
Sitemap Generators

Paul Ganster, Peter Grassberger, Magdalena Mayerhofer, Ana Lopez Camarero

706.041 Information Architecture and Web Usability WS 2019/2020
Graz University of Technology

2 Dec 2019

Abstract
Acommon task for information architects, web designers andmanymore is to get an overview
of the hierarchy of a website. Creating sitemaps is a usual approach to this problem. Since
the manual task of creating them is time consuming, one may often consider to use sitemap
generators. Visual sitemaps are graphical representations of sitemaps and present the more
difficult task, which can be seen since there is no professional tool that totally works as
expected. The task of creating a content inventory on the other hand can be automated more
easily. Not only will the tools offered reduce the manual work required for their users, but
there even exists a free and open source tool that produces comparable results to paid tools.
This survey will focus on sitemap generator tools and compare their produced results and
performance.

© Copyright 2019 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures ii

List of Tables iii

List of Listings iv

1 Introduction 1
1.1 Sitemaps . 1
1.2 Short History . 1
1.3 Generators . 3
1.4 General Information about tools . 3
1.5 Tested Websites . 3

2 Visual Sitemaps 5
2.1 PowerMapper . 5

2.1.1 Results . 5
2.1.2 Improvements . 7

2.2 VisualSitemaps . 9
2.2.1 Results . 10
2.2.2 Improvements . 11

2.3 DynoMapper . 12
2.3.1 Results . 12
2.3.2 Conclusion . 13

2.4 Visual Site Mapper . 13
2.4.1 Results . 14
2.4.2 Conclusion . 16

3 Content Audit 17
3.1 Screaming Frog . 17
3.2 URL Profiler . 17
3.3 Content Analysis Tool (CAT) . 21
3.4 Scrapy . 21

3.4.1 Proof of Concept . 22

4 Conclusion 26

Bibliography 27

i

List of Figures

1.1 Tested Websites: oebb.at, audi.at, developer.db.com . 4

2.1 The sitemap progress screen in PowerMapper. 6
2.2 PowerMapper Overview of most Site Map Styles . 6
2.3 The start page of PowerMapper . 7
2.4 The result of the ÖBB website with PowerMapper . 8
2.5 The result of db.developer.com . 8
2.6 The result of db.developer.com after trying to resolve issue 8
2.7 The sitemap creation form only requires URL as input. 9
2.8 On the dashboard, an orange icon in the status column indicates that a crawl is in progress. 10
2.9 The result screen offers 1.) a shareable web link, 2.) a PDF export, 3.) toggle between

top-to-bottom and left-to-right hierarchy and 4.) the visual sitemap itself, whereas the
visibility of child nodes can be toggled per node. 10

2.10 Fully zoomed out PDF Export . 11
2.11 Three screenshots of the PDF Export zoomed in at 5-times the zoom level 11
2.12 Cropped PDF export at 50-times the the zoom level as in Figure 2.10. 12
2.13 A large number of tag pages on the Audi website with connectors lead to a blur in the

export. 12
2.14 DynoMapper ÖBB PDF export pages 1 - 10 of 17. 13
2.15 DynoMapper Audi subtree in the online viewer. 14
2.16 DynoMapper: audi.com tree view. 14
2.17 The unique style that the tool offers. 15
2.18 The resulting visual sitemap of the ÖBB website . 15

3.1 Solution of the crawl of the ÖBB website . 18
3.2 Visualization Tree by Screaming Frog of the ÖBB website. 18
3.3 Initial status of the program . 19
3.4 Spreadsheet output of the URL Profiler with the ÖBB website as an example. 20
3.5 Screenshot folder of the ÖBB website as an example. 20
3.6 Spreadsheet result with some of the most interesting columns to take into account of the

ÖBB website as an example. 21
3.7 Screenshot of a URL with lack of content of the ÖBB website. 21
3.8 Content Analysis Tool online . 22
3.9 Content Analysis Tool export . 23
3.10 The resulting content inventory after running the oebb_scraper Scrapy project. 25

ii

List of Tables

2.1 Prices and feature restrictions per license with PowerMapper. 7
2.2 Prices and feature restrictions per license with VisualSitemaps. 9
2.3 Prices and feature restrictions per license with Dyno Mapper. 13

3.1 Prices and feature restrictions per license with URL Profiler. 18
3.2 Prices and feature restrictions per license for Content Analysis Tool. 22

iii

List of Listings

1.1 TXT sitemap example oebb.at. 2
1.2 XML sitemap example oebb.at . 2
1.3 CSV sitemap example oebb.at. 3

3.1 Item class for the ÖBB content audit . 23
3.2 Spider class for the ÖBB content audit . 24

iv

Chapter 1

Introduction

1.1 Sitemaps
A sitemap is a list of pages of a website. In some instances, the sitemap also represents the hierarchy of
pages, how subpages relate to their parents’ pages.

There are different purposes for sitemaps. They are used to plan the information architecture of website
before creation or to analyze existing websites, this process is also called content auditing. Sitemaps can
also be included in websites to give users an overview of all the pages that exist. Lastly sitemaps in an
XML can be used to provide a list of pages to web crawlers and search engines.

The hierarchy of pages can be defined in two ways. Based on hyperlinks a page is a subpage of another
page if there is a link from one to the other. Based on the URL path component, that can be understood
as a file system directory structure, a page is a subpage if it comes after another page’s name in the path
separated by a slash character. Therefore https://www.oebb.at/en/fahrplan.html is a subpage of
https://www.oebb.at/en/.

The simplest representation of a sitemap is a list, these lists can be in the format of a TXT file with
one link per line, as can be seen in Listing 1.1. The CSV format can contain additional data for every
page, for example: HTTP status code, HTML title tag, HTML first h1 tag, an example can be viewed
in Listing 1.3. Another structured approach is the XML Sitemaps format introduced by Google, mostly
used to inform crawlers about all pages, an example can be seen in Listing 1.2. Sitemaps included in
websites for the user to view are in the format of HTML, as a list or hierarchy.

Visual representations of sitemaps can be in the format of images (PNG, SVG, etc.) or in the PDF
format. HTML is also a common format for visual sitemaps. HTML allows for a more interactive
approach where nodes in the hierarchy can be links to the original pages or they can open a detailed view
of a sub hierarchy or sub tree.

In the process of auditing a content inventory is most often represented as a CSV file with metadata
about every page, shown in Listing 1.3. There are also specific formats for some tools, like the Screaming
Frog SEO Spider File. The columns of these files are used to identify pages that are missing or need
improving.

1.2 Short History
In 2005 Google introduced a Google Sitemaps 0.84 Standard under Creative Commons license, which
was also supported by Yahoo! and Microsoft in 2006. It had the purpose to inform search engines about
new pages and increasing the coverage of sites already in the search index. The latest version of the XML
Sitemaps standard is 0.9

1

2 1 Introduction

1 https://www.oebb.at/en/
2 https://www.oebb.at/de/
3 https://www.oebb.at/en/tickets-kundenkarten.html
4 https://www.oebb.at/en/fahrplan.html
5 https://www.oebb.at/en/reiseplanung -services.html
6 https://www.oebb.at/en/regionale -angebote.html
7 https://www.oebb.at/en/regionale -angebote/burgenland/zum-neusiedler -see.html
8 https://www.oebb.at/en/regionale -angebote/kaernten/autoschleuse -tauernbahn.html
9 https://www.oebb.at/en/regionale -angebote/niederoesterreich/waldviertel -express.html

Listing 1.1: TXT sitemap example oebb.at

1 <?xml version="1.0" encoding="UTF-8"?>
2 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
3 <url>
4 <loc>https://www.oebb.at/en/</loc>
5 <lastmod >2019-11-05</lastmod>
6 <changefreq >monthly </changefreq >
7 <priority >0.5</priority >
8 </url>
9 <url>
10 <loc>https://www.oebb.at/de/</loc>
11 <lastmod >2019-11-05</lastmod>
12 <changefreq >monthly </changefreq >
13 <priority >0.5</priority >
14 </url>
15 <url>
16 <loc>https://www.oebb.at/en/tickets-kundenkarten.html</loc>
17 <lastmod >2019-11-05</lastmod>
18 <changefreq >monthly </changefreq >
19 <priority >0.3</priority >
20 </url>
21 <url>
22 <loc>https://www.oebb.at/en/fahrplan.html</loc>
23 <lastmod >2019-11-05</lastmod>
24 <changefreq >monthly </changefreq >
25 <priority >0.3</priority >
26 </url>
27 </urlset>

Listing 1.2: XML sitemap example oebb.at

Generators 3

1 url,content_type ,status,title,h1
2 https://www.oebb.at/,text/html;charset=UTF-8,200,ÖBB - Startseite ,Topaktuelle

Informationen
3 https://www.oebb.at/de/reiseplanung -services/vor-ihrer-reise/reisereservierung.html,

text/html;charset=UTF-8,200,ÖBB - Reisereservierung ,Reisereservierung
4 https://www.oebb.at/de/reiseplanung -services/vor-ihrer-reise/mit-haustieren -

verreisen.html,text/html;charset=UTF-8,200,ÖBB - Mit Haustieren verreisen ,Mit
Haustieren verreisen

5 https://www.oebb.at/de/reiseplanung -services/vor-ihrer-reise/reiseversicherung.html,
text/html;charset=UTF-8,200,ÖBB - Reiseversicherung ,Stornoversicherung

Listing 1.3: CSV sitemap example oebb.at

1.3 Generators
Sitemap generators are programs that create sitemaps or content inventories. They contain a web crawler
which is a program that tries to find every page, starting with one page and looking for links to follow
to discover new pages again and again. Some visual sitemap generators can also start from an existing
sitemap as a list or XML Sitemaps file, skipping the step of crawling pages which can be done by another
tool.

Web crawling can be limited by websites either through requiring user authentication with a login form
or with the robots exclusion standard by specifying a robots.txt file. Some generators have features to
manage both limitations, one can provide login details or choose to ignore the robots exclusion standard.

1.4 General Information about tools
The tools are categorized into the two main categories of visual sitemaps and content inventory. However,
this does not mean that the tools only belong into that category, but that the main purpose of this tool is
in that category. Some of the tools offer some features for visual sitemaps and for content inventory at
the same time.

1.5 Tested Websites
The main websites which where used for the purpose of testing the tools are:

• https://www.oebb.at

• https://www.audi.at

• https://developer.db.com

oebb.at is the website of the Austrian Federal Railways, one of its main utilities is the ability to check
train schedules and book tickets. audi.at is the Austrianwebsite of Audi AGwhich is a German automobile
manufacturer. developer.db.com is the developer portal website of Deutsche Bank AGwhich is a German
bank. The DB developer portal is single-page application website that loads content dynamically instead
of doing full page reloads, it is created with JavaScript and Angular. Figure 1.1 shows the home pages of
the three tested pages.

4 1 Introduction

Figure 1.1: Tested Websites: oebb.at, audi.at, developer.db.com

Chapter 2

Visual Sitemaps

2.1 PowerMapper
PowerMapper PM 2019 is a tool for creating visual sitemaps via either an online tool or an application
for MacOS or Windows. The company behind it is based in Edinburgh (UK) and PowerMapper was first
launched in 1997.
The online tool is free but very limited compared to the MacOS or Windows application. It covers

only one level of the hierarchy, which is not very helpful in most of the cases. The desktop version is
more powerful, but this comes at a price: There are two types of licenses available, namely the Standard
and the Professional edition. The main features and restrictions can be seen in Table 2.1.
The Sales department of PowerMapper provided us with a complimentary Professional license, because

the online version and the trial version did not meet our needs to test the tool to the full extent of
possibilities.
The input required by PowerMapper is the URL of the page which should be crawled. For the tested

websites the crawls took over an hour, even though, according to the PowerMapper website, a crawl
should build a sitemap in under 5 minutes. During the crawl, PowerMapper shows the number of nodes
that have been found, the time still left, how many nodes are already mapped and the percentage, as it can
be seen in Figure 2.1.
The result of the page can be shown in 12 different styles – even if the website says 13. From those

12 available styles, only a few of them are visual sitemaps and some are just site maps. Also, some of
the visual styles are very strange, and in our opinion, would not be considered a visual sitemap style. All
the different styles can be seen in Figure 2.2. The start page of the desktop application can be seen in
Figure 2.3

2.1.1 Results
After entering the URL into the input field, first you have to search for a while how to actually start the
crawl. The button for that is not very intuitive, because it is not next to where you entered the URL and
due to it looking more like some information than an actual button.
When starting the crawl with the ÖBB website, after a short moment of waiting you could see the

approximated time of about 10 minutes. However, in the end it took over an hour to crawl the actual page.
During the crawl, it also shows you the percentage of how far the process is along, but most of the times
it got stuck around 30% until it is finished. So, it is not really helpful to show the percentage. You can
also see the number of found and already mapped nodes during the process, but after the application is
done with the search there is no such summary available anymore. Approximately there were about 2000
pages for ÖBB.
After the crawl is finished, you immediately see the map in the standard style inside the application.

You now can save or export the map and also change the style and manually manipulate the map by hiding

5

6 2 Visual Sitemaps

Figure 2.1: The sitemap progress screen in PowerMapper. [Screenshot taken by the authors of this paper.]

Figure 2.2: PowerMapper Overview of most Site Map Styles [Screenshot taken by the authors of this paper.]

PowerMapper 7

License Standard Professional
Price/License €99 €239
Pages/Crawl 22000 22000

Sitemap styles 7 13
Import and visualize no yes

Table 2.1: Prices and feature restrictions per license with PowerMapper.

Figure 2.3: The start page of PowerMapper [Screenshot taken by the authors of this paper.]

single nodes. This is a very nice feature which gives you the possibility to clean up the result to your
needs. The result can be seen in Figure 2.4

The way of navigating through the levels inside the application works in the same way then when you
export it as HTML. The HTML export is the only way to export the map as visual sitemap, however you
can also export it as XML or CSV, but than it is not visual anymore. The nice thing about the HTML
Export is, that not all the nodes are totally visible at once, but you can expand subtrees or hide them
again. In this way you can actually inspect the results in a reasonable way.

After performing a crawl on db.developer.com, you can see that the PowerMapper is not without flaws.
In Figure 2.5 you see the result of this crawl. After trying to resolve the issue by following the suggested
steps, PowerMapper gave the following result seen in Figure 2.6. This is still not really the expected
result, due there being just one node.

2.1.2 Improvements
Recommended improvements would be some usability enhancements, for example so it is clearer how
to start the crawl. Also, some summary information after the crawl would be very nice, like the time
it needed and the actual number of mapped nodes. Additionally, issues it seems to have with some of
the websites, for example with db.developer.com, would be great if they could be removed. Especially
because the website worked perfectly in other tools. Last but not least, the functionality to test a website
behind a login is missing, because you cannot provide login data to PowerMapper.

8 2 Visual Sitemaps

Figure 2.4: The result of the ÖBB website with PowerMapper [Screenshot taken by the authors of this paper.]

Figure 2.5: The result of db.developer.com [Screenshot taken by the authors of this paper.]

Figure 2.6: The result of db.developer.com after trying to resolve issue [Screenshot taken by the authors of
this paper.]

VisualSitemaps 9

License Free Mini Freelancer Team
Price/month $0 $19 $39 $159
Pages/month 50 1000 3000 10000

Pages/sitemap 50 500 1500 3000
Crawlable depth 2 4 Unlimited Unlimited

Table 2.2: Prices and feature restrictions per license with VisualSitemaps.

Figure 2.7: The sitemap creation form only requires URL as input. [Screenshot taken by the authors of this
paper.]

2.2 VisualSitemaps
VisualSitemaps VS 2019 is a tool for creating visual sitemaps via a web application. It has been in the
making for 2 years since 2017 and was the result of the founders’ frustration of needing to manually
create sitemap with screenshots for every new web project.

This online tool is available for any device supporting a browser. This implies the usage of Visual-
Sitemaps with smartphones is possible, but the web application is rather optimized for desktop usage
and larger tables. Several license types are available for the proprietary software, namely the Free, Mini,
Freelancer and Team license. These licenses dictate not only the price, but also restrict important features,
such as crawlable depth and pages per month, as can be seen in Table 2.2. The support of VisualSitemaps
was so kind as to provide a Freelancer license for this survey, as the limitations of the Free license where
too harsh to make any kind of statement about this product.

The input required by VisualSitemaps is the URL of the page one wants to start the crawl from, as
can be seen in Figure 2.7. The crawl takes several minutes, indicated by an orange status icon in the
dashboard, as in Figure 2.8. Upon crawl completion, an e-mail will be sent. Within the dashboard, one
can click "View" and view the created visual sitemap. In Figure 2.9, a completed crawl on ÖBB can
be seen. The result can be toggled from a top-to-down to a left-to-right hierarchy. Each node offers a
possibility to hide its children. An export function is also provided, which either creates a shareable web
link or a PDF, whereas the PDF creation may additionally take up to a minute.

Further settings can also be applied before starting a crawl, such as login data, URL restrictions,
maximum pages and maximum depth. The former consists of a login URL, where the login form is
located, a username and a password. In addition, CSS selectors can be defined, which helpVisualSitemaps

10 2 Visual Sitemaps

Figure 2.8: On the dashboard, an orange icon in the status column indicates that a crawl is in progress.
[Screenshot taken by the authors of this paper.]

Figure 2.9: The result screen offers 1.) a shareable web link, 2.) a PDF export, 3.) toggle between
top-to-bottom and left-to-right hierarchy and 4.) the visual sitemap itself, whereas the
visibility of child nodes can be toggled per node. [Screenshot taken by the authors of this paper.]

to locate the login form. This enables VisualSitemaps to also work with pages protected by a login. The
URL restriction settings consist of both a keyword, directory blacklist and whitelist, which limits the
pages that are visited depending on its URL.

2.2.1 Results
After applying the necessary settings, a crawl can be started. For the ÖBB website, it took about 30
minutes to yield a result of 561 crawled pages. The shareable link can be provided right away to clients
with a browser, but the PDF takes another minute to be generated. This can become annoying as the
browser needs to be open during this time. The resulting PDF can be seen in Figure 2.10. As one can
already infer, at full width, the export with a larger number of nodes is unreadable. Figure 2.11 shows the
PDF at five times the zoom level. Even now, no usable information can be read from the export. Only
after setting the zoom level to fiftyfold, the content of the nodes can be read and analyzed. A cropped
export at that zoom level is displayed in Figure 2.12. The main problem beside the necessary zoom level
is the performance drops in PDF readers opening the export. The size of the PDF is about 35 megabytes.
After applying the essential zoom-level, the PDF reader takes a few seconds to fully render the content
currently within the viewport. This may become a nuisance, as to navigate in such a wide PDF, one needs
to zoom out, scroll to the desired node and zoom in again. Every zoom level change takes a few seconds
caused by the large size. Furthermore, the navigation in the PDF is rather tedious as horizontal scrolling
may take forever if one wants to look at a specific node and its children. These problems (zoom-level
and navigation) also exist with the shareable link as an export. But at least scrolling through the visual

VisualSitemaps 11

Figure 2.10: Fully zoomed out PDF Export [Screenshot taken by the authors of this paper.]

Figure 2.11: Three screenshots of the PDF Export zoomed in at 5-times the zoom level as in
Figure 2.10. [Screenshot taken by the authors of this paper.]

sitemap in the web application is far more smoother than through the PDF.

If one takes a look back at Figure 2.12, one can analyze the results more thoroughly. The leaf nodes in
the tree represent web pages, whereas such a node is visualized by adding the HTML title and a screenshot
within the node. Nodes with children represent the URL hierarchy of its leaves. This initial assumption
that VisualSitemaps is creating the hierarchy based on the URL /directory/ structure, was confirmed by
the VisualSitemaps support. This means there is no actual parent > child linkage one would expect from
a visual sitemap, but rather a URL directory tree. For example, if the third level in a navbar contains this
example URL "oebb.at/ticket.html", the ticket.html node would not be in the third level of a category, but
rather directly under root. Additionally, external link redirections will not work, which was confirmed
by the support team. Under the condition that the crawled website has well maintained internal URLs,
the hierarchy created by VisualSitemaps is definitely usable. The number of crawled pages, 561, is still
by far larger than the number of nodes in a manually created sitemap, 139. Since ÖBB sets the language
via URL (e.g. oebb.at/en/home.html vs oebb.at/de/home.html), 561 can be halved, as VisualSitemaps
duplicated nodes of pages which are available for both German and English.

Similar results regarding zoom-level, navigation and URL hierarchy can be observed when using Audi
as input website. One striking problem that was occurred with Audi’s website were the tag pages. Several
pages on Audi can be tagged, e.g. "Design", "Innovation" etc. Clicking on these tags leads to a page that
shows multiple pages with the same tag. Since these tag pages were in no URL directory, they were all
inserted directly under root, which can be seen in Figure 2.13. The large number of such pages lead to a
huge number of connectors, which seem more like a blur on the page than children of a node of a tree.

After performing a crawl on db.developer.com, one can see that dynamic web applications can be
crawled without any problem. Additionally, due to the small size of this website the resulting sitemap is
actually usable, and one can easily navigate through the nodes.

2.2.2 Improvements
Recommended improvements could be providing a better navigation throughout the hierarchy. For
example, by clicking on a node, only its children could be shown and therefore reducing the clutter
in the graph. Hiding single nodes (instead of only the children) would also be a possibility. Such
dynamic interactions could be exported as multiple static HTML files, so the navigation features would
be available offline too. This could even replace the PDF export which not only takes long, but also has
rather degrading user experience for larger number of nodes.

12 2 Visual Sitemaps

Figure 2.12: Cropped PDF export at 50-times the the zoom level as in Figure 2.10. [Screenshot taken
by the authors of this paper.]

Figure 2.13: A large number of tag pages on the Audi website with connectors lead to a blur in the
export. [Screenshot taken by the authors of this paper.]

2.3 DynoMapper
DynoMapper DM 2019 is an online tool to create visual sitemaps, it works in every major browser and
therefore does not depend on any specific operating system. DynoMapper was evaluated on the basis of
a trial version with limited functionality as seen in Table 2.3. Even after contacting its support team and
insisting on a more capable license for the purpose of research and education it was not provided. Trial
licenses only allow to create one project analyzing one website, crawling a maximum of 100 pages and
only one trial license can be obtained per IP address.

2.3.1 Results
Sitemaps can be created by providing an URL to the site or an XML sitemap file containing several page
URLs that was already created by parsing the site in another tool. Creation of sitemaps took under 5
minutes for 100 sitemap nodes representing pages. Visual sitemaps can be created in several styles, they
are available under the names: Default, Tree, Circle, Folder, Thumbnail.

As DynoMapper is already an online tool with an online viewer of sitemaps it provides the option to
create shareable web links where the sitemap can be viewed without needing to log into the site. Another

Visual Site Mapper 13

License Trial Standard Organization Enterprise
Price/month $0 $40 $159 $399

Saved Sitemaps 0 25 50 100
Pages/sitemap 100 5000 25000 200000

Table 2.3: Prices and feature restrictions per license with Dyno Mapper.

Figure 2.14: DynoMapper ÖBB PDF export pages 1 - 10 of 17. [Screenshot taken by the authors of this
paper.]

important export format is PDF. Besides that, there are export format for just the sitemap like XML and
TXT.

2.3.2 Conclusion
The default style works well when exploring the visual sitemap in the online viewer, one can click on
nodes to get an overview of a subtree as seen in Figure 2.15. Exporting this default view as PDF in turn
does not give a good overview, nodes are listed under each other, PDF page for page, and the connections
cannot be traced, as shown in Figure 2.14. The best visualization style to export as PDF is the Tree view,
it provides a good overview over the whole tree on one page of the PDF, as can be seen in Figure 2.16.

2.4 Visual Site Mapper
This free online service Visual Site Mapper AS 2019 was released by the software allentum in 2014. As
its definition says, it has only an online application, therefore, no commercial version is available. This
service consists on a very basic process that starts with the URL of a website as an input. The whole
crawl process takes about two minutes and the result is a conceptual map of about 100 to 200 nodes. It
is not possible to export the results, nor to share them. The service offers a unique style of site mapping
which can be seen in Figure 2.17.

14 2 Visual Sitemaps

Figure 2.15: DynoMapper Audi subtree in the online viewer. [Screenshot taken by the authors of this paper.]

Figure 2.16: DynoMapper: audi.com tree view. [Screenshot taken by the authors of this paper.]

2.4.1 Results
The results of Visual Site Mapper with the ÖBBwebsite can be seen in Figure 2.18. The service generates
nodes with different shapes/shades and colors but, due to the lack of a legend that explains the latter,
we cannot understand the purpose/meaning of it. The result is not well structured, considering that the
hierarchy of the website cannot be properly seen. Additionally, only by clicking on the nodes you can see
the connection that there are between nodes, but, despite of this and thanks to the style of the map, this
linkage can be hardly seen. The cause of this is because most of the links are grouped together so the
connections are usually cover. Conversely, there is a good point to take into account: Every node leads to
the part of the website that it represents. This last consideration could be very useful in case of wanting
to focus on any specific URL.

Visual Site Mapper 15

Figure 2.17: The unique style that the tool offers. [Screenshot taken by the authors of this paper.]

Figure 2.18: The resulting visual sitemap of the ÖBB website [Screenshot taken by the authors of this paper.]

16 2 Visual Sitemaps

2.4.2 Conclusion
As a conclusion, this basic tool does not allow to choose or define any preference for the resulting visual
sitemap. Therefore, the result of the crawl is neither well structured nor explained and does not clear
anything about the information architecture of the website. For this reason, this visual sitemap generator
does not fulfill the main objective of its purpose, which is to make a clear vision of the hierarchy and
information architecture of a website. In addition, if the input is developer.db.com, which is a single page
application website, we got an error due to the robots.txt settings. Therefore, it could be said that this
tool is not prepared for all kinds of websites.

Chapter 3

Content Audit

Content audit is the process of inventorying all the indexable content on a domain to analyze it. This
part of the survey will analyze the programs that assist with this process. Thus, we will analyze 4
different tools (Screaming Frog, URL profiler, Scrapy and Content Analysis Tool) taking into account
that we are looking for a list of every URL on the site with its characteristics, trusting that the designer
has designed and kept the site with reasonable URLs. In addition to the main utility of these content
inventory programs, some of them have the possibility of creating visualization trees or XML sitemaps.

3.1 Screaming Frog
The Screaming Frog SF 2019 site crawler, compatible with MacOS, Windows and Ubuntu, is one of the
most commonly used tools for the content audit process. A professional license (£149.00 per year) was
kindly provided by the Screaming Frog support. Using said license, an unlimited number of URLs could
be crawled (only 500 URLs for the free version) with customizable analysis and the possibility of having
XML sitemaps and visualization trees of the results. The crawling process lasts for about 5 minutes and
only the URL of the website is needed as an input for the analysis. As a result there will be a deep study
of each URL, as can be seen in Figure 3.1, of the website with the possibility of exporting the result as
a CSV or Excel sheet. Nevertheless, as this tool is the first step of a two step progress, one only need to
work with the exports of all the internal links that one will analyze again in the next tool (URL Profiler).

For this tool the input example keeps being the ÖBB website. The process lasted for about 4 minutes
and analyzed 2359 nodes. As it can be seen each URL has its own analysis taking into account different
elements that can be taken off as the customize analysis option. Overall, it is a very simple and efficient
tool that gives a wide analysis of all the URLS and, as an extra, it creates visualization trees and XML
sitemaps (see in Figure 3.2) .

3.2 URL Profiler
URL Profiler 3M 2019 provided us with a one-week trial version, which works as the professional
version. Regarding the price of the tool, different options can be find due to getting adjusted to the
customer preferences (more details in Table 3.1) but, in general terms, the prices range from €19,95 -
€89,95 per month.

Regarding compatibility, it is suitable for Windows and MacOS. As input, there are several option
such as XML sitemap, Screaming Frog SEO Spider File or a CSV document. On the contrary, as output
options, there is only the XML export option.

After having introduced the basic information about this tool, the following paragraph will analyze
the process that should be done to have the website audited. The objective of this tool is to get a deeper
analysis of each URL by using the Screaming Frog results as an input and by choosing the points you

17

18 3 Content Audit

Figure 3.1: Solution of the crawl of the ÖBB website [Screenshot taken by the authors of this paper.]

Figure 3.2: Visualization Tree by Screaming Frog of the ÖBB website. [Screenshot taken by the authors of
this paper.]

License SOLO PRO Agency
Price/month $29,95 $39,95 $99,95

Price/month-yearplan $19,95 $25,95 $64,95
Max URL/import 5000 1000000 1000000

URL/month Unlimited Unlimited Unlimited
Number of Devices License 1 2 20

Table 3.1: Prices and feature restrictions per license with URL Profiler.

URL Profiler 19

Figure 3.3: Initial status of the program [Screenshot taken by the authors of this paper.]

want to take into consideration for the analysis. As it can be seen in Figure 3.3, the analysis is completely
customizable. However, for the content audit we are only interested in the URL level data and in the
content analysis. Hence, the elements that are needed for this are: Majestic, HTTP status, Robot Access,
Screen Capture, Social Shares, Google Analytics, Readability and Duplicate Content. Thanks to this,
information about the status of each URL, about data users and about the rendering of each URL are
going to be collected. Having taken all this into consideration, the tool will create two different kind
of documents: A spreadsheet with the analysis of the website (seen in Figure 3.4) and a folder with an
screenshot of every URL, as can be seen in Figure 3.5. The overall process will last more than 2 hours.

In the spreadsheet export a wide analysis of the website will be found. As shown in Figure 3.6, the tool
does not analyze all the URLs and all the factors that have been chosen even though the crawling process
lasted for more than 2 hours. Therefore, it does not work as good as it should, although it analyses has a
lot of elements that can be useful to verify the URL status.

On the other hand, in relation to the images folder, it is useful to see how URLs are rendering. This
can be helpful to see which URLs are lacking in content, as can be seen in Figure 3.7. In consequence, it
makes the process easier and faster so you can check if the website is working as it is expected and, if it
is not, you can determine it efficiently.

20 3 Content Audit

Figure 3.4: Spreadsheet output of the URL Profiler with the ÖBB website as an example. [Screenshot
taken by the authors of this paper.]

Figure 3.5: Screenshot folder of the ÖBB website as an example. [Screenshot taken by the authors of this
paper.]

Content Analysis Tool (CAT) 21

Figure 3.6: Spreadsheet result with some of the most interesting columns to take into account of the
ÖBB website as an example. [Screenshot taken by the authors of this paper.]

Figure 3.7: Screenshot of a URL with lack of content of the ÖBB website. [Screenshot taken by the
authors of this paper.]

3.3 Content Analysis Tool (CAT)
Content Analysis Tool (CAT) CI 2019 is a crawler that works as an online tool. This evaluation is based
on the trial version with a limit of 250 pages per website. It has a price structure with fixed amounts of
pages and monthly amounts of pages, as shown in Table 3.2.

A web crawl can be started by providing a URL. A crawl of 265 pages took 12 minutes to complete.
The web interface of CAT only shows limited meta information of the result URLs, in turn the CSV
export provides many more columns with metadata, as can be seen in Figure 3.8 and Figure 3.9.

For the Deutsche Bank Developer website CAT returned a full set of URLs, but in closer inspection
none of those URLs were of the subdomain provided with the single page application. It is inconclusive
if this result is because of the robots.txt or the single page application.

3.4 Scrapy
Scrapy SH 2019 is an open source Python library that can be used to extract data from websites. The
output of such an extraction can be JSON, JSON Lines, JL, CSV, XML, marshal or pickle file. One can
interact directly with the sites structure using CSS selectors, such as tag, class name and many more. The
tool also supports selections using XPath. It offers an intuitive API that simplifies the task of website
scraping. As an example, Spiders and LinkExtractors can be named. A Spider is a Python class that
defines how to perform a crawl and how to scrape a site. The former is defined by setting URLs as starting
locations, restricting the crawl to specific domains and creating Rules. Rules define a certain behavior to

22 3 Content Audit

License Trial Level 1 Level 2 Level 3 Basic Professional Enterprise
Price once - $49 $69 $99 - - -

Price/month - - - - $79 $179 $849
Pages Total 250 5000 10000 20000 25000 50000 250000

Table 3.2: Prices and feature restrictions per license for Content Analysis Tool.

Figure 3.8: Content Analysis Tool online [Screenshot taken by the authors of this paper.]

crawl the site. By defining parse methods in the Spider, one tells Scrapy how to extract data from a page
it currently has crawled. LinkExtractors on the other hand offer a possibility to extract links from a web
page. By setting such LinkExtractors to the Spider Rules, one can tell Scrapy to visit all links it finds
on a web page recursively. This behavior can then be exploited to create a CSV containing information
about the web page, such as title, HTTP status code and more.

3.4.1 Proof of Concept
As a proof of concept, a recursive link extraction example was taken and adapted with permission
from Jacobs 2016. From now on, the example will be called "oebb_scraper". The oebb_scraper retrieves
all links from the ÖBB website by visiting them recursively. It will create a CSV with 5 columns "url",
"content_type", "status", "title" and "h1", whereas the latter is simply the content of the first h1 tag it
finds. This example can be expanded to any number of fields an HTTP response returns, as this will be
one of the objects the oebb_scraper uses to create the CSV.

To start a Scrapy project, one can use the CLI and call scrapy startproject oebb_scraper. This
will create an empty Scrapy project without Spiders. In items.py, Scrapy items are defined, which con-
tain the data onewants to write into the CSV export. Listing 3.1 shows the class OebbContentAuditItem
with the fields that are needed for the oebb_scraper.

Afterwards, a Spider needs to be created to tell the scraper what and how to scrape. Calling
scrapy genspider oebb_content_audit www.oebb.at tells Scrapy to create a Python file within
the oebb_scraper Scrapy project containing a Spider called "oebb_content_audit" starting at the URL
www.oebb.at. Using FEED_EXPORT_FIELDS in the custom_settings member of the Spider, one can
set the order of the columns of the CSV export, but it is not required. By setting a LinkExtractor as
a rule of the Spider with follow=True and callback="parse_items", the Spider will now extract
all links beginning at the starting URL and follow the retrieved links recursively. The visited links are
then fed to the parse_items function of the Spider with the HTTP response as parameter. The URL
and status can be directly retrieved from the HTTP response, the content type can be retrieved from the
response headers and the title and h1 content can be retrieved using the ::text CSS pseudo selector.
The final spider can be viewed in Listing 3.2.

Calling scrapy crawl oebb_content_audit -o content_inventory.csv within the root di-
rectory of the Scrapy project will now start crawling the page and creating the CSV with the defined
columns. Referring to Figure 3.10, the first 20 rows of the resulting content inventory can be seen. In
the end, 802 URLs were filtered, all of them had content in the title tag and only some were missing h1

Scrapy 23

Figure 3.9: Content Analysis Tool export [Screenshot taken by the authors of this paper.]

1 #### items.py ####
2 class OebbContentAuditItem(scrapy.Item):
3 # define the fields for your item here like:
4 url = scrapy.Field()
5 content_type = scrapy.Field()
6 status = scrapy.Field()
7 title = scrapy.Field()
8 h1 = scrapy.Field()

Listing 3.1: Item class for the ÖBB content audit

content. The results were very promising not only in regard to completeness of the content audit, but
also in the extendability of Scrapy. One can further add more columns as from the HTTP response object
or from the content of the page with ease. The only restriction is that the user has to have basic Python
programming knowledge as no GUI is provided with this tool.

24 3 Content Audit

1 #### spiders/oebb_content_audit.py ####
2 import scrapy
3 from scrapy.linkextractors import LinkExtractor
4 from scrapy.spiders import Rule, CrawlSpider
5 from oebb_scraper.items import OebbContentAuditItem
6
7 class OebbContentAuditSpider(CrawlSpider):
8 name = "oebb_content_audit"
9
10 allowed_domains = ["www.oebb.at"]
11
12 start_urls = ["https://www.oebb.at/"]
13 custom_settings = {
14 # specifies exported fields and order
15 ’FEED_EXPORT_FIELDS’: ["url", "content_type", "status", "title", "h1"],
16 }
17
18 rules = [
19 Rule(
20 LinkExtractor(
21 canonicalize=True,
22 unique=True
23),
24 follow=True,
25 callback="parse_items"
26)
27]
28
29 def start_requests(self):
30 for url in self.start_urls:
31 yield scrapy.Request(url, callback=self.parse, dont_filter=True)
32
33 def parse_items(self, response):
34 item = OebbContentAuditItem()
35 item[’url’] = response.url
36 item[’content_type’] = response.headers.get(’Content-Type’)
37 item[’status’] = response.status
38 item[’title’] = self.get_tag_text(response , ’title’)
39 item[’h1’] = self.get_tag_text(response , ’h1’)
40 return item
41
42 @staticmethod
43 def get_tag_text(response, tag):
44 # ::text css pseudo selectors
45 text = response.css(tag + ’::text’).get()
46 if text is None:
47 return ’’
48 return text.strip()

Listing 3.2: Spider class for the ÖBB content audit

Scrapy 25

Figure 3.10: The resulting content inventory after running the oebb_scraper Scrapy project. [Screen-
shot taken by the authors of this paper.]

Chapter 4

Conclusion

A common task for information architects, web designers and many more, is to get an overview of the
hierarchy of a website. Creating sitemaps is a usual approach to this problem. To get a better grasp on said
sitemap, it is often represented as a tree or graph in a visual sitemap. Since themanual approach of creating
them is time consuming, there exists a small variety of tools that generate visual sitemaps automatically,
such as PowerMapper, DynoMapper, VisualSitemapper and VisualSitemaps. None of these tools produce
a visual sitemap of the same quality as a manually created one. They all come with their downsides but
an important upside can still be noted: The active time needed to generate a visual sitemap is a maximum
of a few minutes (ignoring the time the tools take to generate the sitemaps). VisualSitemapper is the only
free tool, but since its features are very limited it cannot really be recommended for professional use.
VisualSitemaps is only available for monthly plans and can be recommended for smaller websites but the
results for larger websites become quite cluttered and unreadable. DynoMapper is the most expensive
tool but it offers better usability of exports for larger websites. PowerMapper is the only paid tool that
can be bought with a one-time license. Not only is the hierarchy produced by the tool the best but also
the export and navigation features for larger websites stand out.

Content audits on the other hand provide a possibility to get a quick overview over all pages available
on a website. In addition to this overview, one can also scan the pages for their title, header, HTTP
status codes and so on. The variety of content audit tools is larger than of visual sitemap tools and URL
Profiler, Screaming Frog, Content Analysis Tool and Scrapy were some of them. Screaming Frog and
URL Profiler are too expensive for the results they produce. The URL Profiler crawl lasts too long. After
3 hours it has not processed every URL and most of the elements that should have been analyzed were
empty or its value were null. The performance of Screaming Frog is significantly better. The crawling is
fast, and it offers additional features like the XML and visualization trees that work very well. The result
and performance of the Content Analysis Tool (CAT) is comparable to Screaming Frog. Scrapy presents
a completely different approach to this problem. It is a framework for Python and does not provide a
GUI. Not only were the results comparable to the paid tools, but it even provided far better extendability
than the others. Additionally, it is open source and released under the BSD license, therefore it is free to
use. For users with basic programming experience, Scrapy can definitely recommended.

26

Bibliography

3M [2019]. Powerful Content and Back Link Auditor Software. 301 Media. 24 Nov 2019. https://
urlprofiler.com (cited on page 17).

AS [2019]. Create a visual map of your site. Alentum Software. 24 Nov 2019. http://visualsitemapper.
com (cited on page 13).

CI [2019]. Content Inventory and Analysis Made Easier. Content Insight. 24 Nov 2019. https://content-
insight.com (cited on page 21).

DM [2019]. Create Sitemaps - Sitemap Generator - Visual Sitemap Generator. Dynomapper. 24 Nov
2019. https://dynomapper.com (cited on page 12).

Jacobs, Kevin [2016]. How to scrape a website using Python + Scrapy in 5 simple steps. 2016. https:
//www.data-blogger.com/2016/08/18/scraping-a-website-with-python-scrapy/ (cited on page 22).

PM [2019]. Website Testing and Site Mapping Tools. PowerMapper. 24 Nov 2019. https://powermapper.
com (cited on page 5).

SF [2019]. SEO, Search Engine Marketing & Optimisation Agency. Screaming Frog. 24 Nov 2019.
https://screamingfrog.co.uk (cited on page 17).

SH [2019]. A Fast and Powerful Scraping and Web Crawling Framework. Scrapinghub. 24 Nov 2019.
https://scrapy.org (cited on page 21).

VS [2019]. Autogenerate Beautiful Sitemaps & Screenshots. VisualSitemaps. 24 Nov 2019. https://
visualsitemaps.com (cited on page 9).

27

https://urlprofiler.com
https://urlprofiler.com
http://visualsitemapper.com
http://visualsitemapper.com
https://content-insight.com
https://content-insight.com
https://dynomapper.com
https://www.data-blogger.com/2016/08/18/scraping-a-website-with-python-scrapy/
https://www.data-blogger.com/2016/08/18/scraping-a-website-with-python-scrapy/
https://powermapper.com
https://powermapper.com
https://screamingfrog.co.uk
https://scrapy.org
https://visualsitemaps.com
https://visualsitemaps.com

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Sitemaps
	1.2 Short History
	1.3 Generators
	1.4 General Information about tools
	1.5 Tested Websites

	2 Visual Sitemaps
	2.1 PowerMapper
	2.1.1 Results
	2.1.2 Improvements

	2.2 VisualSitemaps
	2.2.1 Results
	2.2.2 Improvements

	2.3 DynoMapper
	2.3.1 Results
	2.3.2 Conclusion

	2.4 Visual Site Mapper
	2.4.1 Results
	2.4.2 Conclusion

	3 Content Audit
	3.1 Screaming Frog
	3.2 URL Profiler
	3.3 Content Analysis Tool (CAT)
	3.4 Scrapy
	3.4.1 Proof of Concept

	4 Conclusion
	Bibliography

