
Responsive Tables

Alexander Kassil, Daniel Hevesy-Szettyan, Dominik Bauer, and Miloš Globočki

706.041 Information Architecture and Web Usability 3VU WS 2024/2025
Graz University of Technology

13 Dec 2024

Abstract
Responsive tables are an essential component of web design, ensuring data accessibility
and usefulness across devices with different screen sizes. This survey investigates ways to
develop responsive tables, focusing on responsive table patterns like stacking, flipping, and
pagination, and best practice patterns for responsive tables like sort, search, persistence,
and more. The tools and techniques used to implement these concepts are examined, with
an emphasis on usability, performance, and flexibility. By comparing solutions like AG-
Grid and Handsontable, insights are provided into how to choose the best approaches and
technologies for responsive table implementation.

© Copyright 2024 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents ii

List of Figures iii

List of Listings v

1 Introduction 1

2 HTML Tables 3
2.1 Traditional HTML Tables . 3
2.2 Techniques for Responsive Tables . 3

3 Responsive Patterns for Tables 5
3.1 Stacking . 5
3.2 Squishing . 5
3.3 Flipping . 5
3.4 Pagination . 6
3.5 Accordion Rows . 6
3.6 Column and Row Toggle . 8
3.7 Horizontal Scrolling . 8
3.8 Lazy Loading and Virtualization . 8

4 Good Practice Patterns for Tables 9
4.1 Sortable Columns . 9
4.2 Filterable Rows . 9
4.3 Infinite Scrolling. 9
4.4 Show More Button . 9
4.5 Pinnable Header . 9
4.6 Zebra Striping. 11
4.7 Natural Cell Alignment . 11
4.8 Color Coding . 11
4.9 Persistence . 11

5 Responsive Table Libraries 13
5.1 Handsontable . 13
5.2 TanStack Table . 13
5.3 AG Grid . 13
5.4 DataTables . 14
5.5 Grid.js . 16

i

6 Discussion 17

Bibliography 19

ii

List of Figures

3.1 Stacking Pattern. 6
3.2 Flipping Pattern . 7
3.3 Pagination Pattern . 7

5.1 Handsontable. 14
5.2 TanStack Table . 14
5.3 AG Grid . 15
5.4 DataTables . 15
5.5 Grid.js . 16

iii

iv

List of Listings

2.1 Basic HTML Table . 4

4.1 Sortable Columns . 10
4.2 Filterable Rows . 11

v

vi

Chapter 1

Introduction

With the rise of mobile device usage, the demand for responsive web design has increased dramatically.
Responsive web design seeks to produce web pages that deliver an ideal user experience across a variety of
devices, including smartphones, tablets, laptops, and desktops [Marcotte 2014]. This design philosophy
emphasizes accessibility and usability, ensuring that the content is usable and visually appealing regardless
of screen size or orientation.

Tables present distinct issues when it comes to adapting to various device formats. Tables are commonly
used to convey organized data, but their traditional shape is sometimes unsuitable for smaller screens, as
columns and rows may extend beyond the viewable space. This might cause usability concerns, such as
asking users to scroll horizontally or zoom in on selected portions. Addressing these problems is critical
to providing a consistent user experience [Mozilla 2024b].

Responsive tables address these restrictions by adopting strategies that dynamically modify their layout.
These techniques include the following:

• Container Queries: Adjusting table dimensions based on the parent container’s width and height.

• Flexbox Layouts: Using flexible box layouts to dynamically rearrange table elements.

• Horizontal Scrolling: Allow users to scroll horizontally to view wide tables without compromising
data readability.

The usefulness of responsive tables goes beyond technological adaptability. Responsive tables also
simplify development and maintenance by allowing a single codebase to serve numerous devices. Fur-
thermore, it is important to make sure that responsive tables remain accessible for people with disabilities
by ensuring compliance with standards such as the Web Content Accessibility Guidelines (WCAG).

This survey presents an in-depth analysis of responsive table design, highlighting the patterns and
tools accessible for implementation. Practical approaches for adjusting tables to different screen sizes
are explored, as well as basic good practices for table usability. The survey then compares popular tools,
such as AG-Grid and Handsontable, to help developers make sensible choices.

1

2 1 Introduction

Chapter 2

HTML Tables

HTML (HyperText Markup Language) defines the structure and semantics of web content, CSS handles
the visual styling, and JavaScript handles interactivity and functionality. The word “hypertext” refers to a
network of interactions that connect online pages, allowing movement inside a single site or across many
sites [Mozilla 2024a].

2.1 Traditional HTML Tables
HTML tables are basic components of web design that show data organized in rows and columns. Despite
their simplicity, classic HTML tables are essentially static, making them unsuitable for current responsive
web design and reducing the accessibility options that the developer may want to include. As a result,
adapting tables to dynamic layouts has become a top priority for developers.

The table in Listing 2.1 shows the most basic implementation of the table in HTML. This code snippet
shows the basic structure that every table in HTML should have, and that it should consist of <table>, <tr>,
<th>, and <td> HTML elements, with their closing tags, respectively. While this structure is effective for
fixed layouts, it presents challenges in responsive design, particularly on smaller screens. Issues such as
overlapping content, excessive scrolling, and loss of readability are common [W3Schools 2024].

2.2 Techniques for Responsive Tables
To address these challenges, developers use various techniques to make tables responsive. Some of them
are listed below, and others are discussed in the following chapters:

• Stacking: Converts table rows into vertically stacked blocks for narrow screens.

• Collapsible Rows/Columns: Provides an interactive way to hide or reveal specific rows or columns.

• Reflowing Content: Rearranges table content to fit the available space dynamically.

CSS and JavaScript play an important role in the transformation of static tables into responsive
components. Without JS and CSS, any table would be static and would not be able to react to the different
screen sizes and devices in use. With CSS Container Queries, developers can adjust table styles based
on the parent container’s size, which gives them the advantage of having only one code-base for multiple
devices. JavaScript Plugins add interactivity, such as sorting, filtering, and pagination, to the said tables.

3

4 2 HTML Tables

1 <table>
2 <thead>
3 <tr>
4 <th>Specification</th>
5 <th>Details</th>
6 <th>Value</th>
7 </tr>
8 </thead>
9 <tbody>

10 <tr>
11 <td>Engine Type</td>
12 <td>Displacement</td>
13 <td>3.0 L I6</td>
14 </tr>
15 <tr>
16 <td>Power</td>
17 <td>Torque</td>
18 <td>335 hp / 500 Nm</td>
19 </tr>
20 </tbody>
21 </table>

Listing 2.1: A basic HTML table without any CSS styling.

Chapter 3

Responsive Patterns for Tables

A responsive pattern is a good practice technqiue for implementing responsive behavior for tables. With
these patterns, the appearance and behavior of HTML tables can be controlled depending on the device
on which they are displayed. Tables ideally should provide the same usability and functionality on both
mobile devices and PCs. Some examples of commonly used responsive table patterns include stacking,
squishing, flipping, pagination, accordion rows, column and row toggle, horizontal scrolling, as well as
more advanced techniques such as lazy loading and virtualization.

3.1 Stacking
The Stacking pattern converts each row of the table into a vertical stack, with cells in a displayed one
below the other. The initial table headers are displayed as labels alongside the table data for the respective
row. This maintains readability and usability even for small devices, and users can view all the content
one row at a time. It is typically implemented only using CSS, without the need of additional JS code.
This is another advantage because it simplifies the implementation and ensures that stacking will work in
most environments, even when the execution of JS is disabled. One disadvantage is that it is difficult to
compare the table content of separate rows, because in the stacked view, only one row at a time is visible.
This makes the pattern impractical in situations where the focus is mainly on comparing values.

Figure 3.1 shows part of a data table with 15 columns. Due to the resolution of mobile devices, most
columns would be cut off if stacking was disabled. With the enabled pattern, users can view the content
of one row without truncated text.

3.2 Squishing
The simplest way to make a table responsive is to change its width. One method to achieve this is
to decrease the width of each column to such an extent that the content just remains readable. The
text is abbreviated, using methods such as truncation, truncation with ellipsis, compression, or line
wrapping. Only a few lines of CSS are necessary to handle how the text is abbreviated, which makes
the implementation of the pattern trivial. This straightforward implementation is the greatest advantage
of the pattern and there is no reason to exclude it from any HTML table. Ideally, squishing allows all
columns to remain visible, making it ideal for tables where maintaining the overall structure is crucial,
but in practice this is often not the case and additional patterns need to be considered.

3.3 Flipping
The Flipping pattern transposes the HTML table by swapping rows and columns to better fit smaller or
wider screens. When flipped, the table headers are displayed vertically, potentially making it possible for

5

6 3 Responsive Patterns for Tables

(a) Stacking disabled. (b) Stacking enabled.

Figure 3.1: Stacking: The same table with and without stacking enabled displayed on a mobile
device. [Screenshot taken by the author of this paper.]

users on narrower screens to see the whole of a wide table. This pattern is only useful for tables with
many columns and fewer rows, as shown in Figure 3.2a, otherwise the transposed table becomes too wide
and cannot be viewed on one screen. To overcome this issue, it can be combined with pagination (see
Section 3.4) to limits the number of rows shown. Flipping is implemented in CSS and JS because the
entire table needs to be removed from the DOM and rebuilt again in the transposed form. Flipping can
be automatically triggered by screen size detection through container queries, or manually activated by
the user with a button.

Figure 3.2 shows the same table in its standard form and its transposed form. For mobile devices, it
would be necessary to show the flipped version of the table and additionally implement the squishing
pattern to abbreviate longer text in the name row.

3.4 Pagination
The Pagination pattern splits table content into multiple pages, reducing the amount of content displayed
at once. It is particularly useful for large data tables that would otherwise require users to scroll to view all
the data. In combination with other patterns, such as flipping and squishing, pagination highly improves
the usability and viewability for both mobile and PC users. Implementing pagination using plain CSS
and JS can be a more complex task. Therefore, other tools (see Chapter 5) are often considered when
implementing this pattern. Figure 3.3 displays a single page of a data table containing over 70 rows,
which otherwise would be challenging to present clearly.

3.5 Accordion Rows
This pattern ensures that additional information is only displayed when the user needs it. By default, one
item per row is shown, typically with short key information. On mobile devices and smaller screen sizes,
this saves space and guarantees better readability. Additional rows remain hidden until the user interacts
by pressing or clicking the specific item. The expanded content is often displayed below the item in a
stacked format with headings for clarity. The Accordion Rows pattern can be implemented in pure CSS.
It ensures a clean and compact layout on smaller devices while preserving access to detailed information
through user interactions.

Accordion Rows 7

(a) Standard Table.

(b) Flipped Table.

Figure 3.2: Flipping: The same table in its standard form and its flipped form. [Screenshot taken by the
author of this paper.]

Figure 3.3: Pagination: Table with enabled pagination, sorting and searching pattern. [Screenshot taken
by the author of this paper.]

8 3 Responsive Patterns for Tables

3.6 Column and Row Toggle
The Column and Row Toggle pattern hides specific content. This can be done automatically when there is
not enough room for the whole table or manually by users. It allows hiding less critical columns or rows
and emphasizes more important content. It is crucial to provide users with a form of feedback as to which
content is hidden and how it can be shown again. This is typically done with buttons or dropdown menus
beside the table. The pattern can be implemented using pure CSS, which is beneficial for maintaining
simplicity and avoiding dependency on JS.

3.7 Horizontal Scrolling
The Horizontal Scrolling pattern allows users to scroll horizontally to view content that does not fit the
width of the screen. Typically, a horizontal scroll bar is placed somewhere in or near the table. Compared
to all other listed patterns, horizontal scrolling truly preserves the full table structure and ensures that all
columns remain accessible without truncating or hiding the data. It is particularly useful for tables with
a large number of columns or detailed content. Similar to Squishing, only a few lines of CSS code are
needed, making the pattern trivial to implement. One downside of this simple pattern is that, for touch
display users, the interaction with a scroll bar can be tricky and frustrating. A different pattern should be
used on these devices.

3.8 Lazy Loading and Virtualization
Lazy loading and virtualization are techniques that generally delay the loading of resources until they are
needed. In the context of tables, only the visible rows are rendered initially, while additional rows are
dynamically loaded when the user needs it. This approach significantly improves performance, especially
when dealing with large datasets, by reducing initial load times and memory usage. It can be implemented
manually with JS or, more commonly, using other tools (see Chapter 5).

The differences between the two patterns are:

• Lazy Loading: Lazy Loading typically makes multiple API calls that retrieve only a subset of the
needed data. For example, when a user scrolls through a table, new data is requested from the server
all the time, reducing the initial data load and server response size. This approach is ideal for large
datasets that cannot be entirely stored in local memory.

• Virtualization: Virtualization only makes a single, larger API call to get all necessary data at once.
The data is then stored in local memory, such as cache, and rendered dynamically based on what
is visible in the table. Virtualization enhances rendering efficiency by presenting only the visible
rows, which decreases DOM size and increases performance, without making repeated calls.

Chapter 4

Good Practice Patterns for Tables

A good practice pattern defines a good practice technique for implementing tables in general. Some
examples include sortable columns, pinnable header, zebra striping, and natural cell alignment (text left,
numbers right).

4.1 Sortable Columns
The Sortable Columns pattern does what the name says. It allows the user to sort columns either ascending
or descending. Most of the time, indicated by small arrows next to the pattern that represents the sorting
order. Listing 4.1 shows how this pattern might be implemented.

4.2 Filterable Rows
The Filterable Rows pattern requires the developer to add a search box that allows for quick filtering of
data. This pattern is especially useful for quickly locating information in large datasets. Figure 3.3 shows
an example search box in the top left corner. Listing 4.2 shows how this pattern might be implemented.

4.3 Infinite Scrolling
This pattern is used mostly for mobile devices. It replaces the pagination pattern and allows the user to
scroll rather than switching pages. This is achieved by loading new rows as the user scrolls down. This
proves to be much more intuitive and user-friendly than the pagination pattern on touch devices.

4.4 Show More Button
A Show More button is used to allow the user to explicitly request more data rows be loaded and displayed.
This pattern is used to improve performance and improves usability, particularly on mobile devices.

4.5 Pinnable Header
While scrolling to large datasets, it can be easy to lose context, especially if the header rows (or columns)
are no longer shown. The Pinnable Header pattern pins a header row (or header column) in place, as
the rest of the data scrolls past. This means the header is always visible no matter how far is scrolled,
allowing the user to easily identify which information belongs to which header.

9

10 4 Good Practice Patterns for Tables

1 function sortTable_hor_scr(column) {
2 const headers = document.querySelectorAll(’th.paginations_hor_scr’);
3 let sortedHeader = null;
4
5 headers.forEach(header => {
6 if (header.textContent.trim().startsWith(column)) {
7 sortedHeader = header;
8 } else {
9 header.classList.remove(’sorted-asc’, ’sorted-desc’);

10 }
11 });
12
13 if (sortColumn_hor_scr === column) {
14 sortDirection_hor_scr *= -1;
15 } else {
16 sortColumn_hor_scr = column;
17 sortDirection_hor_scr = 1;
18 }
19
20 if (sortedHeader) {
21 if (sortDirection_hor_scr === 1) {
22 sortedHeader.classList.add(’sorted-asc’);
23 sortedHeader.classList.remove(’sorted-desc’);
24 } else {
25 sortedHeader.classList.add(’sorted-desc’);
26 sortedHeader.classList.remove(’sorted-asc’);
27 }
28 }
29
30 filteredData_hor_scr.sort((a, b) => {
31 const aValue = a[column] || 0;
32 const bValue = b[column] || 0;
33
34 if (typeof aValue === "number" && typeof bValue === "number") {
35 return (aValue - bValue) * sortDirection_hor_scr;
36 } else {
37 return aValue.toString().localeCompare(bValue.toString()) *

sortDirection_hor_scr;
38 }
39 });
40
41 currentPage_hor_scr = 1;
42 renderTable_hor_scr(currentPage_hor_scr);
43 renderPagination_hor_scr();
44 }

Listing 4.1: JavaScript code to implement the Sortable Columns pattern.

Zebra Striping 11

1 function filterTable_hor_scr() {
2 const query = document.getElementById(’search-bar_hor_scr’).value.toLowerCase();
3 filteredData_hor_scr = data.filter(item => item.Name.toLowerCase().includes(query)

);
4 currentPage_hor_scr = 1;
5 renderTable_hor_scr(currentPage_hor_scr);
6 renderPagination_hor_scr();
7 }

Listing 4.2: JavaScript code to implement the Filterable Rows pattern.

4.6 Zebra Striping
The Zebra Striping pattern is used to improve readability by coloring the rows in alternating colors. It is
easier for the user to distinguish between rows.

4.7 Natural Cell Alignment
By default, text should be left aligned in a cell and numbers should be right aligned. The Natural Cell
Alignment pattern should make it easy to set the correct alignment.

4.8 Color Coding
The Color Coding pattern is used primarily for datasets with various categories. The pattern can help
distinguish different categories or highlight important values by coloring them differently.

4.9 Persistence
The Persistence pattern ensures that any previously entered sorting or filtering is saved and restored upon
revisiting or reloading.

12 4 Good Practice Patterns for Tables

Chapter 5

Responsive Table Libraries

A number of libraries are available to help provide responsive tables. Five such libraries were explored
in the course of this survey.

5.1 Handsontable
Handsontable is a powerful JavaScript library for managing tabular data in spreadsheet-like tables [Hand-
soncode 2024]. Unlike other tools, it is designed for inline editing and enables spreadsheet-like behavior
in data tables, so end users can interact with data directly. The library has built-in support for many
responsive table patterns and good practice patterns like sorting and filtering. Handsontable is optimized
for large data tables with its virtualization implementation. Figure 5.1 shows Handsontable with a dataset
containing 1000 rows and 1000 columns, where the data is loaded on demand.

5.2 TanStack Table
TanStack Table is a lightweight, headless library for responsive data tables [TanStack 2024]. It offers
developers the ability to customize every aspect of the behavior and appearance of data tables. Since it
is a headless data table library, the tool does not provide predefined styles or UI components. TanStack
Table supports out-of-the-box patterns such as squishing, pinnable headers, sorting, and grouping. The
library itself is minimal in size, but still provides good performance with large data sets through lazy
loading. Figure 5.2 shows TanStack Table with a large dataset and lazy loading.

5.3 AG Grid
AG Grid is a fully featured grid solution tool with extensive customization options [AG Grid 2024a].
This library can handle large data tables and is optimized for high performance. In addition, AG Grid has
extensive documentation and examples for each feature. Since AG Grid has a large community, it also
has extensive community-driven plugins. AG Grid is available as a community edition and an enterprise
edition. The Community Edition provides many responsive and good practice patterns. When using the
default implementation of AG Grid, some responsive patterns such as horizontal scrolling are enabled by
default.

The paid Enterprise Edition unlocks much more functionality to make large and complex data tables
readable on different devices, such as pivoting and a side bar. AG Grid offers the opportunity to test these
features in an non-production environment or for research purposes. Thus, companies can use a trial
and only need to pay for these features when using them in production environments [AG Grid 2024b].
Figure 5.3 shows a responsive table with default configuration. It has filtering, sorting, a side-bar, and
pivoting. Despite many features being available, the table does not appear overloaded.

13

14 5 Responsive Table Libraries

Figure 5.1: Handsontable: Squishing, horizontal scrolling, and virtualization are enabled. [Screenshot
taken by the author of this paper.]

Figure 5.2: TanStack Table: Squishing, horizontal scrolling, and lazy loading are enabled. [Screenshot
taken by the author of this paper.]

5.4 DataTables
DataTables is a jQuery-based library for data tables that provides basic and advanced table functionality
[SpryMedia 2024]. It is designed to improve readability of small to medium-sized HTML tables using
responsive and good-practice patterns. The library is designed to work out of the box with existing HTML
data tables and can be initialized with a few lines of JavaScript. Some patterns, such as pinnable headers,
row grouping, and column resizing, need to be imported through extensions. Since DataTables works
with jQuery, it is ideal for legacy web applications, which already use jQuery. To provide compatibility
for modern frameworks, DataTables offers a variety of wrappers. Figure 5.4 shows an example from the
documentation. It is an out-of-the-box configuration for a data table which has filtering, sorting, and
pagination enabled by default.

DataTables 15

Figure 5.3: AG Grid: Squishing, horizontal scrolling, sorting, filtering, side bar, for a large dataset.
[Screenshot taken by the author of this paper.]

Figure 5.4: DataTables: Filtering, sorting, and pagination are enabled. [Screenshot taken by the author of
this paper.]

16 5 Responsive Table Libraries

Figure 5.5: Grid.js: Horizontal scrolling is enabled. [Screenshot taken by the author of this paper.]

5.5 Grid.js
Grid.js is a lightweight JavaScript library to create minimalistic, responsive data tables [Usablica 2024]. It
supports frameworks like React, Vue, and Angular using modern JavaScript. Grid.js only offers essential
functionality for responsive tables, such as sorting, filtering, and pagination. This makes it a good choice
for quickly implementing a small to medium-sized data table without requiring heavy dependencies.
The setup is simple and only requires importing the library and passing data to a configuration object.
Grid.js lacks more advanced functionality such as grouping, virtualization, or lazy loading, making it only
recommendable for small data tables. Figure 5.5 shows an out-of-the-box configuration. Compared to
other tools, not much functionality enabled by default. As shown in Figure 5.5, the width of the columns
are not sized according to text length. In addition, no sorting or filtering is enabled.

Chapter 6

Discussion

The goal of responsive tables is to display data efficiently and easily on various different devices. It is
often necessary to combine multiple patterns to achieve this. During this survey work, a combination
of pagination with sorting, filtering, and column toggling was found to work well. However, pagination
can be cumbersome to use on mobile devices and should perhaps be replaced by infinite scroll for better
usability. For narrower widths, the stacking pattern works well. It is works intuitively even on very
narrow devices, and can be combined with other solutions for wider screens.

AG Grid not only offers extensive functionality out of the box, but also provides detailed documentation
with examples. The simple implementation and ease of use make it ideal for developers to improve the
readability and usability of data tables across multiple screen sizes, with minimal time investment. It is
suitable for small to medium-sized data tables as well as for large data tables. The Community Edition
offers a large set of basic features under an MIT license. Similar tools often require more effort to achieve
the same functionality compared to this tool. The ease of implementation, extensive documentation, and
functionality provided, make it the library of choice.

17

18 6 Discussion

Bibliography

AG Grid [2024a]. AG Grid: The Best JavaScript Grid in the World. 6th Dec 2024. https://ag-grid.com/
(cited on page 13).

AG Grid [2024b]. Community vs. Enterprise Licencing. 6th Dec 2024. https://ag-grid.com/javascript
-data-grid/licensing/ (cited on page 13).

Handsoncode [2024]. Handsontable: JavaScript Data Grid with Spreadsheet UI. 6th Dec 2024. https:
//handsontable.com/ (cited on page 13).

Marcotte, Ethan [2014]. Responsive Web Design. 2nd Edition. A Book Apart, 2nd Dec 2014. 153 pages.
ISBN 1937557189. http://abookapart.com/products/responsive-web-design (cited on page 1).

Mozilla [2024a]. HTML: HyperText Markup Language. 25th Sep 2024. https://developer.mozilla.org
/en-US/docs/Web/HTML (cited on page 3).

Mozilla [2024b]. Mozilla HTML Tables. 25th Sep 2024. https://developer.mozilla.org/en-US/docs/Lea
rn/HTML/Tables/Basics (cited on page 1).

SpryMedia [2024]. DataTables. 6th Dec 2024. https://datatables.net/ (cited on page 14).

TanStack [2024]. TanStack Table. 6th Dec 2024. https://tanstack.com/table (cited on page 13).

Usablica [2024]. Grid.js Advanced Table Plugin. 6th Dec 2024. https://gridjs.io/ (cited on page 16).

W3Schools [2024]. HTML Tables. 3rd Dec 2024. https://w3schools.com/html/html_tables.asp (cited
on page 3).

19

https://ag-grid.com/
https://ag-grid.com/javascript-data-grid/licensing/
https://ag-grid.com/javascript-data-grid/licensing/
https://handsontable.com/
https://handsontable.com/
http://amazon.co.uk/dp/1937557189/
http://abookapart.com/products/responsive-web-design
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Learn/HTML/Tables/Basics
https://developer.mozilla.org/en-US/docs/Learn/HTML/Tables/Basics
https://datatables.net/
https://tanstack.com/table
https://gridjs.io/
https://w3schools.com/html/html_tables.asp

	Contents
	List of Figures
	List of Listings
	1 Introduction
	2 HTML Tables
	2.1 Traditional HTML Tables
	2.2 Techniques for Responsive Tables

	3 Responsive Patterns for Tables
	3.1 Stacking
	3.2 Squishing
	3.3 Flipping
	3.4 Pagination
	3.5 Accordion Rows
	3.6 Column and Row Toggle
	3.7 Horizontal Scrolling
	3.8 Lazy Loading and Virtualization

	4 Good Practice Patterns for Tables
	4.1 Sortable Columns
	4.2 Filterable Rows
	4.3 Infinite Scrolling
	4.4 Show More Button
	4.5 Pinnable Header
	4.6 Zebra Striping
	4.7 Natural Cell Alignment
	4.8 Color Coding
	4.9 Persistence

	5 Responsive Table Libraries
	5.1 Handsontable
	5.2 TanStack Table
	5.3 AG Grid
	5.4 DataTables
	5.5 Grid.js

	6 Discussion
	Bibliography

