
A Comparative Survey

Site Search Engines

Aumüller Thomas, Liegl Daniel, Platzer Fabian
Copyright 2023 by the author(s), except as otherwise noted.
This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence



Site Search Engines

● Site Search allows a user to search a website’s content.
● Made possible by a Site Search Engine (SSE) in backend, 

which processes query and returns results.

● Two main setups:
○ Self-Hosted: Engine hosted on own infrastructure.

○ Cloud-Based: API calls to engine hosted by someone else.

Source: https://www.algolia.com/blog/product/what-is-site-search/ 
1 / 15

https://www.algolia.com/blog/product/what-is-site-search/
http://progress_bar_id
http://ratio_text_id


Self-Hosted SSE

Pros:

● Lower price or open-source
● More control

Cons:

● Own server
● Setup
● Maintenance

Cloud-Based SSE

Pros:
● No hardware

● Fewer limitations
○ (e.g. computational power)

● Less maintenance

● Hidden Complexity

Cons:
● Lack of control

● Data privacy

● Network bandwidth limits

2 / 15

http://progress_bar_id
http://ratio_text_id


Survey Structure

Comparison

● Criteria.

● Assessment.

Backend

● Self-hosted SSE setup.

● Indexing.

● Dataset.

Frontend

● Toolchain used.

● JavaScript integration.

● Live demo.

3 / 15

http://progress_bar_id
http://ratio_text_id


Evaluated Three SSEs
● OpenSearch (Self-Hosted)

○ Secure search and analytics.

○ Machine learning support (k-NN search)

● Typesense (Self-Hosted)
○ Easy setup.

○ Lightweight yet powerful & scalable alternative.

○ Clean well-documented API.

● Algolia (Cloud-Hosted)
○ Web interface for managing.

○ Easy to implement.

○ API Monitoring.

4 / 15

http://progress_bar_id
http://ratio_text_id


Visual Breakdown of the Toolchain

Backend Server:
OpenSearch
Typesense

Algolia Servers
Frontend:

HTML
Vanilla JavaScript

Indexing using
Python

Metalsmith
Static Site 
Generator

5 / 15

http://progress_bar_id
http://ratio_text_id


Dataset
● Listings of movies and TV 

shows on Netflix

● Details such as - cast, 
directors, ratings, release 
year, duration, etc.

● 8807 entries.

● netflix_titles.csv (3.4 MB)

Source: https://www.kaggle.com/datasets/shivamb/netflix-shows

6 / 15

https://www.kaggle.com/datasets/shivamb/netflix-shows
http://progress_bar_id
http://ratio_text_id


Self-Hosted Backend Setup

● Easy setup using Docker.

● Docker compose to build infrastructure.

● No major problems with setup for Typesense and OpenSearch:
○ Docker compose templates available.

○ Did not manipulate the templates; See what works with setup recommended by developers.

● OpenSearch needed some more attention, due to CORS.

7 / 15

http://progress_bar_id
http://ratio_text_id


Indexing Typesense

● Used the ‘typesense’ Python library.

● Easily created the index, with our data schema.

● Imported the CSV with the Netflix data.

● Converted it to the JSONLines format.

● Passed the whole file into the import_() function with few problems.

8 / 15

http://progress_bar_id
http://ratio_text_id


Indexing OpenSearch

● Created initial index using 
OpenSearch dashboard.

● Used ‘opensearch-py’ Python library.

● OpenSearch needs two JSON objects 
for each document to be indexed.

● Had to manually build a really large 
JSON string.

_bulk request example:

{"index" : { "_index" : "netflix", "_id" : "5940" } }
{

"title":"Breaking Bad",
"description":"A high school chemistry 
teacher dying of cancer teams with a former 
student to secure his family's future by 
manufacturing and selling crystal meth.",
"cast": "Bryan Cranston, Aaron Paul, Anna 
Gunn, Dean Norris, Betsy Brandt, R.J. Mitte, 
Bob Odenkirk, Steven Michael Quezada, 
Jonathan Banks, Giancarlo Esposito",
"listed_in":"Crime TV Shows, TV Dramas, TV 
Thrillers"

}

9 / 15

http://progress_bar_id
http://ratio_text_id


Indexing Algolia

● Used the web interface of Algolia.

● Supports records as JSON, CSV, and TSV.

● JSON files exceeded limit of free trial’s API calls. 
○ Used CSV format.

● Easy to index, manage and add records to indices via web interface.

10 / 15

http://progress_bar_id
http://ratio_text_id


Frontend Toolchain

● Running on an Apache 2.0 web server

● Built using the Metalsmith static site generator.
○ Used the Barebones Starter by Werner Glinka to get started.

● Nunjucks templating engine.

● HTML and Vanilla Javascript.

11 / 15

https://github.com/wernerglinka/metalsmith-bare-bones-starter
http://progress_bar_id
http://ratio_text_id


Frontend Integration of the SSEs

● Single search bar searches all 3 
SSEs at the same time.

● Algolia and Typesense have Vanilla 
JavaScript API clients.
○ Easy import using <script> tags.

○ Queried the backend using the respective 
request function.

● Opensearch only has a Node.js 
library.
○ No Vanilla JavaScript support.

○ Manual fetch() querying required.

12 / 15

http://progress_bar_id
http://ratio_text_id


Showcase

13 / 15
Showcase Videos: https://youtube.com/playlist?list=PLsp4BtuSXH9nkw7SUff_0SsnASeRGWmM1&si=IneqAidjlpZhedUH 

http://progress_bar_id
http://ratio_text_id
https://youtube.com/playlist?list=PLsp4BtuSXH9nkw7SUff_0SsnASeRGWmM1&si=IneqAidjlpZhedUH


Comparison
Typesense OpenSearch Algolia

Paid No No Yes

Faceted Search Yes (parameter) Yes (plugin) Yes

Advanced Search Yes Yes Yes

Query Suggestion Yes Yes Yes

Fuzzy Search Yes Yes (in query) Yes

Taxonomies Yes (plugin) Yes Yes

Dictionaries No Yes Yes

Out of the Box Security Search only and 
admin API keys

Manual setup Search only and 
admin API keys

Personalized Results Yes (plugin) Yes (plugin) Yes (premium)

A more detailed comparison can be found here: https://docs.google.com/spreadsheets/d/1G1l-4-Oi-zswkyT_IvtEECdnMQlUqo92hm6VAxsr2-k/edit#gid=0.
14 / 15

https://docs.google.com/spreadsheets/d/1G1l-4-Oi-zswkyT_IvtEECdnMQlUqo92hm6VAxsr2-k/edit#gid=0
http://progress_bar_id
http://ratio_text_id


Conclusion

Our preferred Site Search Engine: Typesense
● Open Source.
● Very active Community.
● Easy to setup and use.
● Support for many programming languages and frameworks.
● Good developer experience.

15 / 15

http://progress_bar_id
http://ratio_text_id

