogging, it even calls itself “blog-aware”. Jekyll also pioneered the use
of GitHub as a hosting platform for static web pages. The statically generated web pages can be pushed
to certain GitHub repositories and the rendered HTML content can then be seen on respective github.io
URLs. This can be done in theory with any static web pages, but Jekyll was the first to streamline the
process and make many aware of it.

Another useful thing that can be easily done with Jekyll is transforming existing HTML pages into
Jekyll projects. The existing HTML elements can be swapped out for Jekyll’s templating elements and
from that point on used as templates for further plain text content used as input.

11

12 4 Overview of Static Site Generators (Standout Features)

1 ---
2 author: "Jon Doe"
3 title: "Test Post"
4 date: 2019-11-14T11:04:53+02:00
5 ---

Listing 4.1: Metadata formatted in YAML, called FrontMatter.

4.1.3 Templating Engine
The templating engine use by Jekyll is Liquid [Shopify Inc. 2019], which is the one created and used
by Shopify. This templating engine is built around safety due to circumstances about how it is used at
Shopify. This means it is not possible to use custom code in the templates used for a Jekyll project. There
are however plugins that can handle this.

4.1.4 Content Model
Posts are stored in a directory called _posts. All posts must be named according to a naming scheme
of the format yyyy-mm-dd-title.md. This is more restrictive than it could be, in for example Hugo, the
posts can be named in any of title.<format>. A different directory called _data is available to store
data files that can be accessed in post via site.data from the template syntax.

4.1.5 Asset Pipeline
The asset pipeline of Jekyll is rather simple, however it does support Sass and CoffeeScript. Many larger
Jekyll projects opt to use a third-part build-system such as Gulp or Grunt to handle larger content systems
and have features like live-reloading working, which does not work out-of-the-box, in contrast to other
static site generators like Hugo, where this is built-in.

4.1.6 Extension Possibility
Plugins do exist for Jekyll and are in fact used in most Jekyll projects. They offer support for progressive
web applications, advanced templating features, search engine optimization, et cetera. Self-made Ruby
plugins can simply be added to the _plugins directory.

4.2 Hugo (Go)
Hugo’s [French 2019] main source of advantage and disadvantage is that is is a statically compiled
binary executable. Due to that, is is exceptionally fast when building websites, because there is no
running interpreter, the installation is easy, as one does not need a Go development environment installed.
However, it also makes it virtually impossible to extend the functionality, since there is no easy access to
change the binary executable.

4.2.1 Input Languages
• Markdown - For writing the content

• YAML (FrontMatter) - For specifying metadata in posts

• TOML - For writing configuration in the config file

• External helpers (Asciidoc, reStructuredText, or pandoc)

Hugo (Go) 13

4.2.2 Usability
Hugo is very easy to install, update, and run. A pre-built binary can be downloaded without having to
have Go installed, in contrast to most other static site generators. Using it itself is also very easy: Setting
up a website only takes a handful of commands in the command line - No coding required.

4.2.3 Community
There is a large community around custom themes people build and share. These themes not only
influence the looks of the website, such as the CSS, menus, headers, footers, et cetera, but also offer
templates of the content model, already implement responsive web-design and take much of the initial
setup work away, if one were to use no theme at all.

4.2.4 Build Performance
Building HTML from the input content files is exceptionally fast. One reason why is because Go is a
statically compiled language. No interpreter is run when building websites, which is the case in most
other static site generators, which use interpreted languages like JavaScript or Ruby.

4.2.5 Main Use
The main use case of Hugo is for content-driven websites, that is if there is a lot of content that needs to
be generated, as Hugo is very fast to do this. Freedom of dependencies and ease-of-use is also a main
attraction for users who want an easy-startup and do not want to manage development environments, or
do programming themselves.

4.2.6 Templating Engine
Hugo uses the Package template fromGo’s standard library, but supports also Amber andAce. The default
package templating engine is similar to Liquid, which is used frequently in other static site generators.

4.2.7 Content Model
Hugo has the most powerful content model out of the box out of all static site generators, according
to Biilmann [2015] from Smashing Magazine. The content is grouped into a tree structure, and sub
directories are URL sections. For example: http://website.com/posts/2019-11-28-blog-entry.
html would be the local file content/posts/2019-11-28-blog-entry.md. The content model supports
tags and categories, which can be used to display all posts in a category, or all posts with a specific tag.

4.2.8 Asset Pipeline
The asset pipeline is rather weak in Hugo - There is not even a real “pipeline”. When Hugo builds the
web pages, it uses assets like pictures from a directory called “static”. Live reload works with Hugo’s
local server, so when changes are made locally the browser automatically displays the newly generated
HTML.

4.2.9 Extension Possibility
There is no support for plugins. Hugo comes as a binary, so one cannot easily add functionality to it, but
external helpers exist, for use cases like supporting AsciiDoc and reStructuredText instead of Markdown.
Also, many of the features that other static site generators pull in via plugins are already offered in Hugo
by default, for example dynamic data sources, menus, syntax highlighting, themes, tables of contents,
shortcodes, et cetera.

14 4 Overview of Static Site Generators (Standout Features)

4.3 Metalsmith (JS)
Metalsmith [Segment.io, Inc. 2019] is a SSGwritten in JavaScript that uses the Node JavaScript Runtime.
Metalsmith advertises itself as using plugins for almost every task, simple blog posts for example can be
generated using only two plugins, while more intricate solutions will use more plugins. It is only required
to install the functionality that is needed for a project.

4.3.1 Input Languages
Metalsmith needs plugins to add input languages:

• Markdown - For writing the content

• YAML (FrontMatter) - For specifying metadata in posts

• JSON - For specifying metadata in posts

• LESS - To expand upon CSS

There are also plugins for other sources available, for example a way to import data from Excel files.

4.3.2 Usability
Metalsmith can be installed with the Node Package Manager. Metalsmith doesn’t have any graphical
interface and uses the command line and it also requires editing of configuration files and a bit of coding
in order to use the plugins. Like many of our examples Metalsmith is also under a MIT-license [MIT],
making it free to use, even for commercial purposes.

4.3.3 Community
The community of Metalsmith is not large, but active and provides additional plugins as well as templates
and some tutorials.

4.3.4 Build Performance
The build performance of Metalsmith isn’t as fast as Hugo, but for most purposes it should suffice, since
the advantage of SSGs is that the site is not generated anew with every request.

4.3.5 Main Use
Most examples found during research use Metalsmith to create blogs or smaller websites.

4.3.6 Templating Engine
By default Metalsmith suggests Nunjacks as its templating engine, which also needs to be installed
separately, but it can also use other templating engines such as Handlebars or Pug.

4.3.7 Extension Possibility
As already stated Metalsmith is built on the premise that functionality is added with plugins, as such there
is a relatively large amount of extensions available. There also exists a section on Metalsmith’s website’s
frontpage that lists a number of plugins.

Wintersmith (JS) 15

4.4 Wintersmith (JS)
Wintersmith [Nordberg 2019] is a SSG written in CoffeeScript, which compiles to JavaScript, that uses
the Node Javascript Runtime. It is inspired by Blacksmith, another SSG. Like Metalsmith and many other
SSGs it heavily builds on plugins. Most functionality can be added as a plugin. Starting with or switching
to Wintersmith from other SSGs is made easy, because it uses no special metadata or file structure.

4.4.1 Input Languages
Wintersmith needs plugins to add input languages, but comes bundled with:

• Markdown - For writing the content

• YAML (FrontMatter) - For specifying metadata in posts
Other available input languages are for example:

• LESS - To expand upon CSS

• CSV - For data

4.4.2 Usability
Wintersmith is easy to install with the Node Package Manager (npm) that comes with the Node Runtime.
The user interface is based on the command line and no graphical interface is available. It is easy to
use and for simple sites not much previous knowledge is required to use Wintersmith. Additionally
Wintersmith is under a MIT-license [MIT], making it free for use.

4.4.3 Community
Wintersmith has a decently sized community that provides plugins, templates as well as tutorials.

4.4.4 Build Performance
Wintersmith should be sufficiently fast for most purposes [KS 2017] even if it is not as fast as Hugo.

4.4.5 Main Use
Wintersmith advertises itself to be able to do more than just blogs and can also provide plugins to help
creating modern web applications.

4.4.6 Templating Engine
Wintersmith comes with the Jade (now known as pug) templating engine plugin, but it can also use other
Javascript templating engines like Nunjucks or Handlebars and more through community plugins.

4.4.7 Extension Possibility
Wintersmith can be expanded with the many available plugins. It is possible to add new input languages
as well as choose a prefered templating engine from the choices that are provided. There is also a list
provided on Wintersmith’s GitHub page that shows some of the most useful plugins.

4.5 Sculpin (PHP)
Sculpin [Dragonfly Development 2019] is written and can be expanded with PHP. The functionality does
not stand out much, as it uses a command line interface and the templating engine Twig to generate static
sites from Markdown and YAML-Frontmatter. In the space of SSGs using PHP is rare, which is why if
working with PHP is prefered, Sculpin is one of a few choices that are available.

16 4 Overview of Static Site Generators (Standout Features)

4.5.1 Input Languages
• Markdown - For writing the content

• YAML (FrontMatter) - For specifying metadata in posts

4.5.2 Usability
Sculpin is reasonably easy to install and requires Composer, a dependency manager for PHP. While
Sculpin can only be used with the command line, usage is relatively simple compared to other SSGs.
Thanks to being under a MIT-license [MIT], Sculpin is free to use and expand upon, even for commercial
use, which lowers the barrier of entry.

4.5.3 Community
The community of Sculpin is small and only provides a comparatively small number of tutorials, themes
and even plugins. If a large community is prefered, Sculpin is not the right choice.

4.5.4 Build Performance
There is not much information on the performance as a SSG, but according to some reviews it does not
seem slow compared to the average SSG [Urevc 2017].

4.5.5 Main Use
Sculpin is mainly used for smaller projects like Blogs or personal websites, but there are also some
company sites built with it. Since it is free and easy to use but lacks any powerful features it is a good fit
for smaller scale projects.

4.5.6 Templating Engine
Sculpin can only use one templating engine which is Twig, a templating engine for PHP.

4.5.7 Extension Possibility
Sculpin can be extended in PHP by the user, since it is open source, or by installing available plugins.

4.6 Frontend-Framework-Based SSGs (JS)
Many SSGs are based on popular JavaScript frontend-frameworks such as React or Vue. All of the
examples of frontend-framework-based SSGs listed in this survey use the Node JavaScript Runtime,
which needs to be installed to run. These SSGs have a lot in common in terms of usability and also
functionality. One field where these SSGs usually excell is the creation of Progressive Web Apps and
Single Page Applications. While they seem to be quite similar in many aspects, they are designed and
best suited for slightly different applications and workflows. In the end choosing one of these comes
down mostly to personal preference. The examples in this survey are Gatsby, React Static, Next, Nuxt
and Gridsome.

4.6.1 Input Languages
Like Metalsmith or Wintersmith most frontend-framework-based SSGs need plugins for input languages.
Markdown and YAML-frontmatter are basic input languages that all of the examples cab work with,
while many other forms of input can be added. These SSGs also support adding external sources for data,
for example CMSs.

Frontend-Framework-Based SSGs (JS) 17

1 - components
2 - layout.js
3 - markdown -pages
4 - post_2019 -11-25.md
5 - post_2019 -11-26.md
6 - pages
7 - about.js
8 - index.js
9 - styles
10 - global.css
11 - templates
12 - blogTemplate.js

Listing 4.2: An example for a file structure working with Gatsby.

4.6.2 Usability
The examples of frontend-framework-based SSGs listed in this survey are not very user friendly as they
only have a command line Interface and also require some form of coding in JavaScript in order to create
templates and actually generate static sites. One example for a template in Gatsby can be seen in the
Listing 4.3. Without previous experience in working with the frameworks they are based on, it is quite
hard to learn and might not be the best choice for every use case or user. One advantage for users is that
all examples listed here are under a MIT-license [MIT] and can be used and modified for free, even for
commercial use.

4.6.3 Community
Most of the frontend-framework-based SSGs have strong communities that are also built on the community
of the framework they are based on. The communities provide templates, tutorials as well as plugins to
add features.

4.6.4 Build Performance
Build performance varies between the different SSGs but is generally not slow. For most purposes these
SSGs should be fast enough.

4.6.5 Main Use
Frontend-framework-based SSGs have an advantage to other SSGs in terms of creating single-page
applications and progressive web apps, thanks to the frameworks they use, which provide the functionality
and plugins needed without using any external tools.

4.6.6 Extension Possibility
Frontend-framework-based SSGs offer the possibility to install and write plugins to add support for new
input languages and data sources or add functionality to the generated sites.

4.6.7 Gatsby
Gatsby [Gatsby, Inc. 2019] is an extension of the React framework that also provides functionality as a
SSG. Gatsby can only use GraphQL to query data and doesn’t leave any other options. See Listings 4.2
and 4.3 for a Gatsby example.

18 4 Overview of Static Site Generators (Standout Features)

1 import React from "react"
2 import Layout from "../components/layout"
3 import { graphql } from "gatsby"
4
5 export default function Template({
6 data, // this prop will be injected by the GraphQL query below.
7 }) {
8 const { markdownRemark } = data // data.markdownRemark holds your post data
9 const { frontmatter , html } = markdownRemark
10 return (
11 <Layout>
12 <div class="container">
13 <div>
14 <h2>{frontmatter.title}</h2>
15 <h3>{frontmatter.date}</h3>
16 <div
17 class="content"
18 dangerouslySetInnerHTML={{ __html: html }}
19 />
20 </div>
21 </div>
22 </Layout>
23)
24 }
25
26 export const pageQuery = graphql‘
27 query($path: String!) {
28 markdownRemark(frontmatter: { path: { eq: $path } }) {
29 html
30 frontmatter {
31 date(formatString: "YYYY MM DD ")
32 path
33 title
34 }
35 }
36 }

Listing 4.3: An example of a template to generate a site from markdown in Gatsby. Based on code
provided on https://www.gatsbyjs.org/docs/adding-markdown-pages/

4.6.8 React Static
Similar to Gatsby, React Static [Linsley 2019] is based on React and can generate static sites. The biggest
difference is that it does not force the user to use GraphQL to handle data. Compared to Gatsby the
community appears to be much smaller and not as invested.

4.6.9 Next
Next [ZEIT, Inc. 2019] is also based on React. Like React Static Next also gives the user the choice to not
use GraphQL. The main difference to Gatsby and React Static is that Next is designed to run on a server
and provide server side rendering [Bedford 2019], while Next also can provide static rendered pages, it
isn’t the main focus.

https://www.gatsbyjs.org/docs/adding-markdown-pages/

Overview of SSG Characteristics 19

4.6.10 Nuxt
Nuxt [A. Chopin and S. Chopin 2019] is a framework expanding on Vue, that provides static site
generation. Like Next Nuxt also provides good support for server side rendering.

4.6.11 Gridsome
Gridsome [H.-J. Vedvik and T. Vedvik 2019] is also based on the Vue framework. Compared to Nuxt
it claims to be more optimized for static content. GraphQL is used to pull data from sources, similar to
Gatsby. The Community is small compared to Nuxt, Gatsby or Next.

4.7 Overview of SSG Characteristics
All the characteristics of the Static Site Generators can be seen in the following tables: 4.1, 4.2, 4.3 and
4.4.

20 4 Overview of Static Site Generators (Standout Features)

** Hugo Metalsmith Next.js Jekyll
Website https://gohugo.io/ https:

//metalsmith.io/

https://nextjs.

org/

https://jekyllrb.

com/

Language Go JS JS/React Ruby
Note * "Everything is a

plugin"
Based on React “a simple, blog-

aware, static site
generator”, any nor-
mal static page can
be a Jekyll project

Type SSG SSG SSG SSG
Input Languages HTML,Markdown,

YAML (FrontMat-
ter), JSON, TOML

Markdown, and
many more through
plugins

Markdown, JSON,
CSV and many
more through
plugins (none
onboard)

Markdown,
YAML: Intro-
duced FrontMatter

Usability Very easy As simple as you
want, but more ad-
vanced usage re-
quires coding

Hard, requires a lot
of coding

Simple

PWA only manually Not out of the box Yes Via plugin
SPA * * Yes *
SEO Yes Via plugin Yes Via plugin
Community Community around

themes
Small Tutorials, Plug-ins,

templates
*

Build Perform-
ance

Very fast * * *

Main use Content-driven
websites

More than simple
blogs

PWA, Blogs Blogs, hosting on
GitHub Pages

Input Interface
(CLI or CMS)

official CLI (3rd
party Frontend in-
terfaces available)

CLI, JavaScriptAPI * *

Templating engine Package template
from Go’s standard
library

Nunjucks, Handle-
bars.js, Twig, add
template engine
via Consolidate.js
(many different
template engines)

None Liquid (i.e. no cus-
tom code in tem-
plates)

Content model Most powerful con-
tent model out of
the box out of all
SSGs

Take content from
source files -> ma-
nipulate via plugins
(chaining) -> Write
to output directory

* _posts/yyyy-mm-
dd-title-of-the-
post.md, custom
collections, _data
folder

Asset Pipeline Weak * * no built-in support
for live reloading,
minification or
asset bundling,
uses Sass and
CoffeeScript to
generate CSS and
JS files

Extension possib-
ility

Plugins: No, but
external helpers ex-
ist

Plugin-based over-
all logic - Can
be extended to do
more than just ba-
sic static site gener-
ation

Plug-ins available Simple to extend,
many plugins avail-
able. Add ruby plu-
gins to the _plugins
folder.

License Apache License 2.0 MIT MIT MIT

Table 4.1: Characteristics overview of Hugo, Metalsmith, Next.js and Jekyll

https://gohugo.io/
https://metalsmith.io/
https://metalsmith.io/
https://nextjs.org/
https://nextjs.org/
https://jekyllrb.com/
https://jekyllrb.com/

Overview of SSG Characteristics 21

** Nuxt Mikser Harp Wintersmith
Website https://nuxtjs.

org/

https://github.

com/almero-

digital-

marketing/mikser

https://harpjs.

com/

https:

//wintersmith.io/

Language JS/Vue JS JS JS
Note Based on Vue Node.js like React Node.js Node.js like React
Type SSG SSG SSG SSG
Input Languages * Jade, Eco, Ect, Ejs,

Swig, Nunjucks,
Twig, Markdown,
Textile, YAML,
TOML, ArchieML,
CSON, JSON5,
more through
plug-ins

Jade, Markdown,
EJS, CoffeeScript,
Sass, LESS and
Stylus

Pug, Mardown
and others through
plug-ins

Usability * Moderate, requires
coding

Easy, CLI Easy, CLI

PWA Yes * No No
SPA Yes * No No
SEO Yes * Yes Via plugin
Community Tutorials, Plug-ins,

templates
non existent Tutorials Tutorials, Plug-ins,

templates
Build Perform-
ance

* very fast fast fast

Main use Landing pages,
SPA

* * Blogs

Input Interface
(CLI or CMS)

* CLI CLI CLI

Templating engine * Pug aka Jade, Eco,
Ect, Ejs, Swig,
Nunjucks, Twig,
Markdown, Textile,
YAML, TOML,
ArchieML, CSON,
JSON5, support
for new engines
through plug-ins

Jade, EJS Jade, others via
community plugins
available

Content model * * * *
Asset Pipeline * * * *
Extension possib-
ility

Plug-ins available Plug-ins available Only by modifying
code

Plug-ins available

License MIT Not clear Freeware and Open
Source; own license
model

MIT

Table 4.2: Characteristics overview of Nuxt, Mikser, Harp and Wintersmith

https://nuxtjs.org/
https://nuxtjs.org/
https://github.com/almero-digital-marketing/mikser
https://github.com/almero-digital-marketing/mikser
https://github.com/almero-digital-marketing/mikser
https://github.com/almero-digital-marketing/mikser
https://harpjs.com/
https://harpjs.com/
https://wintersmith.io/
https://wintersmith.io/

22 4 Overview of Static Site Generators (Standout Features)

** Roots Middleman Kirby Grav
Website https://github.

com/jescalan/roots

https://

middlemanapp.com/

https://getkirby.

com/

https://getgrav.

org/

Language JS Ruby PHP PHP
Note No active develop-

ment
* * *

Type SSG SSG Flat-file CMS Flat-file CMS
Input Languages Markdown Markdown, YAML

and JSON (config)
Markdown, Kirby-
Text

Markdown, YAML

Usability * * Very easy, just copy
files on a webserver
and use CMS

"Very easy, copy
files on webserver
and sue CMS"

PWA No * No No
SPA * * Combine pages on a

single page
Combine pages on a
single page

SEO No * No Yes
Community * * Kirby Forum Grav Forum
Build Perform-
ance

* * * *

Main use Worfklow that’s
similar to Car-
rot (NY based
company)

more advanced
marketing and
documentation
websites (design-
savvy companies)

Blogs, static web-
sites

Blogs, static web-
sites

Input Interface
(CLI or CMS)

* * CMS CMS, CLI

Templating engine Pug/Jade, switch to
EJS possible

Ruby (ERB) tem-
plates, can be
swapped out for
Liquid or Haml

PHP template en-
gine, and other via
plugins (e.g. Twig)

Twig

Content model Input in views/, out-
put to public/, i.e.
no "content model"
more than that

sitemap, data
folder, collections,
source and corres-
ponding destination
files, built on
Sprockets

* *

Asset Pipeline built-in asset
pipeline for Cof-
feeScript and
Stylus

External pipelines
(since v4)

* *

Extension possib-
ility

Asset pipeline and
content model eas-
ily extensible

Powerful API, cre-
ating new plugins
is not well docu-
mented

Plugins, Themes
available

Plugins, Themes,
Skeletons available

License * * Paid, 99€ per site,
testing free

MIT

Table 4.3: Characteristics overview of Roots, Middleman, Kirby and Grav

https://github.com/jescalan/roots
https://github.com/jescalan/roots
https://middlemanapp.com/
https://middlemanapp.com/
https://getkirby.com/
https://getkirby.com/
https://getgrav.org/
https://getgrav.org/

Overview of SSG Characteristics 23

** Pico CMS Gatsby React Static Sculpin
Website http://picocms.

org/

https://www.

gatsbyjs.org/

https://github.

com/react-static

https://sculpin.

io/

Language PHP JS/React JS/React PHP
Note * Based on React Based on React Based on Symfony

framework
Type Flat-file CMS SSG SSG SSG
Input Languages Markdown, YAML Markdown, JSON,

CSV and many
more through
plugins (none
onboard); can also
source from CMSs

Markdown, JSON;
can also source
from CMSs

Makdown

Usability Very easy, only
copy fules and cre-
ate/edit files

Hard, requires a lot
of coding

Hard, requires a lot
of coding

Moderate, requires
coding

PWA No Yes Yes No
SPA No Yes Yes No
SEO No Yes Yes No
Community Not really, only git-

hub
Tutorials, Plug-ins,
templates

Tutorials, Plug-ins,
templates

Themes, Plug-ins

Build Perform-
ance

* fast very fast fast

Main use Blogs, static web-
sites

PWA, Blogs PWA, SPA Blogs

Input Interface
(CLI or CMS)

Only creating files CLI CLI CLI

Templating engine Twig None None Twig
Content model * * * *
Asset Pipeline * * * *
Extension possib-
ility

Plugins, themes Plug-ins available Plug-ins available Plug-ins, Themes
available

License MIT MIT MIT MIT

Table 4.4: Characteristics overview of Pico CMS, Gatsby, React Static and Sculpin

http://picocms.org/
http://picocms.org/
https://www.gatsbyjs.org/
https://www.gatsbyjs.org/
https://github.com/react-static
https://github.com/react-static
https://sculpin.io/
https://sculpin.io/

24 4 Overview of Static Site Generators (Standout Features)

Chapter 5

Concluding Remarks

A few conclusions can be made considering the investigated static site generators and their surrounding
technologies, although it is virtually impossible to define static site generators simply as being better or
worse than others.

5.1 Ranking
As can be seen in Chapter 4, most static site generators are able to produce similar results. They do this
in various ways, but in the end, similar HTML websites can be produced in any case. Some do offer
benefits over others, but then again those have different benefits. Consider for instance Hugo [French
2019], which offers fast build performance and ease of use but has no way of including plugins, in contrast
to Metalsmith, which offers great support for plugins but might be more difficult to use.

Due to this mostly even spread of advantageous features there is no definitive “best” static site generator,
at least from a purely objective point of view. Some people might prefer one over the other, due to features
that more align to their use case or which might be the biggest difference, the underlying technology
stack, which is the language in which the static site generator is written, as well as the frameworks it is
using, for example React as a front-end framework.

5.2 Recommendation
On account of the above mentioned facts, the simplest recommendation that can be made for people
wanting to use a new static site generator is to choose one that is based on a technology that they already
know and like. This makes it easier to familiarize oneself with the static site generator and how it works
and is being used. Apart from that, the standout features can also be taken into consideration. Again,
someone looking for speed might want to opt for Hugo [French 2019]. Someone looking to transform
their existing HTML pages into static site generator projects can use Jekyll [Maroli et al. 2019].

Since not all existing static site generators could be described in Chapter 4, it is worth mentioning the
website StaticGen [Netlify 2019] again, which offers a comprehensive list of many if not all static site
generators in existence, as well as short descriptions of each.

25

26 5 Concluding Remarks

Bibliography

AskMedia Group, LLC [2019].Ask.com -What’s Your Question? https://www.ask.com/ (cited on page 6).

Automattic [2019]. WordPress.com - Create a Free Website or Blog. https://wordpress.com/ (cited on
page 2).

BastianAllgeierGmbH [2019].Kirby - The file-based contentmanagement system. https://getkirby.com/
(cited on page 3).

Bedford, James [2019].Gatsby vs Next.JS - What, Why andWhen? 25 Sep 2019. https://dev.to/jameesy/
gatsby-vs-next-js-what-why-and-when-4al5 (cited on page 18).

Biilmann, Matt [2015]. Static Site Generators Reviewed: Jekyll, Middleman, Roots, Hugo. 16 Nov 2015.
https://smashingmagazine.com/2015/11/static-website-generators-jekyll-middleman-roots-hugo-

review/ (cited on pages 11, 13).

Błaszyński, Łukasz [2018]. Client and Server Side Rendering Static Site Generators. 21 Dec 2018.
https://espeo.eu/blog/client- and- server- side- rendering- static- site- generators/ (cited on
pages 5–6).

Britt, James and Neurogami [2019]. ERB - Ruby Templating. https://ruby-doc.org/stdlib-2.6.5/
libdoc/erb/rdoc/ERB.html (cited on page 9).

Chopin, Alexandre and Sebastien Chopin [2019]. Nuxt.js. https://nuxtjs.org/ (cited on page 19).

Clarke, Norman [2019]. Haml. http://haml.info/ (cited on page 9).

Clement, J. [2019]. Share of search queries handled by leading U.S. search engine providers as of July
2019. 16 Oct 2019. https://www.statista.com/statistics/267161/market-share-of-search-engines-
in-the-united-states/ (cited on page 6).

Django Software Foundation [2019]. Django. https://www.djangoproject.com/ (cited on page 10).

Dragonfly Development [2019]. Sculpin. https://sculpin.io/ (cited on page 15).

Eernisse, Matthew [2019]. EJS. https://ejs.co/ (cited on page 9).

FAQ Nunjucks [2019]. 26 Nov 2019. https://mozilla.github.io/nunjucks/faq.html#can-i-use-the-
same-templates-between-nunjucks-and-jinja2-what-are-the-differences (cited on page 10).

French, Renée [2019]. Hugo - The world’s fastest framework for building websites. https://gohugo.io/
(cited on pages 1, 12, 25).

Gatsby, Inc. [2019]. GatsbyJS. https://gatsbyjs.org/ (cited on page 17).

Google LLC [2019]. Google. https://www.google.com/ (cited on page 6).

Góralewicz, Bartosz [2017]. Going Beyond Google: Are Search Engines Ready for JavaScript Crawling
and Indexing? 29 Aug 2017. https://moz.com/blog/search-engines-ready-for-javascript-crawling
(cited on pages 5–6).

27

https://www.ask.com/
https://wordpress.com/
https://getkirby.com/
https://dev.to/jameesy/gatsby-vs-next-js-what-why-and-when-4al5
https://dev.to/jameesy/gatsby-vs-next-js-what-why-and-when-4al5
https://smashingmagazine.com/2015/11/static-website-generators-jekyll-middleman-roots-hugo-review/
https://smashingmagazine.com/2015/11/static-website-generators-jekyll-middleman-roots-hugo-review/
https://espeo.eu/blog/client-and-server-side-rendering-static-site-generators/
https://ruby-doc.org/stdlib-2.6.5/libdoc/erb/rdoc/ERB.html
https://ruby-doc.org/stdlib-2.6.5/libdoc/erb/rdoc/ERB.html
https://nuxtjs.org/
http://haml.info/
https://www.statista.com/statistics/267161/market-share-of-search-engines-in-the-united-states/
https://www.statista.com/statistics/267161/market-share-of-search-engines-in-the-united-states/
https://www.djangoproject.com/
https://sculpin.io/
https://ejs.co/
https://mozilla.github.io/nunjucks/faq.html#can-i-use-the-same-templates-between-nunjucks-and-jinja2-what-are-the-differences
https://mozilla.github.io/nunjucks/faq.html#can-i-use-the-same-templates-between-nunjucks-and-jinja2-what-are-the-differences
https://gohugo.io/
https://gatsbyjs.org/
https://www.google.com/
https://moz.com/blog/search-engines-ready-for-javascript-crawling

28 Bibliography

Gruber, John [2004]. Markdown. 17 Dec 2004. https://daringfireball.net/projects/markdown/ (cited
on page 1).

Holowaychuk, TJ [2019]. Consolidate.js. https://github.com/tj/consolidate.js/ (cited on page 9).

Kato, Masakuni [2012]. Blogging on Jekyll. 11 Apr 2012. https://slideshare.net/mackato/blogging-
on-jekyll (cited on page 2).

Katz, Yehuda [2019]. Handlebars. https://handlebarsjs.com/ (cited on page 9).

Kellen [2012]. Hugo Classic Theme. 11 Apr 2012. https://github.com/goodroot/hugo-classic (cited on
page 3).

KS, Ashutosh [2017]. 10 Best Static Site Generators for Bloggers. 13 Apr 2017. https://www.hongkiat.
com/blog/static-site-generators/ (cited on page 15).

Linsley, Tanner [2019]. React Static. https://react-static.js.org/ (cited on page 18).

Maroli, Ashwin, Frank Taillandier, and Matt Rogers [2019]. Jekyll - Simple, blog-aware, static sites.
https://jekyllrb.com/ (cited on pages 11, 25).

Miller, Andy [2019]. Grav - A Modern Flat-File CMS. https://getgrav.org/ (cited on page 3).

Mozilla Corporation [2019]. Nunjucks. https://mozilla.github.io/nunjucks/ (cited on page 9).

Netlify [2019]. StaticGen - Top Open Source Static Site Generators. https://staticgen.com/ (cited on
pages 11, 25).

Nordberg, Johan [2019]. Wintersmith. http://wintersmith.io/ (cited on page 15).

Pellegrom, Gilbert [2019]. Pico - A stupidly simple and blazing fast, flat file CMS. http://picocms.org/
(cited on page 3).

Potencier, Fabien [2019]. Twig. https://twig.symfony.com/ (cited on page 9).

Pugjs [2019]. Pug. https://pugjs.org (cited on page 9).

Ronacher, Armin [2019]. Jinja. https://www.palletsprojects.com/p/jinja/ (cited on page 9).

Segment.io, Inc. [2019]. Metalsmith. https://metalsmith.io/ (cited on page 14).

Shopify Inc. [2019]. Liquid. https://shopify.github.io/liquid/ (cited on page 12).

The MIT License [2019]. Massachusetts Institute of Technology, 26 Nov 2019. https://opensource.org/
licenses/MIT (cited on pages 3, 14–17).

Urevc, Janez [2017]. Playing with the Sculpin static site generator. 29 Jan 2017. https://janezurevc.
name/playing-sculpin-static-site-generator (cited on page 16).

Vedvik, Hans-Jørgen and Tommy Vedvik [2019]. Gridsome. https://gridsome.org/ (cited on page 19).

ZEIT, Inc. [2019]. Next.js. https://nextjs.org/ (cited on page 18).

https://daringfireball.net/projects/markdown/
https://github.com/tj/consolidate.js/
https://slideshare.net/mackato/blogging-on-jekyll
https://slideshare.net/mackato/blogging-on-jekyll
https://handlebarsjs.com/
https://github.com/goodroot/hugo-classic
https://www.hongkiat.com/blog/static-site-generators/
https://www.hongkiat.com/blog/static-site-generators/
https://react-static.js.org/
https://jekyllrb.com/
https://getgrav.org/
https://mozilla.github.io/nunjucks/
https://staticgen.com/
http://wintersmith.io/
http://picocms.org/
https://twig.symfony.com/
https://pugjs.org
https://www.palletsprojects.com/p/jinja/
https://metalsmith.io/
https://shopify.github.io/liquid/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://janezurevc.name/playing-sculpin-static-site-generator
https://janezurevc.name/playing-sculpin-static-site-generator
https://gridsome.org/
https://nextjs.org/

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Basics
	1.1.1 How They Work
	1.1.2 Example

	1.2 Alternatives
	1.2.1 CMS
	1.2.2 Flat-File CMS

	2 Methods of Rendering Content on the Web
	2.1 Server-Side Rendering (SSR)
	2.1.1 Strengths
	2.1.2 Weaknesses

	2.2 Client-Side Rendering (CSR)
	2.2.1 Strengths
	2.2.2 Weaknesses

	2.3 Static Rendering
	2.3.1 Strengths
	2.3.2 Weaknesses
	2.3.3 Rendering of Dynamic Content

	3 Templating Engines
	3.1 Advantages
	3.2 Example
	3.3 Types of Different Templating Engines
	3.4 Consolidate.js
	3.5 Syntax Similarities

	4 Overview of Static Site Generators (Standout Features)
	4.1 Jekyll (Ruby)
	4.1.1 Input Languages
	4.1.2 Main Use
	4.1.3 Templating Engine
	4.1.4 Content Model
	4.1.5 Asset Pipeline
	4.1.6 Extension Possibility

	4.2 Hugo (Go)
	4.2.1 Input Languages
	4.2.2 Usability
	4.2.3 Community
	4.2.4 Build Performance
	4.2.5 Main Use
	4.2.6 Templating Engine
	4.2.7 Content Model
	4.2.8 Asset Pipeline
	4.2.9 Extension Possibility

	4.3 Metalsmith (JS)
	4.3.1 Input Languages
	4.3.2 Usability
	4.3.3 Community
	4.3.4 Build Performance
	4.3.5 Main Use
	4.3.6 Templating Engine
	4.3.7 Extension Possibility

	4.4 Wintersmith (JS)
	4.4.1 Input Languages
	4.4.2 Usability
	4.4.3 Community
	4.4.4 Build Performance
	4.4.5 Main Use
	4.4.6 Templating Engine
	4.4.7 Extension Possibility

	4.5 Sculpin (PHP)
	4.5.1 Input Languages
	4.5.2 Usability
	4.5.3 Community
	4.5.4 Build Performance
	4.5.5 Main Use
	4.5.6 Templating Engine
	4.5.7 Extension Possibility

	4.6 Frontend-Framework-Based SSGs (JS)
	4.6.1 Input Languages
	4.6.2 Usability
	4.6.3 Community
	4.6.4 Build Performance
	4.6.5 Main Use
	4.6.6 Extension Possibility
	4.6.7 Gatsby
	4.6.8 React Static
	4.6.9 Next
	4.6.10 Nuxt
	4.6.11 Gridsome

	4.7 Overview of SSG Characteristics

	5 Concluding Remarks
	5.1 Ranking
	5.2 Recommendation

	Bibliography

