
Gizual
Repository Visualization for Git

Information Visualization, SS 2022
2022-06-29

Group G2:
Korduba, Schintler, Steinkellner

Git Blame

Short Commit ID

Name Timestamp

Line Number

File Content

1 / 15

http://progress_bar_id
http://ratio_text_id

Initial Approach

CLI

JSON

Desktop

Browser

Bad UX

2 / 15

http://progress_bar_id
http://ratio_text_id

● C implementation of the Git core methods
● Minimal dependencies
● Cross-platform
● Permissive licensing (GPLv2)
● Used in production by many companies, including:

○ GitHub
○ GitLab

libgit2
https://libgit2.org/

3 / 15

https://libgit2.org/
http://progress_bar_id
http://ratio_text_id

Facts:

● Modern binary instruction format
● Load-time-efficient virtual stack

machine
● Sandboxed and memory-safe

WebAssembly (Wasm)
https://webassembly.org/

Screenshot taken from https://caniuse.com/wasm

Wasm allows to:

● Compile executables for the browser
● Use existing native libraries within the

browser

4 / 15

https://webassembly.org/
https://caniuse.com/wasm
http://progress_bar_id
http://ratio_text_id

● Compiler toolchain for WebAssembly
● Supports modern C and C++ (C++17 standard)
● Uses Clang¹ compiler and LLVM-13² toolchain
● Ships with a pre-compiled standard library
● Features different forms of FileSystems (e.g. memoryFS)

Emscripten
https://github.com/emscripten-core/emscripten

1: https://clang.llvm.org/
2: https://llvm.org/

5 / 15

https://github.com/emscripten-core/emscripten
https://clang.llvm.org/
https://llvm.org/
http://progress_bar_id
http://ratio_text_id

Emscripten + libgit2 (1)

- No native ability to execute http requests from Wasm
+ Fork libgit2 and apply patches¹

- No native filesystem within Wasm
+ Use Emscripten’s memoryFS implementation

- Libgit2’s synchronous API blocks the main thread (unresponsive UI)
+ Run wasm module within a Web Worker²

1: Inspired by https://github.com/petersalomonsen/wasm-git
2: Web Worker https://web.dev/workers-overview/

6 / 15

https://github.com/petersalomonsen/wasm-git
https://web.dev/workers-overview/
http://progress_bar_id
http://ratio_text_id

- Unable to clone into the browser because of CORS¹
+ Setup a proxy² on the server-side to relay requests

- Cloning a large repository takes too long
+ Use of File System Access API as an alternative

- Timestamps in int64 format, but Wasm is 32 bit
+ Use of Emscripten’s BigInt support for large numbers

1: Cross-Origin Resource Sharing https://web.dev/cross-origin-resource-sharing/
2: Inspired by https://github.com/isomorphic-git/cors-proxy

Emscripten + libgit2 (2)

7 / 15

https://web.dev/cross-origin-resource-sharing/
https://github.com/isomorphic-git/cors-proxy
http://progress_bar_id
http://ratio_text_id

● Enables interaction with local files and folders
● Users has to explicitly permit read and/or write access

Allows us to:

● Copy local .git folder recursively into Emscripten’s memoryFS

Screenshot taken from https://caniuse.com/native-filesystem-api

File System Access API
https://web.dev/file-system-access/

8 / 15

https://caniuse.com/native-filesystem-api
https://web.dev/file-system-access/
http://progress_bar_id
http://ratio_text_id

Current Approach

Gizual.app

Browser Web Worker

Show directory picker

Copy directory to memoryFS

Use libgit2 to explore repo
(get branches / commits / file tree)

Select branch / commit / files

Use libgit2 to create blame information

Render visualization

9 / 15

http://progress_bar_id
http://ratio_text_id

Visualization: Toolset

● Frontend logic implementation: React¹
● Component styling: Emotion²
● File tree and additional components: Mantine³
● Visual representation of the file map: Two.JS⁴ and D3⁵ (for color scaling)

1: React https://reactjs.org/
2: Emotion https://emotion.sh/
3: Mantine https://mantine.dev/
4: Two.JS https://two.js.org/
5: D3 https://d3js.org/

10 / 15

https://reactjs.org/
https://emotion.sh/
https://mantine.dev/
https://two.js.org/
https://d3js.org/
http://progress_bar_id
http://ratio_text_id

Two.JS

Benefits:

● Quick change between
renderers (SVG, Canvas,
WebGL) is possible

Shortcomings:

● Event handling needs
additional adjustments, if
the renderer is changed

11 / 15

http://progress_bar_id
http://ratio_text_id

Visualization: Repository and File Selection

12 / 15

http://progress_bar_id
http://ratio_text_id

● The files are displayed in a
row using CSS Grid Layout

● The layout is adjustable to
a screen size

● The length and position of
each line imitate its length
and position in a real file

● Color of a line displays a
particular feature (date of
last edit or author)

● The legends are adjusted
according to the feature
shown

Visualization: File Map

13 / 15

http://progress_bar_id
http://ratio_text_id

Visualization: Interactivity

● Hovered line is highlighted
● Line-specific tooltip is displayed
● Tooltip positioning takes into account

container boundaries, so that the tooltip
never overflows them

14 / 15

http://progress_bar_id
http://ratio_text_id

Deployment

● Automated on each push to main using GitHub Actions¹
● Bundled with Vite²

● Packaged in a Docker³ Container
● Deployed on a server configured with Let's Encrypt⁴ to support HTTPS
● Available at https://gizual.xyz

1: GitHub Actions https://github.com/features/actions
2: Vite Bundler https://vitejs.dev/
3: Docker https://www.docker.com/
4: Let’s Encrypt https://letsencrypt.org/

15 / 15

https://gizual.xyz
https://github.com/features/actions
https://vitejs.dev/
https://www.docker.com/
https://letsencrypt.org/
http://progress_bar_id
http://ratio_text_id

Cheers!
Thanks for your attention!

