
Matrix Shuffler

Andrej Knaus, Laura Thaci, and Esma Karic

30 Jun 2025

Abstract
Matrix Shuffler is an interactive web-based tool designed to facilitate the visual explora-
tion of matrix-structured datasets through manual and algorithmic reordering. Inspired by
Jacques Bertin’s reorderable physical matrices, the tool enables users to uncover hidden
patterns, clusters, and anomalies by rearranging rows and columns. Matrix Shuffler supports
multiple encoding options, advanced sorting algorithms, and intuitive drag-and-drop inter-
actions within a clean, browser-based interface. Its open-source architecture emphasizes
accessibility, extensibility, and performance, making it a versatile resource for researchers,
data analysts, and educators across disciplines.

© Copyright 2025 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

1 Introduction 1

2 Motivation 3

3 Overview and Features 5
3.1 Core Functionality . 5
3.2 Technology Stack . 5
3.3 Dataset Management . 5
3.4 Matrix Operations . 6

3.4.1 Manual Reordering . 6
3.4.2 Algorithmic Sorting . 6
3.4.3 Matrix Utilities . 8
3.4.4 Visualization and Encoding 8

3.5 Export and Sharing . 10

4 User Interface and Interaction 11
4.1 Data Panel . 11
4.2 Visualization Panel . 12
4.3 Settings Panel . 12

4.3.1 Normalization . 13
4.3.2 Label Rotation . 13
4.3.3 Cell Size . 13
4.3.4 Visualization Colors . 14
4.3.5 Color Scheme Presets. 14
4.3.6 Matrix Sorting . 14

4.3.6.1 Algorithmic Solutions . 14
4.3.6.2 Statistical Sorting . 15
4.3.6.3 Similarity Sorting . 15

4.4 Menu Bar . 16

5 Future Work 19

6 Concluding Remarks 21

Bibliography 23

i

ii

List of Figures

1.1 Township Dataset Before Reordering . 2
1.2 Township Dataset After Reordering. 2

3.1 Matrix Shuffler: Data Panel . 6
3.2 European Values Dataset: Standard Color Encoding. 7
3.3 European Values Dataset: After 2D Sort 7
3.4 European Values Dataset: After Greedy Seriation 8
3.5 European Values Dataset: Circle Encoding 9
3.6 European Values Dataset: Hybrid Encoding 9

4.1 Matrix Shuffler: User Interface . 12
4.2 Matrix Shuffler: Tooltip Display . 12
4.3 Matrix Shuffler: Settings Panel . 13
4.4 Matrix Shuffler: Color Scheme Presets 14
4.5 Matrix Sorting: Statistical Sorting . 15
4.6 Matrix Sorting: Similarity Sorting . 16
4.7 Matrix Sorting: Similarity Sorting Example 17

iii

iv

Chapter 1

Introduction

Matrix Shuffler [Knaus et al. 2025b; Knaus et al. 2025a] is an open-source web application that builds
on Jacques Bertin’s concept of reorderable matrices [Bertin 1983] to enhance the visual exploration of
structured data. By allowing users to rearrange rows and columns, the tool helps uncover patterns and
structures that are often obscured in default data orderings, as shown in Figures1.1 and 1.2.

Matrix Shuffler offers the same core functionality as Bertin’s physical matrices, the ability to reorder
rows and columns, but translated into a modern digital context. Users can interactively reorder matrices
either manually, through drag-and-drop operations, or automatically, using built-in algorithmic sorting
methods. This process often reveals structures such as clusters, groupings, gradients, and anomalies,
which are not easily noticeable in the original order of the data.

Developed as a web-based application, Matrix Shuffler offers cross-platform compatibility and is
distributed under the MIT license, making it completely open-source. The tool combines a clean and
user-friendly interface with an efficient rendering engine, capable of handling both small and large
datasets. It supports tasks ranging from exploratory data analysis to the creation of presentation-quality
visualizations.

The key objective is to enable users to interactively explore their datasets, just as Bertin did with
physical matrices, but in a more accessible, flexible, and scalable way. By offering an intuitive interface
paired with powerful algorithmic tools, Matrix Shuffler lowers the barrier to entry for pattern discovery
in tabular data. This empowers users in various domains, including data science, research, and education,
to uncover insights that might otherwise remain hidden.

Additionally, the tool is designed to be easily extensible. Its architecture allows for future integration
of more advanced sorting algorithms, encoding options, and interaction techniques.

1

2 1 Introduction

Figure 1.1: Bertin’s township dataset before reordering. [Screenshot taken by Andrej Knaus.]

Figure 1.2: Bertin’s township dataset after reordering. Groupings and patterns are now clearly
visible. [Screenshot taken by Andrej Knaus.]

Chapter 2

Motivation

Large matrix-based data representations are a common occurrence across various fields, including data
science, bioinformatics, social network analysis, and machine learning. Despite their widespread use,
these datasets are often difficult to interpret in their raw form. The default order of rows and columns
typically reflects data entry or arbitrary indexing, rather than any meaningful structure. As a result,
interesting patterns or insights may remain hidden.

Reordering rows and columns transforms the matrix from a chaotic collection of values into a structured,
interpretable visualization. This simple yet powerful technique often reveals underlying patterns that are
otherwise invisible. For example, clusters of similar entities become visible as blocks along the diagonal,
or patterns of correlation may emerge in a reordered similarity matrix.

This motivation is not new, it draws heavily from the pioneering work of Jacques Bertin, who demon-
strated with his physical reorderable matrices that order is itself a form of visual encoding. The act of
reordering does not change the data, but transforms the ability of users to perceive structure within it.

In modern data analysis workflows, this principle remains highly relevant. Yet, most visualization
tools either overlook matrix reordering or limit it to static, algorithmic clustering results. Matrix Shuffler
addresses this gap by allowing users to reorder matrices both manually and with algorithmic methods.

The goal is to make matrix reordering accessible, fast, and interactive, enabling users to explore their
datasets visually, uncover hidden patterns, validate hypotheses, and ultimately derive deeper insights —
without requiring specialized technical skills or manual data preprocessing.

3

4 2 Motivation

Chapter 3

Overview and Features

Matrix Shuffler is designed to support interactive matrix reordering through both manual adjustments and
algorithmic operations. Additional features focus on dataset management, flexible visualization options,
and export capabilities.

3.1 Core Functionality
Matrix Shuffler’s core functionality supports interactive exploration of matrix-based data. These func-
tionalities can be grouped into four main categories: dataset management, matrix operations, visual
encoding, and export. The application allows users to load, rename, and manage multiple datasets during
a session. A key feature is the ability to reorder rows and columns, either manually by dragging or
automatically using sorting algorithms such as 2D Sort and Greedy Seriation. The Visualization Panel
provides several encoding options, including color gradients and circle-based representations, as well as
hybrid combinations of both. Users can further adjust the visualization through label rotation, matrix
transposition, and normalization. To support reporting and further analysis, Matrix Shuffler includes
export functionality for both the visualizations (PNG, SVG) and the processed datasets (CSV, TSV).

3.2 Technology Stack
Matrix Shuffler is implemented as a modern web application. The frontend is developed in TypeScript
with Vue.js [Vue.js 2025], providing a robust and reactive framework for managing user interactions
and application state. For rendering the matrix visualization, the application uses PixiJS [PixiJS 2025],
a high-performance 2D rendering engine that uses WebGL for GPU acceleration. This choice enables
smooth interactions. Application state, including dataset management, normalization settings, and
user preferences, is handled using Pinia, a Vue-compatible state management library. Build tooling is
managed with Vite, which provides fast hot-module reloading and optimized production builds, alongside
PNPM for efficient dependency management. The entire application is open-source and released under
the MIT license, encouraging contributions, modifications, and reuse by the wider community. This
architecture ensures that Matrix Shuffler is both highly accessible—running directly in a browser without
installation—and easily extendable for future enhancements.

3.3 Dataset Management
Matrix Shuffler offers flexible dataset handling to support iterative exploration. Users can import datasets
in CSV or TSV formats through the Import Data option. Upon import, datasets are stored in a session-
based dataset manager, which allows switching between previously loaded datasets without needing to
re-upload files. The dataset manager uses the local storage of the browser, which dependent on the
browser is limited to 5MB to 10 MB. Figure 3.1 shows the appearence of the Data Panel.

5

6 3 Overview and Features

Figure 3.1: Matrix Shuffler: The Data Panel display the dataset in tabular form.

Each dataset can be renamed for clarity, and users can remove datasets that are no longer needed.
The application also maintains the order of loaded datasets, ensuring users can easily return to earlier
configurations. Additionally, a sample dataset is provided to quickly demonstrate the application’s
functionality without requiring initial data preparation.

3.4 Matrix Operations
The core functionality of Matrix Shuffler revolves around matrix reordering. Users can interactively
adjust row and column order to reveal patterns and clusters that are difficult to detect in raw matrix forms.

3.4.1 Manual Reordering
Users can manually reorder rows and columns by dragging cells directly in the visualization. This tactile
interaction mimics the physical reorderable matrices pioneered by Jacques Bertin and supports outlier
detection, and cluster identification.

3.4.2 Algorithmic Sorting
Matrix Shuffler provides two primary algorithmic sorting methods:

• 2D Sort: Sorts rows and columns independently based on summary statistics. Users can choose
metrics such as sum, mean, variance, maximum, minimum, or median. Each axis can be sorted in
either ascending or descending order. An example of a dataset before and after 2D sort is shown in
Figures 3.2 and 3.3 respectively.

• Greedy Seriation: An ordering algorithm based on pairwise similarity. It iteratively builds an
ordering that minimizes the distance between adjacent rows (or columns), making clusters and
continuous patterns more apparent. An example of a dataset before and after greedy seriation is
shown in Figures 3.2 and 3.4 respectively.

Matrix Operations 7

Figure 3.2: European Values Dataset: Standard color encoding.

Figure 3.3: European Values Dataset: After 2D Sort.

8 3 Overview and Features

Figure 3.4: European Values Dataset: After Greedy Seriation.

3.4.3 Matrix Utilities
Additional matrix manipulation tools include:

• Transpose: Flips rows and columns.

• Normalization: Adjusts data scales to improve visual interpretability. Options include None, Row-
wise, Column-wise, and Global normalization.

• Reset: Restores the matrix to its original input order.

3.4.4 Visualization and Encoding
Matrix Shuffler offers multiple encoding options that enhance the readability of matrix data:

• Color Encoding: Cells are filled with a color gradient representing the magnitude of values, as show
in Figure 3.2. Users can adjust minimum and maximum colors or select from preset color schemes.

• Circle Encoding: The magnitude of values is represented by circle size within each cell, as shown
in Figure 3.5.

• Hybrid Encoding: Combines color with circle or text, providing redundant encoding for clarity, as
shown in Figure 3.6.

Label readability is improved with adjustable label rotation (from 0 to 90 degrees), allowing users
to adapt the matrix layout depending on data density. The interface supports zooming, panning, and
resizable panels to facilitate exploration of large datasets.

Matrix Operations 9

Figure 3.5: European Values Dataset: Circle encoding.

Figure 3.6: European Values Dataset: Hybrid encoding.

10 3 Overview and Features

3.5 Export and Sharing
Matrix Shuffler provides export functionality to support documentation, presentation, and downstream
analysis. Users can export the reordered dataset in CSV format, preserving the current row and column
order. This allows for consistent data output aligned with the visual exploration.

The matrix visualization can also be exported in two formats: PNG and SVG. For PNG export, the
current canvas content is extracted and downloaded as a raster image, providing a quick and high-quality
snapshot suitable for presentations. The SVG export, on the other hand, reconstructs the entire matrix
visualization using the current dataset and configuration settings. Each visual element is generated
through the generateMatrixSVG function, ensuring that the exported graphic is fully scalable.

These export options make it easy to share, document, and reuse insights discovered through matrix
reordering, enhancing both collaborative and individual analytical workflows.

Chapter 4

User Interface and Interaction

The user interface of Matrix Shuffler is designed to facilitate intuitive exploration of matrix data through
a combination of manual and algorithmic interactions. It is shown in Figure 4.1. The application is
structured into four main components:

• Data Panel (Left Sidebar): Manages datasets, including importing, renaming, deleting, and switching
between datasets. This panel is resizable via a drag handle, allowing users to adjust its width based
on preference or screen size.

• Visualization Panel (Center): The main workspace where the matrix is displayed. This view supports
direct interactions such as manual reordering, zooming, and panning.

• Settings Panel (Right Sidebar): Contains controls for visualization settings, sorting algorithms, en-
coding options, normalization, and matrix operations. This panel can be toggled open or closed to
optimize screen space.

• Menu Bar (Top): Provides access to file-related actions (import, export), display modes (encoding
changes), matrix operations (reset, apply sorting), and help resources.

4.1 Data Panel
The Data Panel is initially hidden and can be opened either by clicking on the Data icon on the left side or
by uploading / selecting a dataset. The opened Data Panel, shown on the left of Figure 4.1 (and in more
detail in Figure 3.1), allows users to:

• Access recently loaded datasets within the current session.

• Switch between datasets by clicking on a recent dataset entry. The matrix view updates immediately
to reflect the selected dataset.

• Clear the current dataset visualization.

• Load a sample dataset for quick testing or demonstration.

• View the dataset in a table view.

The panel width can be resized using a drag handle, providing flexibility for larger datasets or compact
viewing.

11

12 4 User Interface and Interaction

Figure 4.1: Matrix Shuffler: User interface with opened Data Panel, and Settings Panel. The Visualization
Panel in the center is showing the European Values dataset.

Figure 4.2: Matrix Shuffler: Tooltip displaying detailed information about the hovered cell.

4.2 Visualization Panel
The central Visualization Panel displays the matrix as a grid of cells representing individual data values,
accompanied by labeled rows and columns. Users can reorder the matrix interactively by dragging cells.
The direction of the initial drag determines whether a row or column is moved. As the selected element
is repositioned, the matrix dynamically updates to reflect the new order. Upon release, the element snaps
precisely into place. This drag-and-drop mechanism is designed to be smooth and responsive, enabling
intuitive pattern discovery through manual exploration.

Additional interactive features include tooltip display and navigation controls. Holding the Alt or Meta
(Command) key displays a tooltip containing detailed information about the hovered cell, including both
raw and normalized values, as can be seen in Figure 4.2. For navigation, holding the spacebar enables
panning, allowing users to move the view freely. Pressing the “r” key recenters the visualization within
the viewport.

4.3 Settings Panel
The Settings Panel provides comprehensive controls for adjusting the matrix view, sorting, and appearance,
as shown in Figure 4.3. It is designed as the central hub for visualization customization and data
manipulation.

Settings Panel 13

Figure 4.3: Matrix Shuffler: Settings Panel (shown split in two vertically).

4.3.1 Normalization
Users can choose how data values are normalized to make comparisons meaningful:

• None: Raw values are used without modification.

• Row-wise: Each row is scaled independently.

• Column-wise: Each column is scaled independently.

• Global: The entire matrix is normalized based on the global minimum and maximum.

Normalization directly affects how values are represented visually in the matrix.

4.3.2 Label Rotation
Column labels can be rotated to enhance readability, particularly in wide matrices where horizontal space
is limited. A rotation slider allows users to adjust the angle continuously between 0° and 90°. Additionally,
several preset options (0°, 45°, 90°, and an Auto (Optimal) mode) are provided for quick selection. This
feature is essential for preventing label overlap and maintaining legibility in dense visualizations.

4.3.3 Cell Size
Matrix Shuffler allows users to adjust the cell size of the visualization, which is especially useful when
working with large datasets. A slider enables continuous adjustment within a range of 10 px to 40 px,
while three predefined options (10 px, 20 px, and 40 px) offer convenient presets. Modifying the cell size
also dynamically scales the label size, ensuring a consistent and readable layout.

14 4 User Interface and Interaction

Figure 4.4: Matrix Shuffler: The four color scheme presets: Blues, Reds, Greens, and Viridis.

4.3.4 Visualization Colors
Users can customize the color encoding of the matrix by setting the minimum and maximum values of the
color gradient. Any adjustments to these colors are reflected immediately in the visualization, allowing
real-time feedback and fine-tuning of the display.

4.3.5 Color Scheme Presets
To simplify the selection of effective color schemes, Matrix Shuffler includes several predefined color
palettes: Blues, Reds, Greens, and Viridis, as shown in Figure 4.4. These presets help users quickly choose
visually appropriate schemes for their data without manual configuration.

4.3.6 Matrix Sorting
Under the Matrix Sorting section, the user can through various methods automatically reorder the matrix.
At the top there are some quick action buttons which either reset the matrix order or randomize it. Below
them are powerful sorting tools grouped into three sections.

4.3.6.1 Algorithmic Solutions

The Algorithmic Solutions section offers two fully automated techniques for matrix reordering: Greedy
Seriation and 2D Sort. These algorithms aim to uncover latent structure in the data by optimizing the
order of rows and columns based on similarity or distributional characteristics:

• Greedy Seriation: Reorders matrix rows and columns to highlight underlying patterns by maximizing
local similarity relationships. The algorithm proceeds in two main phases. First, a similarity matrix
is constructed for each dimension (rows and columns) using Pearson correlation coefficients; each

Settings Panel 15

Figure 4.5: Matrix Sorting: The Statistical Sorting section.

entry 𝑆[𝑖, 𝑗] in the similarity matrix represents the correlation between elements 𝑖 and 𝑗 . Second,
a greedy ordering procedure begins with the element having the highest total similarity score (i.e.,
the sum of its correlations to all others). The algorithm then iteratively selects the next element
that maximizes average similarity to all previously selected elements. This approach is particularly
effective for exposing clusters or gradual transitions in the data, making it well-suited for visual
exploration and pattern recognition tasks.

• 2D Sort: 2D Sort is an iterative optimization algorithm that simultaneously reorders both matrix
dimensions based on distributional weights. The process alternates between row and column
reordering until convergence. In each iteration, columns are first normalized to unit sum, and row
weights are computed as the sum of these normalized values. Rows are then reordered using a simple
bubble sort according to their weights. The same procedure is repeated with rows normalized and
column weights calculated, followed by column reordering. This loop continues until no further
changes occur or a maximum of 500 iterations is reached. 2D Sort is effective in cases where the goal
is to arrange both rows and columns according to their relative “mass” or importance in the dataset.
It is particularly useful for enhancing visual symmetry and structure in heatmaps or matrix-based
visualizations.

4.3.6.2 Statistical Sorting

In the Statistical Sorting section, shown in Figure 4.5, users can reorder the matrix based on common
statistical functions applied to its rows or columns. The available metrics include sum, mean, median,
maximum, minimum, and variance. Users may specify the sorting direction (either ascending or descending)
and can apply the selected sorting operation to rows, columns, or both simultaneously.

This feature provides a simple yet effective way to structure the matrix according to dominant statistical
properties, facilitating rapid identification of high- or low-value entities and improving the interpretability
of the visualization.

4.3.6.3 Similarity Sorting

In the Similarity Sorting section (see Figure 4.6), users can reorder rows or columns based on their similarity
to a selected reference row or column. This operation is particularly effective for emphasizing local
clusters and uncovering pattern similarities relative to a user-defined point of interest.

To perform similarity sorting, users first select a reference row or column. The application then
reorders the corresponding axis by computing similarity scores between the reference and all other
elements. Rows or columns are then arranged in order of decreasing similarity to the reference. An

16 4 User Interface and Interaction

Figure 4.6: Matrix Sorting: The Similarity Sorting section.

example of this operation is shown in Figure 4.7, where rows are sorted based on similarity to the
Household Income row, and columns based on their similarity to Denmark within the European Values
dataset.

This technique helps surface context-specific patterns and comparisons that may not be evident through
global ordering methods.

4.4 Menu Bar
The final component of the application interface is the Menu Bar, located at the top of the screen. It
provides access to key file operations, view settings, actions, and help resources through four main
dropdown menus:

• File: Allows users to import their own datasets or load one of the available example datasets.
Additionally, it supports exporting the current dataset as a CSV file, or saving the matrix visualization
as either a PNG image or a scalable SVG graphic.

• View: Provides options to switch between different encoding styles, enabling users to choose the
most appropriate visual representation for their data.

• Actions: Includes utilities such as resetting the dataset to its original ordering and transposing the
matrix.

• Help: Offers guidance on using the application, including access to documentation and an About item
describing the tool.

Menu Bar 17

Figure 4.7: Similarity sorting example with the European Values dataset. Rows are sorted by
Household Income and columns by Denmark.

18 4 User Interface and Interaction

Chapter 5

Future Work

While Matrix Shuffler already offers a comprehensive set of features, several directions for future en-
hancement have been identified:

• HTML Label Overlays: Replace PixiJS text elements with HTML-based overlays to improve text
clarity. The current rendering can result in blurry or pixelated labels, particularly on high-resolution
displays. HTML elements would ensure sharper, more readable text across platforms.

• Glue Functionality: Add support for merging or fixing rows and columns during reordering, inspired
by the functionality available in Bertifier [Perin et al. 2014]. This would allow users to preserve
specific data relationships while exploring other structures.

• Additional Encoding Styles: Introduce new visual encoding methods, including the original Bertin-
style texture and pattern encodings. These alternatives would increase the expressiveness and
flexibility of matrix representations beyond color and size alone.

• Expanded Algorithmic Solutions: Integrate advanced matrix reordering techniques such as BiMax
and multidimensional scaling (MDS). These algorithms would support more diverse use cases and
uncover complex structures in data.

• Sticky Labels: Introduce sticky row and column labels that remain fixed to the left and top edges of
the canvas, respectively, when panning. This behavior would be optionally toggleable and would
function similarly to the "freeze" feature in spreadsheet applications like Excel. It would significantly
enhance usability when navigating large datasets by preventing label loss during exploration.

• Performance Optimization for Large Datasets: Enhance rendering efficiency and scalability. Al-
though PixiJS provides GPU-accelerated graphics, it has some limitations drawing sharp text and
lines. Alternative technologies such as three.js Three.js 2025 or WebGPU W3C 2025 could offer
improved performance and rendering capabilities.

• Enhanced Navigation: Implement features such as zooming and a minimap to facilitate exploration
of large or complex matrices. These tools would improve usability and user orientation within the
visualization.

These enhancements would increase the power, flexibility, and user-friendliness of Matrix Shuffler,
making it a more robust tool for matrix visualization and exploratory data analysis.

19

20 5 Future Work

Chapter 6

Concluding Remarks

Matrix Shuffler is an open-source web application for matrix reordering. Inspired by Jacques Bertin’s
physical reorderable matrices, the tool lets users explore tabular data through reordering, revealing
patterns, clusters, and anomalies that are often hidden in raw matrix views.

The application has a clean and responsive user interface. Key features include manual reordering,
algorithmic sorting, statistical sorting, similarity-based sorting, and customizable visualization options
that let users adapt the view to their specific needs.

By providing both flexibility and ease of use, Matrix Shuffler helps users gain deeper insights into their
data, whether for exploratory analysis, pattern recognition, or visual storytelling.

21

22 6 Concluding Remarks

Bibliography

Bertin, Jacques [1983]. Semiology of Graphics: Diagrams, Networks, Maps. Originally published in
French as Sémiologie Graphique in 1967. University of Wisconsin Press, 31 Dec 1983. ISBN 0299090604
(cited on page 1).

Knaus, Andrej, Esma Karic and Laura Thaçi [2025a]. Matrix Shuffler Demo. 30 Jun 2025. https://andr
ejknaus.github.io/matrix-shuffler/ (cited on page 1).

Knaus, Andrej, Esma Karic and Laura Thaçi [2025b]. Matrix Shuffler Repository. 30 Jun 2025. https:
//github.com/AndrejKnaus/matrix-shuffler (cited on page 1).

Perin, Charles, Pierre Dragicevic and Jean-Daniel Fekete [2014]. Bertifier: An Interactive Reorderable
Matrix Visualization Tool. 2014. https://aviz.fr/bertifier_app (cited on page 19).

PixiJS [2025]. PixiJS. 30 Jun 2025. https://pixijs.com/ (cited on page 5).

Three.js [2025]. Three.js – JavaScript 3D Library. 30 Jun 2025. https://threejs.org/ (cited on page 19).

Vue.js [2025]. Vue.js: The Progressive JavaScript Framework. 30 Jun 2025. https://vuejs.org/ (cited
on page 5).

W3C [2025]. WebGPU. 2025. https://w3.org/TR/webgpu/ (cited on page 19).

23

http://amazon.co.uk/dp/0299090604/
https://andrejknaus.github.io/matrix-shuffler/
https://andrejknaus.github.io/matrix-shuffler/
https://github.com/AndrejKnaus/matrix-shuffler
https://github.com/AndrejKnaus/matrix-shuffler
https://aviz.fr/bertifier_app
https://pixijs.com/
https://threejs.org/
https://vuejs.org/
https://w3.org/TR/webgpu/

	Contents
	List of Figures
	1 Introduction
	2 Motivation
	3 Overview and Features
	3.1 Core Functionality
	3.2 Technology Stack
	3.3 Dataset Management
	3.4 Matrix Operations
	3.4.1 Manual Reordering
	3.4.2 Algorithmic Sorting
	3.4.3 Matrix Utilities
	3.4.4 Visualization and Encoding

	3.5 Export and Sharing

	4 User Interface and Interaction
	4.1 Data Panel
	4.2 Visualization Panel
	4.3 Settings Panel
	4.3.1 Normalization
	4.3.2 Label Rotation
	4.3.3 Cell Size
	4.3.4 Visualization Colors
	4.3.5 Color Scheme Presets
	4.3.6 Matrix Sorting
	4.3.6.1 Algorithmic Solutions
	4.3.6.2 Statistical Sorting
	4.3.6.3 Similarity Sorting

	4.4 Menu Bar

	5 Future Work
	6 Concluding Remarks
	Bibliography

