String Charter 3: A Web App for Visual Transport Schedules

Martin Rabensteiner and Stephan Robinig

DAT.C406UF Information Visualisation 3VU SS 2025
Graz University of Technology

30 Jun 2025

Abstract

This report describes String Charter 3, an open-source web application for visualising trans-
port schedules as string charts. Schedule data can be loaded in GTFS format. Many transport
providers make their timetables available in this format, although sometimes some massaging
and cleaning of the dataset is necessary.

String Charter 3 builds on the previous String Charter 2, which had more limited function-
ality and a more minimal user interface. The Tauri framework for cross-platform desktop
deployment was updated from Tauri 1 to Tauri 2, NPM was replaced by Yarn for package
management, and Bootstrap was replaced by Tailwind for responsive Ul styling. Key im-
provements include a redesigned user interface with structured side and top menus, enabling
streamlined uploading and selection of GTFS data, interactive route filtering, and customis-
able visual settings. These enhancements significantly improved usability and accessibility,
facilitating efficient exploration and comparison of public transport schedules. A live demo
of the application is available on GitHub Pages

© Copyright 2025 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents

List of Figures

1

Introduction

1.1 String Charts .

1.2 String Charter 2 .
1.3 Other Related Work

Tech Stack and Deployment
2.1 Yarn .

2.2 Tauri .

23 Vue .

24 Gulp .

2.5 Tailwind. Coe
2.6 GitHubPages.

2.7 GitHub Pages Deployment Process .

2.8 Vite Configuration .

User Interface
3.1 Application
3.2 Menu Bar .
3.3 TopBar .
3.4 Side Bar.

Chart Generation
4.1 Base Class .
42 D3. .

43 SVG . .
4.4 Canvas .

Future Work

5.1 Three.js . .
5.2 Station/Time Filtering .
5.3 Trip Filtering . ..
5.4 Flip Vertical/Horizontal .
5.5 Route Styling .

ii

iii

wm A~ B B B W W W W —_ = = e

0N N 9

11
11
11
12
12

13
13
13
14
14
14

5.6 GitHub Workflow - Tauri Releases .
5.7 Data Editing .
5.8 Chart Export Formats .

A General Transit Feed Specification (GTFS)

Bibliography

ii

14
14
14

15

17

List of Figures

1.1

3.1
3.2
33
34

4.1

String Charter 2.

String Charter 3: User Interface .

String Charter 3: Singelton App Instance.
String Charter 3: String Chart.

String Charter 3: Comparison Chart

String Charter 3: Chart Generation Class Structure .

ii

O O o0 o©

12

v

Chapter 1

Introduction

This report describes the development String Charter 3, an open-source web application for visualising
transportation schedules in GTFS format as string charts [Robinig et al. 2025b]. A live demo of the
application is available on GitHub Pages [Robinig et al. 2025a].

1.1 String Charts

String charts are a way of visualising transportation data on a two-dimensional timeline, usually with
time on the x-axis and the route (stops) on the y-axis. They are not only used by passengers, but also
in planning and analysing timetables. They can be useful to improve routes, dispose resources, such as
trains, and to plan encounters on single-track routes. A related survey of string charts and string charting
tools is available [Nepal et al. 2025].

1.2 String Charter 2

String Charter 2 was a project by Inge Gsellmann, Michael Hebesberger, and Danijela Lazarevic in
2023 [Gsellmann et al. 2023]. The aim was to build a web application to visualise publicly accessible
transportation schedules in GTFS format as string charts. The web app realises this in a simplistic
approach with no options to adapt the visualisation. The stations are not sanitised, potentially leading to
misinterpreted routes. For example, in Figure 1.1, routes towards Graz are cut before Bruck an der Mur,
because the stations there are distinguished between platforms.

The authors agreed to place their code under an MIT licence, which made it possible to develop String
Charter 3 based on the existing code. Although most of the user interface and the graph generation
were rewritten, the parsing of the GTFS data was a convenient base to build to new visualisation on and
remained almost unchanged.

1.3 Other Related Work
Besides String Charter 2, other tools also inspired the development of String Charter 3.

In String Charter 2, stations are equally spaced in the string chart, regradless of the physical distance
between them. Other tools, for example jTrainGraph [Scherzinger 2022], represent the distance between
stations according to the actual distance between them. This gives a better sense of how far stations are
away from each other and how fast trains travel.

MBTA Viz visualises the data provided by the Massachusetts Bay Transit Authority (MBTA) in Boston,
USA [Barry and Card 2014]. The developers Mike Barry and Brian Card show several possibilities to
visualise the given data. One of those is the comparison of divergent travelling times. During peak hours,
especially in the morning and the afternoon, trips take longer because of higher traffic and increased
passenger numbers. This was taken as inspiration for a corresponding new feature in String Charter 3.

1

Select a GTFS zip:

Browse... GTFS_OP_2025_obb.zip

Select a route:

Graz Hauptbahnhof 1B-E -> Flughafen Wien Bahnhof v
@D Flip Axis
500 600 700 800 9:00 10:00 1100 1200 1300 1400 1500 16:00 17:00 1800 1900 20:00 21:00 22:00 2300 000 100

1 1 [| 1 1 1 1 | | 1 1 1 | | I 1 1 | |
Graz Hauptbahnhof 16-E

Bruck/Mur Bahnhof 2

Kapfenberg Bahnhof

Mirzzuschlag Bahnhot

Semmering Bahnhof

Wiener Neustadt Hauptbahnhof

Wien Meidiing

Wien Hauptbannhof

Flughafen Wien Bahnhof

L

Export as SVG

2:00

3:00

Figure 1.1: String Charter 2 showing a route from Graz to Vienna.

Introduction

Chapter 2

Tech Stack and Deployment

One main focus of String Charter 3 was to modernise and streamline the existing tech stack. This
includes the adoption of Yarn for more efficient package management, transitioning to the Vue framework
for reactive and component-based frontend development, and utilising Gulp to automate and optimise
the build processes. Additionally, the integration of Tailwind CSS allows for rapid UI development with
utility-first design, while deploying via GitHub Pages ensures a lightweight and version-controlled hosting
solution. These tools collectively contribute to improved maintainability and enhanced user experience.

2.1 Yarn

Yarn is a fast, reliable, and secure package manager for JavaScript projects [Yarn 2025], developed to
address some limitations found in NPM. It offers deterministic dependency resolution through a lock file
(varn.lock), ensuring consistent installs across different environments. Yarn also improves performance
by parallelising package downloads and caching them locally, which speeds up subsequent installs.
Additionally, Yarn provides better offline support and enhanced security checks. These features make
Yarn a preferred choice over NPM in many projects, especially those requiring reproducible builds and
faster dependency management.

2.2 Tauri

Tauri is an open-source framework for building lightweight, secure, cross-platform desktop applications
using web technologies such as HTML, CSS, and JavaScript [Tauri 2025a]. Unlike traditional Electron-
based apps, Tauri produces significantly smaller binaries by leveraging the system’s native web renderer
and a Rust-based backend, enhancing performance and security. It supports integration with modern
frontend frameworks and offers built-in features like code signing, auto-updates, and a flexible API to
access native OS functionality.

2.3 Vue

Vue.js is a progressive JavaScript framework for building user interfaces and single-page applications
[Vue.js 2025]. It is designed to be incrementally adoptable, allowing developers to integrate it into
existing projects easily. Vue emphasises a component-based architecture, reactive data binding, and a
simple, flexible API that facilitates rapid development and maintainability. Its lightweight size and strong
ecosystem make it a popular choice for modern web development.

4 2 Tech Stack and Deployment

24 Gulp

Gulp is a streaming build system and task runner for automating repetitive development tasks such
as minification, compilation, and testing [Gulp 2025]. It uses a code-over-configuration approach,
allowing developers to write tasks in JavaScript that can process files through a pipeline, improving
build efficiency and maintainability. Gulp’s use of streams enables fast file transformations and reduces
overhead compared to traditional build tools. Gulp is used in the project to provide a clean and cleanAll
utility, automating the removal of build artefacts and temporary files to ensure a fresh build environment.

2.5 Tailwind

Tailwind is a utility-first CSS framework designed to enable rapid UI development by providing low-level,
reusable CSS classes directly in HTML [Tailwind 2025]. Utility-first means that instead of writing custom
styles, developers compose designs using classes for margin, padding, colour, typography, and so on.
This approach encourages consistency, reduces stylesheet bloat, and improves maintainability. Tailwind
also offers extensive customisation options and integrates well with modern JavaScript frameworks.

CSS classes exist for several CSS properties that can be appended to HTML elements. No self-written
classes or CSS stylesheets are needed. The benefits of using Tailwind are:

» Faster development: Compose Ul directly in markup without switching between CSS and HTML
files.

* Highly customizable: Configurable design tokens (colours, spacing, fonts).
» Consistent styling: Utility classes encourage uniform design patterns.
* Small final CSS size: Purging unused styles leads to minimal CSS.

* Responsive and state variants: Easily add breakpoints and pseudo-classes.

2.6 GitHub Pages

GitHub Pages is a free hosting service provided by GitHub for publishing static websites directly from a
GitHub repository. It allows developers to deploy web applications, documentation, or project showcases
without the need for external hosting infrastructure. GitHub Pages supports HTML, CSS, JavaScript, and
static site generators, and integrates seamlessly with version control workflows. This makes it an ideal
platform for sharing demos, visualisations, or research tools, such as the live version of the String Charter
3 application.

2.7 GitHub Pages Deployment Process
Deployment to GitHub Pages is handled through the gh-pages package and a dedicated Yarn script.
* In package. json the repository is declared as:

"repository": "git@github.com:StofflR/String-Charter-3.git"
ensuring that gh-pages can detect the correct remote.

* A new script entry:

"deploy": "gh-pages -d dist"

publishes the contents of the compiled output folder (dist/) to the gh-pages branch. The -d dist
flag tells gh-pages where the production build is located.

Vite Configuration 5

* The deploy command must be executed inside a working Git clone with the necessary push permis-
sions; otherwise, the publication step will fail.

Since the project imports non-standard asset types (SVG, 1CO, ZIP), custom TypeScript declaration
files are added:

declare module “.svg’ {
const content: React.FunctionComponent<React.SVGAttributes<
SVGElement >>;
export default content;
}
declare module
content; }
declare module ’'*.zip’ { const content: string; export default
content; }

*.ico’ { const content: string; export default

These declarations are placed in file custom.d.ts, and tsconfig.json is extended to include them:

"include": [

src",
"src /R /RN
"custom.d.ts"

]

After running the usual build step (yarn build), invoking yarn deploy pushes the freshly built site
to the gh-pages branch, making the application available at <user>.github.io/String-Charter-3.

2.8 Vite Configuration
To ensure that the application is served correctly from the gh-pages branch (where the site will not
be hosted at the domain root but at /String-Charter-3/), two parameters must be set properly in
vite.config.ts:
e root: ’./’ — sets the project root so that Vite resolves entry points relative to the repository’s
top-level folder.

* base: ’./’ — forces Vite to emit all asset URLs as relative paths. Without this setting the
generated HTML would reference absolute paths (e.g. /assets/. . .), which break when the site is
served from a sub-directory on GitHub Pages.

With these options, the build in dist/ can be published directly by the gh-pages -d dist script, and
all links to scripts, styles, and images resolve correctly in the deployed environment.

2 Tech Stack and Deployment

Chapter 3

User Interface

The second key area of improvement in String Charter 3 was the user interface. The goal was to move
away from a traditional web page appearance and toward a more application-like look and feel. A primary
focus was placed on the ease of controls, ensuring that interactions are intuitive and efficient for the user.
By leveraging modern frontend technologies and a more structured design system, the UI now offers a
cleaner, more responsive, and user-friendly experience. The user interface of String Charter 3 is shown
in Figure 3.1.

3.1 Application

The application uses a singleton instance to manage and pass references across different parts of the
codebase, rather than relying on prop drilling through the Vue component hierarchy. This approach
simplifies the architecture by centralising shared state and functionality, making it easier to access key
objects (such as the chart generator or configuration settings) from anywhere in the application. The
structure of the singleton is shown in Figure 3.2. While this deviates from Vue’s conventional reactive
data flow, it is well-suited for this context where interactivity is relatively contained and a lightweight
structure is preferred.

3.2 Menu Bar

The application’s menu bar provides essential global controls for managing data and navigating between
different features. It includes options to upload and select GTFS data files. Additionally, it allows users
to toggle between the different views of the side menu, such as data selection, route filtering, and visual
configuration. The menu bar also offers the ability to export the generated chart as an SVG file. This
export functionality currently relies on an experimental file save dialogue feature [MDN 2025], which
is not yet fully supported across all browsers and may require further refinement. To ensure usability, a
fallback mechanism is implemented that defaults to the standard browser download behaviour, saving the
file to the user’s designated download folder. Lastly, the menu bar includes access to an About dialogue,
which displays information about the application’s purpose and version.

3.3 Top Bar

The top bar of the application provides a set of high-level controls that affect the overall layout and
interpretation of the generated chart. Users can flip the axis of the chart to switch between horizontal
and vertical orientation, depending on their visualisation preference or the format of the data. Figure3.3
shows a string chart generated by String Charter 3. A comparison mode can be enabled, which allows
differences between route datasets (such as delays or schedule deviations) to be visualised directly within
the chart. An example can be seen in Figure3.4. Additionally, a quick-select feature is available, enabling

8 3 User Interface

File View Export About

= B 8 @ ripadis @ compare Available routes: Choose Route: v Sale ==@ offsec: @

R, RIX

IC, ICE, EC, N)

[|
[|
R, REX, CJX -
|

s

Figure 3.1: String Charter 3: User interface.

App

#allReferences :Ref
#d3Gen : D3Generator
#SVGGen : SVGGenerator

+fetchDataFile(): void
+toggleSelection(): void
+routeUpdate(): Promise<void>
+clearRouteFilter(): void
+handleGtfsUpload(): Promise<void>
+updateViewBox(): void
+generateStringGraph(): void

Figure 3.2: String Charter 3: A singelton app instance centralises shared state across the application.

users to quickly select specific routes from the dataset. Further controls allow users to apply scaling and
offset adjustments to the entire plot, providing greater flexibility in aligning and resizing the visualisation
to fit different display contexts or aesthetic requirements.

3.4 Side Bar

The application’s left side bar is divided into three main panels, each supporting a distinct part of the
chart generation workflow. The first panel allows users to select and upload GTFS data in ZIP format.
By default, two datasets are preloaded: one from OBB (Austrian Federal Railways) and one from Go
Northeast, enabling users to experiment immediately without requiring manual input. The second panel
provides tools for filtering and selecting specific routes from the dataset. Users can select multiple routes
for visualisation; however, this is only meaningful when the selected routes are structurally similar, such
as variants of the same line. The third panel contains visual configuration settings, including options
for input sanitisation, adjusting geographic scale between stations, styles for stop circles and route lines
(e.g., width, dashing), and defining colouring rules based on string matching. These controls allow for

Side Bar

04:50 0550 06:50 07:50 08:50 09:50 1050 11:50 12:50 1350

17:50

st. Polten Haupthahnhot

Béheimkirchen Bahnhof

Kirchstetten Bahnhof
Neulengbach Stadt Bahnhof
Maria Anzbach Bahnhof

Eichgraben-Allengbach Bahnhof

Presshaum Bahnhof
Tullnerbach-Pressbaum Bahnhof

‘Wien Hiitieldorf

Wien Westbahnhof

Figure 3.3: String Charter 3: Generated string chart.

-
) >
& =)
5 & &
& - = e
> A 2
Ny s & & o *‘e@a@\ &
S5 & e Mg wa 3 o -
g SO & A o B T &
o I + %;g? W q}%,s‘- F I &
& & & & & &
00:00
01:00

Figure 3.4: String Charter 3: Generated comparison chart.

fine-tuned customisation of the generated chart output.

10

3 User Interface

Chapter 4

Chart Generation

The chart generation logic has been modularised and virtualised in String Charter 3 to improve flexibility
and reusability. The main objective was to introduce a template class that serves as a common interface
for various chart drawing implementations. This abstraction simplifies the integration of different plotting
libraries by providing a consistent structure, reducing duplication, and enabling easier maintenance and
extension.

4.1 Base Class

The StringChartGenerator class is an abstract base class designed to facilitate the creation of charts represented
as string outputs. It provides a foundational interface and utility methods for derived classes that generate
chart data in formats such as HTML, SVG, or D3, by abstracting away the specific implementation details
of different rendering techniques. This allows users to generate charts without needing to know how they
are internally constructed or what rendering technology (e.g., canvas, D3) is used. Subclasses implement
the chart generation logic while adhering to a consistent interface and visuals.

Any subclass of StringChartGenerator must implement a set of abstract methods that define the core
drawing primitives used for chart construction. These include methods for drawing lines, rendering
text, placing circular markers, and adding diagonal text elements. Specifically, the methods drawLine,
drawText, drawStopCircle, and drawDiagonalText must be implemented to provide concrete ren-
dering behaviour appropriate to the target output format. This ensures that all derived classes offer a
consistent interface for chart generation while allowing flexibility in how the graphical elements are
encoded or displayed.

Classes such as CanvasGenerator, SVGGenerator, or D3Generator extend this abstract class and implement
the generate() method to output string charts in the specific formats. This is illustrated in Figure 4.1.

4.2 D3

D3.js is a powerful JavaScript library for producing dynamic, interactive data visualisations using web
standards such as SVG, HTML, and CSS [Bostock 2025]. It provides low-level access to the document
object model (DOM) and supports binding data to visual elements, enabling highly customisable charting
and data interaction capabilities.

One concrete implementation of the StringChartGenerator base class is tailored specifically for D3.js. This
subclass translates abstract drawing instructions into D3-compatible SVG markup, allowing the chart to
be embedded or rendered as part of a web page using standard D3 techniques.

D3.js was chosen as the rendering backend for one implementation of the StringChartGenerator class
due to its powerful and flexible support for generating SVG elements programmatically. It allows for

11

12

StringChartGenerator

#data: RelativeTrips
#axisFlip: boolean
#comparison: baolean
#diagonalTilt: number
-cleanNames: boolean
#radius: number
#strokewidth: number
#colors: Colour[]
#geographicScale: number

#format(): string
+getDynamicWidth(): number
+getDynamicHeight(): number
+getOffsetX(): number
+getOffsetY(): number
#drawlLabels(): void
-drawBackgroundLine(): void
-getRelX(): number
-getRelY(): number
#drawData(): void
-sanitizeStationName(): string
#drawLine(): void
#drawStopCircle(): void
+getHeight(): number
+getWidth(): number
+generate(): void
#drawText(): void
#drawDiagonalText(): void
-drawXLabels(): void
-drawYLabels(): void

i

CanvasGenerator

D3Generator

4 Chart Generation

-canvas: HTMLCanvasElement
-context: CanvasRenderingContext2D
-stopDetailElement: HTMLElement

-eventHandlers: ((event: MouseEvent) => void)[]

+getHeight(): number
+getWidth(): number
+resetEventHandlers(): void
#drawStopCircle(): void
#drawLine(): void

#drawData(): void

#drawLabels(): void
#drawDiagonalText(): void
#drawText(): void
-createMouseOverStaplnfo(): void

+svg: Selection<SVGSVGElement>
+container: any

#width: number

#height: number

#stopCircles: StopCircle[]

SVGGenerator

-svg: Element
+width: number
+height: number
+stroke: string

+getHeight(): number
+getWidth(): number
#drawLine(): void
#drawText(): void
#drawStopCircle(): void
-_drawStopCircle(): void
#drawDiagonalText(): void
+generate(): void
+updateViewBox(): void

+getHeight(): number
+getWidth(): number
#drawStopCircle(): void
#drawLine(): void

#drawData(): void
#drawDiagonalText(): void
#drawText(): void
+exportAsSVG(): Promise<void>

Figure 4.1: String Charter 3: Chart generation class structure.

precise control over graphical primitives and makes it straightforward to construct complex visualisations
directly from data. Additionally, D3 offers built-in mechanisms for handling user interactions such as
mouse hover events, which are essential for enhancing the interactivity and usability of charts in web
applications. This makes D3 a natural choice for producing rich, interactive visual representations of
structured data.

4.3 SVG

One implementation of the StringChartGenerator class targets the generation of stand-alone SVG files.
This variant is designed specifically to produce clean SVG output, free of any interactive elements or
HTML.-specific tags. It focuses solely on encoding the graphical content in standard SVG format, making
it suitable for static use cases such as printing, embedding in documents, etc. To ensure readability
and maintainability, the resulting SVG markup is formatted using an XML formatting package, which
organises the structure of the file with proper indentation and tag hierarchy.

4.4 Canvas

An additional implementation of the StringChartGenerator class exists for rendering charts using the HTML
<canvas> element. This version is capable of generating JavaScript code that draws directly onto a
canvas context, offering efficient, low-level rendering capabilities for dynamic or performance-sensitive
applications. However, this implementation is currently not in active use, since the D3-based approach
has better support for structured SVG generation and interactive features such as mouse hover handling.

Chapter 5

Future Work

During the short time frame of the project of around six weeks, many known problems were fixed and
new features implemented. Of course, numerous ideas for improvements and additional features could
not be implemented in this time frame and are documented here as ideas for future work.

5.1 Three.js

Using three.js for rendering String Charts would offer some benefits over traditional SVG-based rendering:

* Better Performance: Since Three.js leverages GPU hardware accceleration, it can render thousands
of graphical elements more efficiently than SVG, which is constrained by DOM manipulation and
reflow.

» Support for 3D Effects: Three.js enables the use of depth, perspective, and 3D interaction, which
can enhance the expressiveness of visualisations involving spatial or overlapping relationships.

Despite its capabilities, Three.js comes with some trade-offs compared to SVG:

* Increased Complexity: Setting up a Three.js environment and rendering pipeline is more involved
than using declarative SVG markup.

* Limited Accessibility and Native Interactivity: Since WebGL content is rendered in a canvas and not
part of the DOM, accessibility features and simple event handling require additional logic, unlike in
SVG.

Due to the modular structure of the project, integrating Three.js for rendering should be possible with
minimal overhead. Specifically, the StringChartGenerator base class provides a well-defined interface, and
implementing a custom generator using Three.js would only require overriding a few core methods. This
abstraction significantly reduces complexity by isolating rendering logic, allowing developers to leverage
three.js for high-performance visuals without altering the broader application logic.

5.2 Station/Time Filtering

Currently, by default, all stations and the complete time frame are shown in the string chart. A meaningful
extension could be to show only a specific time frame and only a subset of the stations. Both could be
done with a double-edged slider. In that context, it could also be useful to have checkboxes beside the
stations so a user can tick single stations to be shown or not shown, for example, when stations are close
to each other and could overlap each other.

13

14 5 Future Work

5.3 Trip Filtering

A planned future improvement involves implementing filtering capabilities for GTFS data based on
weekdays, weekends, and holidays. Additionally, the system might support distinguishing between
incoming and outgoing train trips. These features would enhance the clarity and usability of string chart
visualisations by allowing users to focus on specific service patterns and directions of travel, facilitating
more detailed transit analysis.

5.4 Flip Vertical/Horizontal

An additional feature would allow users to flip the ordering of start and end stations, as well as the
corresponding start and end times of train trips. This functionality would provide greater flexibility
in visualising and analysing string charts from different directional perspectives, making the tool more
adaptable to various use cases and user preferences.

5.5 Route Styling

The route styling could be improved by adding more parameters for the route lines and stop circles.
Currently, colour, stroke width, and stroke pattern can be set. This could be extended with transparency
settings, the option to show only one trips towards one direction, and the option to distinguish routes in
the opposite direction by their colour. In addition, the styling of lines and circles can be reworked with
SVG classes, where the styling parameters are defined and only the class name is included in the inline
definition.

5.6 GitHub Workflow - Tauri Releases

It is possible to create a GitHub Actions workflow to automatically build Tauri native packages for Linux,
Windows, and macOS [GitHub 2025]. A YAML configuration file (e.g., .github/workflows/tauri-buil
d.yml) is created using a matrix strategy. This matrix uses the runs-on key to define a set of operating
systems (ubuntu-latest, windows-latest, and macos-latest), ensuring that the job runs on each
corresponding virtual environment. Each job step typically involves checking out the code, setting up the
Node.js and Rust toolchains, and installing platform-specific dependencies when needed.

The core build process relies on the official tauri-apps/tauri-action, which compiles the app
using the Tauri CLI. It also optionally handles code signing (if secrets are configured), creates GitHub
Releases, and generates updater metadata such as latest. json, allowing Tauri apps to support seamless
cross-platform updates [Tauri 2025b]. This automated setup streamlines the packaging and distribution
of desktop applications across major operating systems.

5.7 Data Editing

Tools like jTrainGraph [Scherzinger 2022] offer the opportunity to edit routes and times. This also pays
tribute to one of the origins of string charts: To use it not only as a representation, but also as a planning
tool. It should then also be possible to save the edited data in GTFS format.

5.8 Chart Export Formats

Besides the existing SVG export, exporting to raster graphics formats such as PNG would be possible.

Appendix A

General Transit Feed Specification (GTFS)

The General Transit Feed Specification (GTFS) is an open standard for describing public transport
schedules [GTFS 2025]. It was initially developed through collaboration between Google and TriMet, the
public transport agency in Portland, Oregon, with the purpose to have standardized API for schedules and
geographical data. GTFS has been widely adopted by transport authorities, developers, and researchers
worldwide.

GTFS consists of a structured collection of plain text files, typically packaged as a ZIP archive. Each file
contains comma-separated values and represents a particular aspect of a transit system, such as agencies,
stops, routes, trips, and service frequencies.

The default structure of GTFS Static has to contain at least the following text files:

®* agency.txt

* stops.txt

* routes.txt

® trips.txt

* stop_times.txt

* calendar.txt

The widespread distribution of GTFS improved the accessibility and interoperability of transport data.
A common format makes it possible for developers to integrate transit information into applications and
services, for example in routing applications such as Google Maps. It is also used in traffic research for
example in network coverage, transit needs, and multimodal connectivity [Google 2025].

An extension to the static format is GTFS Realtime, which allows transport companies to provide
dynamic updates like delays, vehicle positions or deviations.

The popularity of GTFS shows the need for interoperability and connectivity through different transport
agencies and enterprises and routing services and apps. Open data supports this trend toward a democratic
and easy accessible solutions. Some publicly available GTFS datasets include:

 OBB: Austrian Railways offer yearly updated datasets of their train services [OBB 2025].

* Mobilitiitsverbiinde Osterreich: The Mobility Association Austria is an association of seven regional
public transport authorities, offering GTFS datasets [MAA 2025]. Registration is required to agree
to the terms of use.

* GoNortheast: The data of this British transport operator is available under the Open Government
License Version 3.0 [GoNorthEast 2025].

15

16

A General Transit Feed Specification (GTFS)

* GTFS.de: This private German website collects GTFS data for several public transport modes in
Germany and provides them under a CC BY 4.0 license [GTFS.de 2025].

Bibliography

Barry, Mike and Brian Card [2014]. Visualizing MBTA Data. 10 Jun 2014. https://mbtaviz.github.io/
(cited on page 1).

Bostock, Michael [2025]. D3. 26 Jun 2025. https://d3js.org/ (cited on page 11).

GitHub [2025]. Workflow syntax for GitHub Actions. 26 Jun 2025. https://docs.github.com/en/actions
/reference/workflow-syntax-for-github-actions (cited on page 14).

GoNorthEast [2025]. Network Data. Go North East, 2025. https://gonortheast.co.uk/open-data (cited
on page 15).

Google [2025]. GTFS Static Overview. 12 May 2025. https://developers.google .com/transit/gtfs
(cited on page 15).

Gsellmann, Inge, Michael Hebesberger and Danijela Lazarevic [2023]. String Charter 2: Visual Transport
Schedules. 03 Jul 2023. https://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g2-proj
ect-string-charter2.pdf (cited on page 1).

GTEFS [2025]. General Transit Feed Specification (GTFS). 12 May 2025. https://gtfs.org/ (cited on
page 15).

GTFS.de [2025]. Deutschlandweite GTFS Feeds. 2025. https://gtfs.de/de/feeds/ (cited on page 16).
Gulp [2025]. Gulp - The streaming build system. 26 Jun 2025. https://gulpjs.com/ (cited on page 4).

MAA [2025]. Mobility Association Austria, 12 May 2025. https://data.mobilitaetsverbuende.at/en
(cited on page 15).

MDN [2025]. Window.showSaveFilePicker() - Web APIs | MDN. Mozilla Developer Network, 26 Jun
2025. https://developer .mozilla.org/en-US/docs/Web/API/Window/showSaveFilePicker (cited on

page 7).
Nepal, Trinish, Martin Rabensteiner and Stephan Robinig [2025]. String Charts: Visual Transport Sched-

ules. 07 May 2025. https://courses.isds.tugraz.at/ivis/surveys/ss2025/ivis-ss2025-g3-survey-st
ring-charts.pdf (cited on page 1).

OBB [2025]. Soll Fahrplan GTFS. 2025. https://data.oebb.at/datensaetze~soll-fahrplan-gtfs~ (cited
on page 15).

Robinig, Stephan, Martin Rabensteiner, Inge Gsellmann, Michael Hebesberger and Danijela Lazarevic
[2025a]. String Charter 3 Demo. 26 Jun 2025. https://stofflr.github.io/String-Charter-3/ (cited
on page 1).

Robinig, Stephan, Martin Rabensteiner, Inge Gsellmann, Michael Hebesberger and Danijela Lazarevic
[2025b]. String Charter 3 Repository. 26 Jun 2025. https://github.com/Stoff1R/String-Charter-3/
(cited on page 1).

Scherzinger, Moritz [2022]. jTrainGraph. 30 Dec 2022. https://jtraingraph.de/ (cited on pages 1, 14).

17

https://mbtaviz.github.io/
https://d3js.org/
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://gonortheast.co.uk/open-data
https://developers.google.com/transit/gtfs
https://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g2-project-string-charter2.pdf
https://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g2-project-string-charter2.pdf
https://gtfs.org/
https://gtfs.de/de/feeds/
https://gulpjs.com/
https://data.mobilitaetsverbuende.at/en
https://developer.mozilla.org/en-US/docs/Web/API/Window/showSaveFilePicker
https://courses.isds.tugraz.at/ivis/surveys/ss2025/ivis-ss2025-g3-survey-string-charts.pdf
https://courses.isds.tugraz.at/ivis/surveys/ss2025/ivis-ss2025-g3-survey-string-charts.pdf
https://data.oebb.at/datensaetze~soll-fahrplan-gtfs~
https://stofflr.github.io/String-Charter-3/
https://github.com/StofflR/String-Charter-3/
https://jtraingraph.de/

18 Bibliography

Tailwind [2025]. Tailwind CSS: A Utility-First CSS Framework. Tailwind Labs, 26 Jun 2025. https://ta
ilwindcss.com/ (cited on page 4).

Tauri [2025a]. Tauri. 11 May 2025. https://tauri.app/ (cited on page 3).

Tauri [2025b]. Tauri GitHub Pipeline. 26 Jun 2025. https://v2.tauri.app/distribute/pipelines/github/
(cited on page 14).

Vue.js [2025]. Vue. 26 Jun 2025. https://vuejs.org/ (cited on page 3).
Yarn [2025]. Yarn Package Manager. 26 Jun 2025. https://yarnpkg.com/ (cited on page 3).

https://tailwindcss.com/
https://tailwindcss.com/
https://tauri.app/
https://v2.tauri.app/distribute/pipelines/github/
https://vuejs.org/
https://yarnpkg.com/

	Contents
	List of Figures
	1 Introduction
	1.1 String Charts
	1.2 String Charter 2
	1.3 Other Related Work

	2 Tech Stack and Deployment
	2.1 Yarn
	2.2 Tauri
	2.3 Vue
	2.4 Gulp
	2.5 Tailwind
	2.6 GitHub Pages
	2.7 GitHub Pages Deployment Process
	2.8 Vite Configuration

	3 User Interface
	3.1 Application
	3.2 Menu Bar
	3.3 Top Bar
	3.4 Side Bar

	4 Chart Generation
	4.1 Base Class
	4.2 D3
	4.3 SVG
	4.4 Canvas

	5 Future Work
	5.1 Three.js
	5.2 Station/Time Filtering
	5.3 Trip Filtering
	5.4 Flip Vertical/Horizontal
	5.5 Route Styling
	5.6 GitHub Workflow - Tauri Releases
	5.7 Data Editing
	5.8 Chart Export Formats

	A General Transit Feed Specification (GTFS)
	Bibliography

