String Charter 2: Visual Transport Schedules

Inge Gsellmann, Michael Hebesberger, and Danijela Lazarevic

706.057 Information Visualisation 3VU SS 2023
Graz University of Technology

03 Jul 2023

Abstract

String Charter 2 is a web application to generate interactive visual transport schedules in
the form of string charts. This report provides an overview of the project, including an
exploration of string charts as a visualisation method, the selection of the development
framework, data formats and datasets, the project’s implementation, and potential future
work.

© Copyright 2023 by the author(s), except as otherwise noted.

Contents

Contents

List of Figures

List of Tables

List of Listings

1 Introduction

2 Related Work

3 Technology

3.1
3.2
33

General Transit Feed Specification (GTFS) .

Tauri .
Electron .

4 Implementation

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Requirements .
Tools and Libraries .
Datasets .

Parsing .

User Interface .
Drawing the Chart .
SVG Export

5 Future Work

6 Concluding Remarks

Bibliography

iii

vii

AN L L W

— O O O &

13
14

17

19

21

ii

List of Figures

1.1

2.1
22

4.1
4.2
4.3

Image of a String Chart from 1852 .

Marey’s Trains
NYC Subway Stringlines

GTFS Data Model . .
Structure of Parsed GTFS Data .
UI of String Charter 2

ii

12
13
14

v

List of Tables

3.1
3.2

4.1

Files in GTFS Schedule Format .
Comparison of Electron and Tauri .

Overview of the Tools and Libraries Used .

10

vi

List of Listings

4.1 Files in OBB GTFS Dataset
4.2 Files in FlixBus GTFS Dataset

vii

10
11

viii

Chapter 1

Introduction

Being able to visualise public transport schedules is useful not only for passengers, but also for the
agencies running the service. One could argue that it is even more useful for agencies, as they have more
incentive to look at all available connections than single passengers, who might be satisfied with looking
at two or three connections at a time.

Agencies can analyse their service for gaps in the schedule, or for track sections which consistently
cause delays. Instead of reading through endless tables, trying to find patterns by hand, then find outliers
or breaks in the pattern, having access to a data visualisation lets analysts actually see the patterns and
gaps.

The graphic train schedule based on a string chart (or stringline chart) is a classic visualisation method
for railway schedules and traffic. It is featured on the front cover of Edward Tufte’s book The Visual
Display of Quantitative Information. The string chart is often attributed to Etienne-Jules Marey, but
was invented by Charles Ibry, an engineer with the French Northern Railroad company, to show train
movements on a specific railway route throughout the day. The diagram displays the geographical route
on the vertical axis and the hours of the day on the horizontal axis, allowing for a clear visualisation of
train destinations and speed. An image of the route from Paris to Bologna from 1852 can be seen in
Figure 1.1. The method was crucial for managing traffic on early railway routes, which often operated on
a single track in both directions [Rendgen 2019].

String charts excel at visually presenting both time and trips, making them highly suitable for depicting
public transport schedules. By mapping different trips on a single chart, commuters can easily discern
the relationship between various transportation options. The two axes represent time and stops, resulting
in an intuitive chart to read. The lines connecting points on the chart symbolise the movement of vehicles
along specific routes, enabling users to quickly identify the frequency and duration of trips. Stringline
charts can include information such as different modes of transportation, timings for peak and off-peak
hours, and even gaps or delays.

Stringline charts are user-friendly and accessible to a wide range of users. They eliminate the need
for deciphering complicated timetables or reading extensive text-based schedules. Moreover, stringline
charts can be adapted for digital use. This ensures that users can access interactive information about
public transport schedules, enhancing their overall travel experience [Lee and Multer 2009].

This project aims to create a simple, web-based application to convert a General Transit Feed Specific-
ation (GTFS) file into a string chart, which can then be exported as an SVG file for further use. Chapter 3
describes the GTFS file format and the Tauri and Electron frameworks for building executable packages
from web applications.. After that, Chapter 2 looks at some similar projects and tools. Chapter 4 describes
the requirements and implementation of the project. Chapter 5 presents some iodeas for potential future
work. Finally, Chapter 6summarises the lessons learned and conclusions from the project.

1 Introduction

Source gallica.bnffr / Bibliothéque nationale de France

Figure 1.1: Image of a string chart from 1852 showing the connections from Paris to Bologna.
[gallica.bnf.fr / Courtesy Bibliotheque nationale de France]

Chapter 2

Related Work

There are two notable projects that share similarities with String Charter 2: Marey’s Trains from Ob-
servable [Bostock 2021] and the NYC Subway Stringlines from Vibien [Vibien 2019]. Both visualise
transportation schedules in an interactive manner using string charts.

Marey’s Trains visualises the transit lines from San Francisco to Gillroy, as can be seen in Figure 2.1.
They use “baby bullets” to represent train stops. When hovering over a baby bullet, the graph displays
additional information such as the line number, station name, and arrival time. Users can also choose to
display the transit data for weekdays, Saturdays, or Sundays. In addition, the project provides users with
the option to select the direction of transit, whether it’s northbound, southbound, or both.

The NYC Subway Stringlines created by Vibien, visualises schedules on the New York City subway
system, as can be seen in Figure 2.2. The most notable feature of this project is that it utilises real-time
data and the chart is updated accordingly. The user can choose between northbound and southbound
trips, as well as what subway line is being displayed. Additional features include displaying the dwell
time, run time, headways, travel time, and trip IDs. The NYC Subway Stringlines incorporates sliders for
setting the end date, end time, and the number of hours to be displayed for a route.

4 2 Related Work

— San Francisco
= 22nd Street
— Bayshore

— So. San Francisco
— San Bruno

— Millbrae

— Broadway

— Burlingame
- San Mateo

— Hayward Park
- Hillsdale

— Belmont

— San Carlos

— Redwood City
— Atherton

— Menlo Park

— Palo Alto

— California Ave
— San Antonio
— Mountain View
— Sunnyvale

— Lawrence

— Santa Clara
\— College Park
e- San Jose

— Tamien

— Capitol

— Blossom Hill
— Morgan Hill
— San Martin

— Gilroy

5AM—

o .
— . _/0/ '/

6AM —

7AM -

Figure 2.1: Marey’s Trains string chart from Bostock [2021].

Flushing
[T [T 07] [T/

111 st
103 st
Junction Blvd
90 st
82 st
74 5t
69 St
Woodside
52 5t
46 5t
40 st
33 st
Queenshoro Plaza
Court 5q
Hunters Point Av
Vernon Blvd
Grand Central
5 Av
Times 5g

34 5t 34 5t

7/3/23 - 3:54 pm 4:09 pm 4:24 pm 4:39 pm 4:54 pm 5:09 pm 5:24 pm 5:39 pm 5:54 pm

Flushing

Mets

111 st

103 st
Junction Blvd
90 st

82 5t

74 5t

69 5t
Woodside
52 5t

- 46 5t

- 40 5t

33 5t
- Queensboro Plaza
Court 5q

Hunters Point Av

VErnwv Blvd

- Grand Central

w

Av

— Times Sq

Figure 2.2: NYC Subway Stringlines from Vibien [2019]..

Chapter 3

Technology

This chapter looks at some of the technology behind the project, including the data format GTFS and the
Tauri and Electron frameworks for building executable packages from web applications.

3.1 General Transit Feed Specification (GTFS)

The General Transit Feed Specification (GTFS) format is used to publish information on transit data, so
it can easily be read by different tools[MobilityData 2019]. It was originally developed by Google, so as
to have a unified data format usable by many different transit agencies, who at the time all used different
formats. The format is published under an Apache 2.0 license.

There are two versions of GTFS: GTFS Schedule and GTFS Realtime. The former is for static schedules
and is used in this project. The latter is meant for real-time updates of existing schedules, and covers
delays, cancellations, and similar events.

GTFS Schedule is a data format where each file is a zip archive containing multiple txt files. The
txt files follow a specified naming convention and contain comma delimited CSV data. Table 3.1 shows
which files exist within the GTFS Schedule format and whether they are required or not. The table also
shows the required fields for each file, although there are also many more optional fields and some fields
which are conditionally required if other files or fields are present.

Of the five required files, the first and simplest is agency.txt, which contains information on all
transit agencies running a service in this dataset. The stops.txt file defines the geographic information
of stops by longitude and latitude and can also define entrances. routes.txt identifies transit routes
containing groups of trips, which are themselves defined in trips.txt as a sequence of two or more stops
in a specific time period. In order to put it all together into a proper schedule the last required file is
stop_times.txt which holds the data on when a certain trip will arrive or leave a each stop [MobilityData
2019]. Section 4.4 describes in detail how the different files in the GTFS Schedule format were used in
this project.

3.2 Tauri

Tauri is a framework for building native desktop applications using web technologies such as HTML, CSS,
and JavaScript or TypeScript [Tauri 2023]. It aims to provide a highly flexible and efficient development
environment while leveraging the power and familiarity of web technologies.

One of the key advantages of Tauri is that a web application can be developed, but as well as running on
a web server, it can also be built as executable packages for desktop operating systems such as Windows,
macOS, and Linux. Tauri offers good performance by utilising a lightweight and minimal runtime. It
minimises the overhead associated with running web technologies within a native environment, resulting
in fast and responsive desktop applications.

6 3 Technology

File Name Required Required Fields

agency v agency_name, agency_url, agency_timezone

stops v stop_id, stop_name, stop_lat, stop_lon

routes v route_id, route_short_name, route_long_name, route_type

trips v trip_id, route_id, service_id

stop_times v stop_id, trip_id, arrival_time, departure_time, stop_sequence

calendar >* service_id, monday, tuesday, wednesday, thursday, friday, saturday,
sunday, start_date, end_date

calendar_dates X service_id, date, exception_type

fare_attributes X fare_id, price, currency_type, payment_method, transfers

fare_rules X fare_id

fare_media X fare_media_id, fare_media_type

fare_products X fare_product_id, amount, currency

fare_leg_rules X fare_product_id

fare_transfer rules X fare_transfer_type

areas X areas_id

stop_areas X area_id, stop_id

shapes X shape_id, shape_pt_lat, shape_pt_lon, shape_pt_sequence

frequencies X trip_id, start_time, end_time, headway_secs

transfers X transfer_type

pathways X pathway_id, from_stop_id, to_stop_id, pathway_mode,
is_bidirectional

levels * level_id, level_index

translations X table_name, field_name, language, translation

feed_info X feed_publisher_name, feed_publisher_url, feed_lang

attributions X organization_name

Table 3.1: Overview of the files in GTFS Schedule format. A star means that there might be
conditions in which a file is required. Bold fields are primary keys and ifalic fields are foreign
keys.

Tauri offers the usage of popular frontend frameworks such as React, Vue.js, and Angular, allowing
developers to work with well-known and well-supported tools and libraries. As of now, Tauri only
supports Rust as their backend language and will not allow to build an executable without at least
implementing a single function, even if it is never called.

3.3 Electron

Similar to Tauri, Electron.js is a framework which enables developers to build cross-platform desktop
applications using web technologies such as HTML, CSS, and JavaScript [OpenJS 2023a]. Electron is
built on Chromium and Node.js, providing developers with a robust and reliable runtime environment.
Bundling Chromium and Node.js comes at the cost of performance and large file sizes when compiling
the application to an executable.

By utilising Chromium, developers can create applications with rich web capabilities, taking advantage
of modern web technologies and APIs. Additionally, Electron.js allows direct access to the underlying

Electron

Feature

Electron

Tauri

Architecture

File Size and Performance

Frontend Languages

Backend Languages

Open Source

Security

Chromium

Large file sizes and performance
penalty due to overhead of full
browser.

HTML/CSS/JavaScript, React, An-
gular, Vue

No specific backend language re-
quirement

Yes

Security measures inherited from
Chromium.

Native web renderer

Small file sizes and better perform-
ance due to native webview com-
ponents.

HTML/CSS/JavaScript, SvelteKit,
Qwik, Next.js, Vite

Rust

Yes

Strong focus on security.

Table 3.2: Comparison of Electron and Tauri.

operating system through Node.js, enabling developers to interact with system resources and use native
functionalities, at the cost of their applications no longer running on the web.

Table 3.2 compares Tauri and Electron. For this project, due to its better performance and file sizes,
Tauri was chosen to produce desktop executable packages.

3 Technology

Chapter 4

Implementation

This chapter describes the requirements and implementation of the String Charter 2 project, including
what tools and datasets were used and why certain decisions were made.

4.1 Requirements

The requirements for this project were very clear from the beginning: an easy and fast way to load a
static GTFS Schedule dataset and select a route from it in order to display it in a string chart. The user
should be able to interact with the displayed routes and gather additional information upon hovering over
the drawn baby bullets. In addition to drawing the chart in the application, the possibility to export and
download the charts as an SVG file was very important as well. In order to make the chart as useful as
possible, another important factor was to create non-overlapping labels. Since stations can sometimes
have very long names, readability had to be a feature of our application.

Another important requirement was to make the application as accessible as possible. Whilst the main
goal was to build a web application, desktop platforms should be supported as well, whilst also being
as responsive as possible. This ensures that the app can be used by a wide range of users, without them
needing to have any prerequisites other than their computers.

4.2 Tools and Libraries

The development of the project involved the use of several tools and libraries. Visual Studio Code was used
as the development environment [Microsoft 2023b]. The creation of the desktop application was done in
Rust [Rust 2023] with Tauri [Tauri 2023]. The backend and frontend were both developed using TypeScript
[Microsoft 2023a]. Node.js was used for the development of the server-side application [OpenJS 2023b].
The management of dependencies and packages was handled using npm, the package manager for Node.js,
simplifying the installation and management of packages [GitHub 2023]. Additionally, various libraries
were integrated into the project, including JSZip for working with GTFS archives [Knightley 2023] and
Papa Parse for parsing and handling CSV data [Holt 2023]. Table 4.1 provides an overview of the tools
and libraries used, including their versions and a brief description of their functionality.

4.3 Datasets

Two main datasets were used in this project: the GTFS archives for OBB and for FlixBus, two prominent
transportation companies.

OBB (Osterreichische Bundesbahnen) is the national railway company of Austria [OEBB 2023]. The
OBB GTFS dataset consists of the CSV files listed in Listing 4.1. It contains data on 323 routes, collected

(o I e Y R N O

10
11
12

10 4 Implementation

Tool/Library Version Description

Visual Studio Code 1.78.2 An integrated development environment with a wide range of features
and support for various programming languages.

Cargo 0.2.3 A tool for managing Rust projects, providing functionalities such as
dependency management and building.

CodeLLDB 1.9.2 A debugger extension for Visual Studio Code.

rust-analyzer 0.3.1541 A language server for Rust, providing code analysis and other helpful
features for Rust development.

Tauri 0.2.6 A framework for building desktop applications using web technolo-
gies. See Section 3.2 for more information.

Node.js 18.16.0 A JavaScript runtime environment which allows running JavaScript
code outside of a web browser, enabling server-side and command-
line applications.

npm 9.6.7 The package manager for Node.js, facilitating the installation and
management of JavaScript packages and dependencies.

Rust 1.62 A programming language known for its memory safety and perform-
ance, suitable for building fast and reliable applications.

TypeScript 4.8.2 A superset of JavaScript which adds static typing and other features.

JSZip 3.10.1 A library for working with ZIP archives in JavaScript, providing func-
tionalities for compression, extraction, and manipulation.

Papa Parse 54.1 A CSV parsing library in JavaScript, enabling easy parsing and hand-
ling of CSV data in various formats.

Table 4.1: Overview of the tools and libraries used.
agency

calendar

calendar_dates
fares
frequencies
pathways
routes

shapes
stop_times
stops
transfers
trips

Listing 4.1: The files included in the OBB GTFS dataset.

O O 0 N N R W =

Parsing 11

agency
calendar
calendar_dates
feed_info
routes
stop_times
stops
transfers
translations
trips

Listing 4.2: The files included in the FlixBus GTFS dataset.

in 2023. It should be noted that this dataset contain some errors, specifically instances where completely
different trips were identified within a single route.

FlixBus is a well-known long-distance bus service provider operating across various countries in
Europe [FlixBus 2023]. The FlixBus GTFS dataset consists of the CSV files listed in Listing 4.2. It
contains data on 528 routes, collected in 2021. Unlike the OBB dataset, the FlixBus dataset does not
exhibit errors such as completely different trips being identified within a single route.

4.4 Parsing

The parsing step involves extracting the relevant information from the GTFS files and creating structured
objects to accurately represent the transit data. These structured objects are essential for displaying string
charts, since they encompass transit lines, all trips within each transit line, stop names, and arrival times.
Figure 4.1 illustrates the GTFS data model, as required for this project.

To begin, the transit lines can be found in the route file. Each transit line possesses a unique identifier,
which serves as a key connecting the trips file to their respective routes or transit lines. Similarly, every
trip is assigned a distinctive identifier, which is then employed in the stop times file to establish the linkage
between arrival times and specific trips. Furthermore, each arrival time is uniquely identified and can be
utilised to determine the corresponding stop name within the stops file.

In order to effectively manage the extensive linking required and efficiently handle the potentially large
GTEFS files, the development of a robust parser becomes imperative. Looking at Figure 4.2, one can
observe the structured representation of the parsed data. This final structure is organised as follows.

The parsed data is encapsulated within an array, with each element representing a route. Each route
object within the array contains three attributes:

* id: The unique identifier for the route.
* name: The name of the route (for example Graz -> Vienna).

* trips: All the trips associated with the route.
Within the trips array, each trip object possesses five key properties:

* id: The unique identifier for the trip.
* name: The head sign of the trip, which is the first station in a trip.

* routeld: The route ID which the trip belongs to.

12

4 Implementation

Trips / StopTimes

Route

Stops

Figure 4.1: The data model of GTFS, showing the 4 files relevant for string charts. [Image created by
Danijela Lazarevic using draw.io.]

* stations: The names of all the stations along the trip.

* stops: All the stops within the trip.

For each stop object within the stops array, the following four attributes are defined:

e id: The unique identifier for the stop.
* tripId: The trip ID the stop belongs to.
* station: The of the station.

* arrivalTime: Arrival time at the particular stop.

By adopting this structured approach, the parser ensures a coherent representation of the GTFS data,

enabling efficient storage, retrieval, and analysis of the transit information.

The algorithm to fill the created structure unfolds in the following steps:

1. File Loading: The JSZIP library is used to load the GTFS archive asynchronously. It extracts the

required files: trips, routes, stop_times, and stops.

. Parsing Route Data: The routes file is parsed using the Papa Parse library. This process extracts the

route ID and route name, both of which are stored in the route object. Furthermore, an empty array
is initialised to hold the associated trips, which will be populated subsequently.

. Parsing Trip and Stop Data: The trips, stop_times, and stops files are parsed. Three record data

structures are initialised to store the trips using the route ID as key, the station names using the stop
ID as key, and the stops using the trip ID as key. By using record data structures, the code achieves
efficient data organisation and retrieval. They allow for direct access to specific data elements based
on their associated identifiers, reducing the need for iterating through large arrays.

. Linking Data: The routes array is iterated over and each route’s trips array is populated with the

associated trips. The relevant stop times are also assigned to each trip matching the trip ID.

This approach allows the parser to efficiently parse and link the data. The resulting data structure is
illustrated in Figure 4.2.

While doing the parsing in Rust would have been more efficient, TypeScript was used to allow the

application to work as a web application with cross-platform support, rather than solely providing desktop
packages. Using Rust with built-in Tauri methods means that the application would no longer function
as a standard web app.

draw.io

User Interface 13

Routes
route_ 0 > Trips
route_1 trip_0 > Stops
route 2 trip_1 stop 0
trip_2 stop_1
stop_2
route_n
trip_m
stop_|
route trip stop
+ id: string +id: string + id: string
+ name: string + name: string + tripld: string
+ trips: Trip[] + routeld: string + station: string
+ stations: string[] + time: string
+ stops: StopTime][]

Figure 4.2: The structure of the parsed GTFS data. [Image created by Danijela Lazarevic using drau. io.]

4.5 User Interface

The user interface was kept as simple as possible. It is divided into a header with the name of the
application, and two panels: one for uploading the GTFS zip archive and selecting routes, and one for
the chart and its interactive components.

The user can upload a GTFS zip archive using the File Input element. After the upload a select element,
which is located beneath the file-input, is populated automatically with all available routes. As soon as the
user selects a route, the second card containing the chart and its interactive components becomes visible.
The user now has the possibility to hover over the charts baby-bullets and see additional stop information
at the very top of the card for the chart. Beneath the placeholder for this additional information exists a
switch element to flip the axes of the chart. Finally, located beneath the chart is the button to export the
drawn graph as an SVG file. In Figure 4.3 all the components can be seen. The styling was done using
Bootstrap v5.2 and some custom CSS code.

4.6 Drawing the Chart

The chart is drawn on an HTML Canvas Element to enable interactive functions like mouseovers.
Horizontal grey lines are drawn for each data value on that axis to aid the viewer in seeing where a
particular data point lies.

There are different margins needed for the flipped axes because times involve significantly shorter
strings than station names. If time is on the vertical axis, the station names on top are rotated by 45
degrees so there is no overlap of the names. Additionally, this leads the user to instantly see where in the
chart the vertical column for a station is and makes it easier to identify which station a stop belongs to.
If time is on the horizontal axis, this tilting of the label is not necessary. Instead, short ticks are added
underneath the time labels to show the viewer where exactly the data points for this time are placed.
Some station names are very long so when placed on the vertical axis any label longer than 40 characters
is split into two lines.

draw.io

14 4 Implementation

String Charter 2: Visual Transport Schedule

Select a GTFS zip:

Durchsuchen... | flixbus.zip

Select a route:

Milan, Milan (Lampugnano bus station) -> Naples, Naples (Metropark Centrale) v

@D Flip Axis

700 200 900 1000 1100 1200 1300 1400 1500 18600 1740 1800 1900 2000 2100

| | 1 1 | | 1 | | 1 1 |
Niian, Mian (Lampugnano bus station)

Farma, Pama (Park Scambiatore)
Bologna, Bologna (eentral bus station)

Florence, Florence (W
la Costanza Tram T1)

Foggibonsi
Siena, Siena (Stelino)

Siena, Siena (plazza Gramscl)y
Siena, Siena (Stazone FS)

Siena, siona (wale Tozali)

Eotiolio

Rome, Rome Tiburtina Bus s ation
Gasena, Cazena - Gasagiove

Naples, Naples (Melropark Centrale)

Export as SVG

Figure 4.3: User interface of String Charter 2.

Trips gathered from the parsed and already filtered by route dataset are drawn with lines, with every
stop being marked by a small circle. When hovering the mouse over those circles, additional information
is displayed at the top of the graph, specifically the name of the route, the name of the stop, and the exact
time of the stop. This is especially useful when a stop is scheduled not on the full hour but sometime in
between, like most stops are. Otherwise, it can be quite difficult to reliably estimate a time from the chart.

At first, this detailed information was set to be shown in a small label box right next to the stop
circle. However, the combination of Canvas elements and not sanity-checked data caused problems
here, as the dataset contained multiples of the same (or slightly varying) trips, which were drawn with
overlapping elements. This overlap caused too many function calls when moving the mouse over circles
and especially when leaving the circles again, which caused the page to lag or even crash. Putting the
detailed information outside of the chart eliminated the necessity for redrawing the graph on leaving the
circle.

4.7 SVG Export

SVG generation is done separately to how the chart is drawn on the canvas, but follows a similar structure.
The horizontal guiding lines, label placement and drawing of data entries is the same, taking into account
the current status of the toggle to flip the axes, so the user receives an SVG in the same orientation as
they are looking at on the screen.

Some alterations were made to compensate for different kerning and handling of margins. When
generating the SVG with exactly the same values as the canvas elements, the result looks different. In
particular offsets for labels changed the look of the chart, possibly because of slight variations in text
alignment as well.

Station names are split into two lines if longer than 33 characters instead of 40 like on canvas. This
was done because of kerning differences and to preserve the size of the chart itself, since the alternative
would have been to widen the space available for labels, which would in turn reduce the space available
for the chart.

SVG Export 15

All SVG elements are added as either text, line, or circle elements, which produces a much neater SVG
than many online converters, which often only convert everything into strokes — even text. The generated
SVG passes the W3 Markup Validation Service without any errors [W3C 1994].

16

4 Implementation

Chapter 5

Future Work

There are numerous opportunites for further features right in the core functionality of the software as it
works now, as well as a few ideas which would require new features to be added to the current code base.
The points below are loosely ordered based on the amount of work they would involve.

When writing the SVG elements into the file, they could be grouped into different <<g>> elements, to
make them easier to read for humans. For instance, there could be a group for each axis, or for each trip
line, etc.

The list of routes in the dropdown menu could be ordered alphabetically so users can easily find a
specific route they are looking for. Alternatively, the route selection could be split up into two input fields
altogether, with the user picking their start point and destination separately.

Detailed station information, which is currently shown in a text field above the chart could be moved to
small labels next to the currently selected stop. The reasons why this was not done in the current iteration
of the project are outlined in Section 4.6.

Another function that could be added would be for the user to be able to click on a line and have
the entire trip highlighted. This could also activate all detail windows for stops if that functionality was
already added. This would make it easier to follow and get information on a single trip.

Information on the type of trip being displayed could be colour-coded in the graph. For instance bus
connections, railjet trains, local transport, replacement buses, etc. could all have their own colour in the
graph. This would vary a bit with each agency as they provide different types of connection.

Instead of just looking at complete routes, it would also be possible to let the user choose intermediate
stations and receive a chart of just that segment, but from all possible routes. For instance, someone
could pick Bruck an der Mur and Miirzzuschlag which are common stops in many routes but are not the
endpoints of the routes themselves.

Rather than loading a GTFS file, there could also be an option to enter a URL where the file is found
or even present a list of known agencies to choose from.

Many of the previously mentioned functionalities only really make sense on a properly sanitised dataset.
Some datasets seem to contain multiple entries for the same trip or trips which do not cover the whole
route, and other issues. See Section 4.3 for more details. Some of these issues are rather minor, but others
fundamentally mess with the way string charts present data, or with the way the user interacts with it. To
be able to properly display any given GTFS file without issues, the incoming data would need to pass a
sanity check. This is not a trivial task for two reasons. Firstly, the possibility for errors and unintended
use of the format are vast and would need to be catalogued, so that a sanity check can take all of them
into account. Secondly, each case of unintended use would need to be resolved somehow, which would
need to be decided on a case by case basis. The dataset might use the GTFS format in a way not intended
by the makers of the format.

17

18 5 Future Work

In addition to GTFS Static, the chart could also include GTFS Realtime information if available. This
would require wholly different parsing as GTFS Realtime uses an entirely different structure. The feed
would have to be updated live and any new information parsed immediately and included in the chart in
some way which highlights the new information as a live change instead of a schedule change.

Chapter 6

Concluding Remarks

String Charter 2 successfully achieves the goal of parsing and visualising transit data using the GTFS
format. The use of Tauri allows the web application to also be built as a native desktop application. The
parsing algorithm efficiently extracts the necessary information from the GTFS files and organises it into
structured objects, enabling a logical representation and easy retrieval of transit data. The user interface
provides an interactive and user-friendly experience for exploring the string chart. The generated charts
effectively display the transit lines, allowing the users to gain insights and analyse the data.

However, there is still room for improvements. Firstly, the current implementation focuses on the
static representation of transit data. Integrating real-time information from GTFS Realtime feeds could
enhance the application, by displaying live updates in the transit system. Secondly, while the application
provides an interactive user interface, additional features such as search functions, filtering options, and
highlighting of trips could improve the usability.

In conclusion, String Charter 2 demonstrates its capabilities in parsing and visualising transit data
using the GTFS format. The application’s cross-platform compatibility and efficient parsing algorithm
contribute to its usability and effectiveness.

19

20

6 Concluding Remarks

Bibliography

Bostock, Mike [2021]. Marey’s Trains. 07 Oct 2021. https://observablehq.com/embed/@d3/mareys-trains
(cited on pages 3—4).

FlixBus [2023]. FlixBus GTFS - OpenMobilityData. https://transitfeeds.com/p/flixbus/795 (cited on
page 11).

GitHub [2023]. npm. https://npmjs.com/ (cited on page 9).

Holt, Matt [2023]. Papa Parse - Powerful CSV Parser for JavaScript. https://www.papaparse.com/ (cited
on page 9).

Knightley, Stuart [2023]. JSZip. https://stuk.github.io/jszip/ (cited on page 9).

Lee, Mary T. and Jordan Multer [2009]. Visualizing Railroad Operations: A Tool for Planning and
Monitoring Railroad Traffic. (Jan 2009). https://rosap.ntl.bts.gov/view/dot/8764 (cited on page 1).

Microsoft [2023a]. TypeScript: JavaScript with Syntax For Types. https://typescriptlang.org/ (cited on
page 9).

Microsoft [2023b]. Visual Studio Code. https://code.visualstudio.com/ (cited on page 9).

MobilityData [2019]. General Transit Feed Specification. 18 Feb 2019. https://gtfs.org/ (cited on
page 5).

OEBB [2023]. Soll Fahrplan GTFS - Datenscitze - OBB Open Data. https://data.oebb.at/de/datensaet
ze~soll-fahrplan-gtfs~ (cited on page 9).

OpenlS [2023a]. Electron. OpenlS Foundation. https://electronjs.org/ (cited on page 6).
Openl]S [2023b]. Node.js. Open]S Foundation. https://nodejs.org/ (cited on page 9).

Rendgen, Sandra [2019]. Historical Infographics: From Paris with Love. 15 Mar 2019. https://sandrare
ndgen.wordpress.com/2019/03/15/data-trails- from-paris-with-love/ (cited on page 1).

Rust [2023]. Rust Programming Language. https://rust-lang.org/ (cited on page 9).
Tauri [2023]. Tauri. https://tauri.app/ (cited on pages 5, 9).

Vibien, Philippe [2019]. NYC Subway Stringlines. 2019. https://pvibien.com/stringline.htm (cited on
pages 3-4).

W3C [1994]. Markup Validation Service. 1994. https://validator.w3.org/ (cited on page 15).

21

https://observablehq.com/embed/@d3/mareys-trains
https://transitfeeds.com/p/flixbus/795
https://npmjs.com/
https://www.papaparse.com/
https://stuk.github.io/jszip/
https://rosap.ntl.bts.gov/view/dot/8764
https://typescriptlang.org/
https://code.visualstudio.com/
https://gtfs.org/
https://data.oebb.at/de/datensaetze~soll-fahrplan-gtfs~
https://data.oebb.at/de/datensaetze~soll-fahrplan-gtfs~
https://electronjs.org/
https://nodejs.org/
https://sandrarendgen.wordpress.com/2019/03/15/data-trails-from-paris-with-love/
https://sandrarendgen.wordpress.com/2019/03/15/data-trails-from-paris-with-love/
https://rust-lang.org/
https://tauri.app/
https://pvibien.com/stringline.htm
https://validator.w3.org/

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 Related Work
	3 Technology
	3.1 General Transit Feed Specification (GTFS)
	3.2 Tauri
	3.3 Electron

	4 Implementation
	4.1 Requirements
	4.2 Tools and Libraries
	4.3 Datasets
	4.4 Parsing
	4.5 User Interface
	4.6 Drawing the Chart
	4.7 SVG Export

	5 Future Work
	6 Concluding Remarks
	Bibliography

