Accessible Charts

Moritz Erlacher, Lisa Habich, Alexander Perko, Markus Stradner

706.057 Information Visualisation SS 2021
Graz University of Technology

10 May 2021

Abstract

This report summarizes the ARIA standard with all the rules, roles and properties, as well as
different screen readers and tools to handle accessible charts. Furthermore, it gives a deeper
insight into how charts are turned into accessible charts at all. And then, finally, a short
overview of tools, which blind people can work with to get something out of it.

© Copyright 2021 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.


https://creativecommons.org/licenses/by/4.0/




Contents

Contents

List of Figures

List of Listings

1

2

Web Accessibility

WAI and ARIA

2.1 WAL . .
22 ARIARules . . . . . . . .
2.3 ARIAProperties . . . . . . . . o e e
24 ARIARoles . . . . . . . .

Annotated SVG Charts
3.1 Simply Annotated SVG Charts . . . . . ... ... ...
3.2 Richly Annotated SVG Charts . . . . . . . . . . . . . . . e

Screen Readers

4.1 NVDA . . e e e e
4.2 JAWS e e
43 VoiceOVEr . . . . . . o e e e e e e
4.4 Narrator . . . . . . o e e e e e

Tools

5.1 Chart GEnerators . . . . . . . . v v v i e e e e e e e e e
ST Glimpse . . . .. L e e e
5.1.2  AChart Creator . . . . . . . . . . o i it e e e e

5.2 ChartReaders . . . . . . . . . . . e e e
5.2.1 AChartInterpreter . . . . . . . . . . . . 0 i e e e
5.22 Describler. . . . . .. e e e

5.3 OtherTools . . . . . . . . e e

Listings

A.1 AChart Creator Input CSV . . . . . . . . . . e
A.2 AChart Creator Line Chart . . . . . . . . . . . . .. . . . . it
A3 AChartCreator BarChart . . . . . . . . . . . . . . . ... e

Bibliography

iii

12

17
17
17
17
17

19
19
19
19
21
21
22
23

26
26
26
26

37



ii



List of Figures

1.1 Accessibility Tree on Google Chrome . . . . . . .. ... .. ... ... ........ 2
3.1 Structure of Simply Annotated SVG Chart . . . . . . ... ... ... ... ... 10
3.2 Example of Simply Annotated SVG Chart . . . . . .. ... ... ... ... ... 10
3.3 Structure of Richly Annotated SVG Chart . . . . . . ... ... ... ... ...... 15
4.1 Primary ScreenReaders . . . . . . . . . . ... 18
42 VoiceOver Example . . . . . . . . . . .. e 18
5.1 Glimpse: Creating a Grouped Bar Chart . . . . . .. .. .. ... ... ......... 20
5.2 Glimpse: Annotated SVG Code . . . . . . . . . . . . . .. .. ... 20
5.3 AChart Creator: Command Line and Input CSV File . ... .. ... .......... 20
5.4 AChart Creator: Output Chart . . . . . . . . . ... ... ... ... .. 21
5.5 AChart Creator: Richly Annotated SVGCode . . . . . .. ... ... ... ....... 21
5.6 AChart Interpreter: User Interface . . . . . . . . ... ... ... ... ... ...... 22
5.7 AChart Interpreter: Statistics Window . . . . . . . . . .. ... ... 0. 23
5.8 Describler: Anuploaded SVG . . . . . . ... 24
5.9 Microsoft VS Code Plugins . . . . . . . .. ... ... 24
5.10 Accessibility auditin Safari . . . . . .. ... oL oL 25
5.11 Accessibility Auditin Chrome . . . . . . . . . . ... . . 25

ii



v



List of Listings

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10

3.1
3.2

Al
A2
A3

Using aria-label . . . . . . . . . e e e
Using aria-labelledby. . . . . . . . . . o it i e
Using aria-labelledby. . . . . . . . . . o it i e
Using aria-describedby . . . . . . . . .. L
Using aria-valuemin, aria-valuemax, and aria-valuenow . .. .. ... ........
Using aria-roledescription . . . . . . . . . .o oottt i it e
Using aria-hidden . . . . . .. . . . . e e
Using graphics—-document . . . . . . . . v v v it i et e e e

Using graphics-object. . . . . . . . v v it e e e e e e e

e Nl MRV, R, IR, BRI, I N

Using graphics-symbol. . . . . . . . . . e

Source Code of Simply Annotated SVG Chart . . . ... ... ... ... ......... 11
Source Code of Richly Annotated SVG Chart. . . . ... ... ... ............ 14

Tabular Datain CSV Format . . . . .. ... ... ... ... .. ... ... .. ..., 26
Line Chart Generated by AChart Creator . . . . . . .. ... .. .. ... ... 27
Bar Chart Generated by AChart Creator . . . . . .. ... ... ... ... .. ....... 32



vi



Chapter 1

Web Accessibility

Web accessibility, also sometimes known as “web ally” (“11” represents the eleven characters between
the starting “a” and the ending “y”), describes the conglomerate of efforts to make the web accessible for
people with disabilities, like blindness and color-blindness. This includes web content ranging from web
user interfaces through infographics to text. However, not only people with disabilities benefit from web
ally. The target group ranges from elderly people, through people using a slow internet connection to
people simply using mobile devices. Access to information and communication technologies is defined
as a human right by the United Nations and web ally is even required by law in many situations [W3C

2021a]. To achieve a more accessible web, different standards emerged.

The web browser maintains two parallel internal data structures: the DOM Tree and the Accessibility
Tree. In fact, the Accessibility Tree is a subset of the flattened DOM Tree. This subset is used to track
user interface objects of the web browser and the objects of the current document. Accessible objects are
created in the Accessibility Tree for every DOM element that can be handled by an assistive technology.

The Accessibility Tree can be inspected using a web browser’s development tools. In Google Chrome,
for example, it can be viewed by right-clicking on a web page and then selecting Inspect. In this window,
where all the inspection areas are open, you can select Accessibility, which can be found in the lower
inspection section right next to Properties. The result is shown in Figure 1.1.



1 Web Accessibility

Styles Computed Layout Event Listeners DOM Breakpoints  Properties  Accessibility

v Accessibility Tree

v WebArea
v graphics—document
v generic "Austrian Population over the Years This chart shows the population of Austria from 1959 to 2079."

heading "Austrian Population over the Years"
generic "Year"
generic "Population"
generic "Population”

v ARIA Attributes

role: chart
aria-labelledby: title desc
aria-roledescription: Line Chart

v Computed Properties

¥ Name: "Austrian Population over the Years This chart shows the population of Austria from 1959 to 2019."
¥ aria-labelledby:
text#title"Austrian Population over the Years"
desc#desc" + This chart shows the population of Austria from 1959 to 2019. <’ "
aria-label: Not specified
From title: Not specified
title: Not specified
Role: generic
Focusable: true
roledescription: "Line Chart"
v Labeled by:
text#title"Austrian Population over the Years"
desc#desc" + This chart shows the population of Austria from 1959 to 2019. «' "

Figure 1.1: Google Chrome showing the Accessibility Tree, ARIA Attributes, and Computed Prop-
erties. [Screenshot captured by Markus Stradner using Google Chrome.]



Chapter 2

WAI and ARIA

Accessible Rich Internet Applications (ARIA) [W3C 2021c] emerged from the Web Accessibility Initi-
ative (WAI) [W3C 2021b] of the World Wide Web Consortium (W3C) [W3C 2021a]. ARIA consists of
a set of rules, roles, and properties, and provides semantics, especially for dynamic content. As some
parts of websites are not usable for some people who, for example, rely on screen readers, WAI-ARIA
provides the developers with tools to make web content accessible for people with disabilities.

2.1 WAI

The Web Accessibility Initiative is part of the W3C (World Wide Web Consortium). It develops different
standards to improve the accessibility of the World Wide Web (WWW) for people with disabilities. Such
standards are for example the Web Content Accessibility Guidelines (WCAG) [W3C 2021b].

2.2 ARIA Rules
When working with the ARIA standard, a few rules [Damera 2021] have to be followed:

1. Always use native HTML, unless there is no other way to make elements accessible.

2. Do not change the semantics of native HTML. Use the <button> element instad of <span role="
button">.

3. Make aria-controls keyboard accessible, with the help of tabindex="0".

4. Never use role="presentation" or aria-hidden="true" on focusable elements. It might be
confusing if a plain face is focused.

5. Always use accessible names by using the <label> element or aria-labels="Search".

All mentioned elements and attributes are part of the standard HTML or SVG markup.

2.3 ARIA Properties

ARIA defines different properties to annotate web content for accessibility. All ARIA properties are
denoted by the prefix aria-. These properties are used to add further information to an element. There
exist many different ARIA properties, in this survey only the most important are described in detail:

* aria-label: aria-label is used to label an element with a short name or a value. This can be used
to give an accessible name to the element. Listing 2.1 shows an example how to use aria-label on
a button for sending a mail.



4 2 WAl and ARIA

<button aria-label= type= >Send</button>

Listing 2.1: An example of using aria-label.

<div id= >Send</div>
<button aria-labelledby= type= >Send</button>

Listing 2.2: An example of using aria-labelledby.

* aria-labelledby: aria-labelledby is similar to aria-label but gives an alternative way of
labelling an element. aria-labelledby uses the ID of another element. For example, it can use
a text element with a label and refer to it by the ID. Listing 2.2 shows the same example as above
but with aria-labelledby. It is also possible to combine more labels. This can be helpful to reuse
labels. One use case can be seen in Listing 2.3. In the example, the screen reader would read the
first button as “Send Mail” and the second button as “Send Direct Message”. Notice the “Send”
label was reused in both buttons.

* aria-describedby: aria-describedby property is used similar to aria-labelledby. The differ-
ence is that with aria-describedby one can give the element a longer more detailed description.
This is especially important when the aria-label or aria-labelledby property does not give a
detailed enough description of the element. Listing 2.4 shows a use case of aria-describedby,
where the screen reader would read the more detailed description of the button given by the aria-
describedby property.

* aria-valuemin/aria-valuemax: aria-valuemin and aria-valuemax properties are used to give a
description to range elements, like sliders. This is important to give information of the maximum and
the minimum of the slider. aria-valuenow can be used as the default value of the slider. Listing 2.5
shows a use case of these properties. The screen reader would give the information of the minimum
value of the slider, in this case, 0, the maximum value of the slider, in this case, 100, and the current
value of the slider, in this case, 10.

* aria-roledescription: aria-roledescription can be used to give a natural language description
for the role of an element. Sometimes the role of an element is not very meaningful and in this
case one can change this with the aria-roledescription property. Listing 2.6 shows a use case of
aria-roledescription. The screen reader would understand that the element is a button and with
the aria-roledescription it tells the user that it is an attachment button (for example attaching a
file to a mail).

* aria-hidden: The aria-hidden property is used to hide an element and all its children from the
Accessibility Tree and therefore hide the elements from the screen reader. This is especially useful for
purely decorative elements on a webpage. It can be also used for repeated text or offscreen/collapsed
content on the screen like menus. Listing 2.7 shows a use case of the property, where the screen
reader would not read the text.

2.4 ARIA Roles

The ARIA properties described until now can be used for both HTML and SVG. The ARIA Graphics
Module, which defines all the properties and roles to make SVGs more accessible. The properties defined
in the ARIA Graphics Module [W3C 2018] are the same as those discussed in Section 2.3. For example,




NN R WD~

0 N NN R W~

9

—_

(5]

O S

~

—_

ARIA Roles

<div id= >Send</div>
<div id= >Mail</div>
<button aria-labelledby=

type= >Send Mail</button>
<div id= >Direct Message</div>
<button aria-labelledby=

type= >Send Direct Message</button>

Listing 2.3: An example of combining aria-labelledby properties.

<div id= >Send</div>
<div id= >Mail</div>
<div id= >Sending the text as mail</div>
<button aria-labelledby= aria-describedby=

type= >Send Mail</button>
<div id= >Message</div>
<div id= >Sending the text as a direct message</div>
<button aria-labelledby= aria-describedby=

type= >Send Direct Message</button>

Listing 2.4: An example of using aria-describedby.

<div class = >

<input type = aria-valuemin= aria-valuemax= aria-valuenow=
</div>

Listing 2.5: An example of using aria-valuemin, aria-valuemax, and aria-valuenow.

<div role= tabindex= aria-roledescription= >

attach file
</div>
<button aria-roledescription= >attach file</button>

Listing 2.6: An example of using aria-roledescription.

<p aria-hidden= >

This text would not be read by the screen reader.
</p>

Listing 2.7: An example of using aria-hidden.




(o e Y R N O

2 WAl and ARIA

<svg xmlns ="https://www.w3.0rg/2000/svg" viewBox="0 0 200 100" role="graphics-

document">

Listing 2.8: An example of using graphics-document.

<g role="graphics-object" aria-label="x-axis">
<line x1="0" yl="0" x2="900" y2="0" stroke="black" stroke-width="3"/>

<line x1="114" x2="114" y1="-15" y2="15" stroke="black" stroke-width="2"/>
<text x="114" y="20" transform="rotate(-45, 114, 20)" font-size="20"

text-anchor="end">2014</text>

</g>

Listing 2.9: An example of using graphics-object.

the aria-label property can be added to define the value of a data point in an SVG chart or to define
what is seen on the x and the y-axis. In this survey, only the three most important SVG-specific roles are
described:

e graphics-document: Is used to define that the next part of the document conveys its meaning

through visual appearance. In this case it is used to define that the SVG is a document which conveys
its meaning through a chart and is accessible. This can be seen in Listing 2.8.

graphics-object: Is a subsection of the graphics-document and is used for sub elements in the
SVG. It is used inside the SVG g grouping element. Every graphics-object can contain more
graphics-object. It can be used to define that the x or y-axis is a graphics object. graphics-
object can be seen in Listing 2.9. In the example, an x-axis is defined. The role graphics-object
is set for the x-axis. Inside line elements are defined which are used as the x-axis marks and text
elements which are used as the label.

graphics-symbol: Is again a subsection of the graphics-object role and can be used to define
graphical symbols such as icons. It is part of a larger structure such as a chart. The usage is seen
in Listing 2.10. In the example, a symbol is defined which is a simple arrow for the x-axis from
the example before. In the x-axis declaration where the arrow is used the graphics-symbol role is
added.




—_ =
—_ O 0 0 NN N R W =

_ = = e
[NV, B L I )

ARIA Roles

<symbol id="arrow" viewBox="0 0 50 50">
<polygon points="25,0 50,50 0,50" fill="black" />
</symbol>

<g transform="translate(160, 800)" font-family="Verdana">
<use href="#arrow" role="graphics-symbol" x="910" y="-5" width="10" height="10"
transform="rotate (90 910, -5)"></use>
<line x1="0" y1="0" x2="900" y2="0" stroke="black" stroke-width="3"/>

<line x1="114" x2="114" y1="-15" y2="15" stroke="black" stroke-width="2"/>
<text x="114" y="20" transform="rotate(-45, 114, 20)" font-size="20"

text-anchor="end">2014</text>

</g>

Listing 2.10: An example of using graphics-symbol.




2 WAl and ARIA



Chapter 3

Annotated SVG Charts

As discussed in Sections 2.3 and 2.4, SVGs can be annotated with ARIA roles and properties. In this
section, a deeper look into the annotation of SVGs and how to accomplish such annotated SVGs is given.
There are three different ways to annotate SVGs:

* Manual annotation: Simply annotate SVGs by hand. An already existing SVG file can be used and
then all the necessary roles and properties get added. Or the SVG itself can be created from scratch
and all the necessary roles and properties get added. This approach can be quite tedious when more
complex SVG charts get created.

» Semi-automatic annotation: Already existing programs like AChart can be used. This is categorized
as semi-automatic annotation, since it adds all the necessary annotations, but there is no deeper
control of how the final chart will look without modifying the predefined “recipes” for each chart
type. In AChart there are recipes for a pie chart, a bar chart, and a line chart (more information
about AChart in Section 5.1.2). If a different chart is needed, the manual annotation process has to
be used, or a new recipe has to be written in TypeScript.

* Automatic annotation: The final way to create annotated SVGs is to use a vector graphics editor
which can add annotations. For example, Glimpse is such an editor (see Section 5.1.1).

Overall, it can be differentiated between simply annotated SVG charts and richly annotated SVG charts.
Simply annotated SVG charts contain all the roles and properties seen until now and defined in ARIA.
However, there are also proposals for properties and custom classes for annotating SVG charts which
create more detailed annotations. These SVG charts are called richly annotated SVG charts. More about
richly annotated SVG charts is given in Section 3.2.

3.1 Simply Annotated SVG Charts

First, a deeper look into simply annotated SVGs is given. A simply annotated SVG chart makes use of
the standard WAI ARIA roles and properties. Figure 3.1 shows the structure of a simply annotated SVG
chart. The dark blue parts contain the visible parts of the chart, like the heading, the bars, and the axes.
The purple circles with the numbers are the tab indices. They define the order in which elements are read
by the screen reader. In this case, first, the title is read out, then the more detailed description, then the
x-axis label, and finally the values of the bars. Th red and grey parts of the chart can be focused by the
screen reader. However, the grey parts are not visible on the chart, they are only provided for the screen
reader to read out.

In Figure 3.2 such a simply annotated SVG is given. For non-blind people, the SVG looks like any
other. Looking into the source code of the SVG, it is indeed a simply annotated SVG, as can be seen in
Listing 3.1. It contains standard ARIA roles and properties, like aria-label and aria-labelledby.



10

3 Annotated SVG Charts

:Austrian Population over the Years

titlep :
P Y (1959-2019) .. ... :
11 -
10 H
=
i)
.\é/
c
ke
=
o
=]
o
o
o
5 2 2 8 8 3 2
9 o o o o o)) o o
— — — — — N N

This is a bar chart showing the population in
Austria between 1959 and 2019. The overall
trend is a rising one.

Figure 3.1: The structure of a simply annotated SVG chart. [Drawn by Markus Stradner, inspired by the
illustrations of a barchart from Fizz Studio (https://fizz.studio/wp-content/uploads/2018/04/barchart.png). |

Austrian Population over the Years

134
12
11+

10

Population

Year

Figure 3.2: An example of a simply annotated SVG chart. It contains a bar chart showing the
Austrian population from 1959 to 2019. On the y axis is the population in millions and on the x
axis are the years. [Created by Alexander Perko with AChart.]


https://fizz.studio/wp-content/uploads/2018/04/barchart.png

[l e Y L

10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Simply Annotated SVG Charts

11

<svg viewBox="0 0 750 600" version="1.1" xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink" role="graphics-document">
<style type="text/css">
.bar {fill: steelblue; }
</style>
<rect id="backdrop" width="750" height="600" fill="#fff"></rect>
<g id="ChartRoot" tabindex="0" transform="translate(100,100)"
aria-labelledby="title desc" aria-charttype="bar" aria-roledescription="Bar
Chart">
<desc id="desc">
A bar chart showing the population in Austria between 1959 and 2019.
The overall trend is rising.
</desc>
<rect width="600" height="400" fill="none"></rect>
<text id="title" text-anchor="middle" font-size="14" x="275" y="-25">
Austrian Population over the Years
</text>
<g id="xScale" aria-axistype="category" aria-roledescription="x-Axis"
aria-labelledby="x-title" tabindex="0" transform="translate(0,400)"
fill="none" font-size="10" font-family="sans-serif" text-anchor="middle">
<text y="50" x="300" text-anchor="middle" fill="black"
font-size="12" id="x-title">Years</text>
<path class="domain" stroke="currentColor" d="M0.5,6V0.5H600.5V6"></path>
<g class="tick" opacity="1" transform="translate(56.757,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.71lem" id="x1">1959</text>
</g>

</g>
<g id="yScale" aria-roledescription="y-Axis" tabindex="0" aria-valuemin="4"
aria-valuemax="13" aria-labelledby="y-title" fill="none" font-size="10"
font-family="sans-serif" text-anchor="end">
<text transform="rotate(-90)" y="-38" x="-200" text-anchor="middle"
fill="black" id="y-title" font-size="12">Population</text>
<path class="domain" stroke="currentColor" d="M-6,400.5H0.5V0.5H-6"></path>
<g class="tick" opacity="1" transform="translate(0,400.5)">
<line stroke="currentColor" x2="-6"></line>

<text fill="currentColor" x="-9" dy="0.32em" id="yl1">4</text>
</g>

</g>
<g id="dataarea" tabindex="0">
<title>
Population
</title>
<g tabindex="0" transform="translate(32.432,266.044)" aria-labelledby="x1">
<rect class="bar" width="48.649" height="133.956"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10"
fill="white" id="valuel">7.014</text>
</g>

</g>
</g>
</svg>

Listing 3.1: The source code of the simply annotated SVG chart. It contains standard ARIA roles
and properties, like aria-label and aria-labelledby.




12 3 Annotated SVG Charts

3.2 Richly Annotated SVG Charts

Richly annotated SVG charts contain more detailed descriptions and information about the chart. Numer-
ous tools and libraries help with creating richly annotated SVG charts. However, each tool and library
takes its own approach and standards still have to emerge:

* Describler [Schepers 2021a]: Describler used standard ARIA roles and properties for SVG charts,
as well as introducing a custom taxonomy for additional rich annotations.

* AChart [Andrews and Kopel 2021a; Andrews and Kopel 2021b]: AChart builds upon Describler’s
roles and propeties for rich annotation of SVG charts.

* W3C (Bellamy-Royds) [Bellamy-Royds 2021]: Amelia Bellany-Royds proposed standard ARIA
roles and properties for rich annotations. Until now, they have not been added to the standard ARIA
roles and properties.

* Highcharts [HC 2020]: Highcharts also adds standard ARIA roles and properties and defines a
custom taxonomy for rich annotations.

* Semiotic [Meeks 2021]: Semiotic handles annotations the same as Highcharts by adding the standard
ARIA roles and properties and defining a custom taxonomy for rich annotations.

e amCharts [AMC 2021]: amCharts uses standard ARIA roles and properties as well as menu elements
for rich annotations. Due to this, it is not as versatile and feature-rich as the other libraries.

* FusionCharts [FC 2021]: FusionCharts uses standard ARIA roles and properties and defines a
custom taxonomy for rich annotations.

All of these tools and libraries define different ways of richly annotating SVG charts. The most
promising concepts from the different proposals and taxonomies are summarised in Table 3.1. In
particular:

* Data Point: A declaration of a data point. This is probably the most promising concept. It is used to
define a data point in a chart as a data point. From these data point values, the screen reader or the
chart interpreter can then calculate additional information like the mean of the data or a trend line.

* Collection of Data Points: Used to add different data points to a collection of data points. This is
very useful if a chart shows more than one group of data points, since the screen reader can then
differentiate between them and therefore calculate the additional information for each group of data
separately.

* Legend: Used to define a legend for the chart. The goal is that the information is received from the
data itself without creating all the labels by hand. This is very useful when the data changes.

e Legend Item: Part of the legend and used to define which items are in the legend.
* Axis: Used to define an axis. Again, without the need to define all the labels for the screen reader.

o Axis Label: Part of an axis and used to read out the label of the axis.

A richly annotated SVG chart contains all the standard roles and properties and additional non-standard
properties, which are used to encode more of the semantics of the chart inside the SVG code. These
additional properties are defined differently within the different tools and libraries (see Table 3.1).
Figure 3.3 shows how such a richly annotated SVG is structured. The dark blue parts indicate the visible
parts of the chart, like the heading, the bars, and the axes. The purple circles with numbers are the tab
indices. They define the order in which elements are read by the screen reader. In this case, first, the title
is read out, then the more detailed description, then the x-axis, the y-axis, and finally the values of the
bars. The red and grey parts can be focused by the screen reader. However, the grey parts are not actually



Richly Annotated SVG Charts 13
Meaning Describler W3C Highcharts Semiotic amCharts FusionCharts
/ AChart (Bellamy-
Royds)
Data datapoint graphics- highcharts- menuitem
Point dataunit / point
aria-
datavalues
Collection dataset graphics- highcharts- lines/ menu raphael-
of Data dataline/ line-series pieces group-N-plot
Points aria- -group
datavaluearray
Legend legend graphics- highcharts- raphael -
legend legend group-N-
legend
Legend legenditem highcharts-
Ttem legend-item
Axis xaxis/ graphics- highcharts- axis raphael -
yaxis axis axis/ group-N-
highcharts- dataset-axis
xaxis/ -name
highcharts-
yaxis
Axis axislabel highcharts- axis- raphael-
Label axis-labels label group-N-

dataset-axis

Table 3.1: Proposals for rich annotations in various systems. N denotes a variable number.

visible in the chart, they are only provided for the screen reader to read out. The orange parts indicate
the rich annotations for the x and y-axis. The green part indicates supplementary information which is
created by the screen reader from the encoded data points.

A richly annotated SVG chart does not look different for sighted people. The richly annotated SVG
looks the same as the simply annotated SVG when displayed as a graphic, just like in Figure 3.2. Looking
deeper into the SVG source code, shown in Listing 3.2, reveals the difference. It contains standard ARIA
roles and properties, like aria-label and aria-labelledby, but also rich annotations like datapoint,

dataset and xaxis (as proposed by Describler and AChart).



O 00 N O W AW N =

14 3 Annotated SVG Charts

<svg viewBox="0 0 750 600" version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink" role="graphics-document">
<style type="text/css">
.bar {fill: steelblue; }
</style>
<rect id="backdrop" width="750" height="600" fill="#fff"></rect>
<g id="ChartRoot" role="chart" tabindex="0" transform="translate(100,100)"
aria-labelledby="title desc" aria-charttype="bar"
aria-roledescription="Bar Chart">
<desc id="desc">This is a bar chart showing the population in Austria
between 1959 and 2019. The overall trend is a rising one.</desc>
<rect role="chartarea" width="600" height="400" fill="none"></rect>
<text id="title" role="heading" text-anchor="middle"
font-size="14" x="275" y="-25">Austrian Population over the Years</text>
<g id="xScale" role="xaxis" aria-axistype="category"
aria-roledescription="x-Axis" aria-labelledby="x-title" tabindex="0"
transform="translate(0,400)" fill="none"
font-size="10" font-family="sans-serif" text-anchor="middle">
<text y="50" x="300" text-anchor="middle" fill="black"
font-size="12" role="heading" id="x-title">Years</text>
<path class="domain" stroke="currentColor" d="M0.5,6V0.5H600.5V6"></path>
<g class="tick" opacity="1" transform="translate(56.757,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem"
role="axislabel” id="x1">1959</text>

</g>
<g id="yScale" role="yaxis" aria-roledescription="y-Axis" tabindex="0"
aria-valuemin="4" aria-valuemax="13" aria-labelledby="y-title" fill="none"
font-size="10" font-family="sans-serif" text-anchor="end">
<text transform="rotate(-90)" y="-38" x="-200" text-anchor="middle"
fill="black" role="heading" id="y-title" font-size="12">Population</text>
<path class="domain" stroke="currentColor" d="M-6,400.5H0.5V0.5H-6"></path>
<g class="tick" opacity="1" transform="translate(0,400.5)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em"
role="axislabel" id="yl">4</text>
</g>

</g>
<g id="dataarea" role="dataset" tabindex="0">
<title>Population</title>
<g tabindex="0" transform="translate(32.432,266.044)"
role="datapoint" aria-labelledby="x1">
<rect class="bar" width="48.649" height="133.956"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10"
fill="white" role="datavalue" id="valuel">7.014</text>
</g>

</g>
</g>
</svg>

Listing 3.2: The source code of the richly annotated SVG chart. It contains standard ARIA roles
and properties, like aria-label, aria-labelledby etc., and also some custom roles such as
datapoint, dataset and xaxis. The rich annotations are used as proposed by Describler and
AChart.




Richly Annotated SVG Charts

' Austrian Population over the Years
© oo (1959-2019) .

trend line (rising)

population (million)

X-axIs
R e

Figure 3.3: The elements of a richly annotated SVG chart encode more of its semantics. [Drawn by
Markus Stradner, inspired by the illustration of a bar chart from Fizz Studio (https://fizz.studio/wp-content/uploads/
2018/04/barchart.png).]

15


https://fizz.studio/wp-content/uploads/2018/04/barchart.png
https://fizz.studio/wp-content/uploads/2018/04/barchart.png

16

3 Annotated SVG Charts



Chapter 4

Screen Readers

Screen readers are very important for blind people because the audio description from the computer
screen, more detailed, menu elements, graphics and web-content, is the primary way, next to braille
displays and keyboards, how to understand the interface and interact with the computer.

Available screen readers include NVDA (Windows), JAWS (Windows), VoiceOver (macOS), and
Narrator (Windows). Figure 4.1 shows that NVDA is currently most used as a primary screen reader,
followed by JAWS and VoiceOver.

4.1 NVDA

NVDA (Non-Visual Desktop Access) [NVA 2021] is an open-source and free-to-use screen reader for the
Windows operating system. It supports more than 50 languages and is easy and intuitive to use. NVDA
has also the ability to run from portable media, like a USB stick, without even installing it.

4.2 JAWS

JAWS stands for Job Access With Speech [FS 2021] and is a commercial screen reader with support for
more than 30 languages on the Windows operating system. Text on an image file or in inaccessible PDF
documents is also no problem for JAWS, due to its convenient OCR (Optical Character Recognition)
feature.

4.3 VoiceOver

VoiceOver [Apple 2021] is a screen reader which comes preinstalled with macOS X, which makes it
easy to set up as there is no third-party software required. It reads out elements of the User Interface and
accessibility information and supports braille displays. VoiceOver starts before the sign-in and is also
available on mobile devices (i0S).

In Figure 4.2, the window on the left shows the VoiceOver audio output for the accompanying SVG on
the right. A glimpse of how VoiceOver works can be found at https://youtu.be/EZt1H_2s60w.

4.4 Narrator

Narrator [Assistiv 2021] is a screen reader which comes preinstalled with Windows 10, so there is no
extra installation necessary. Since this app is developed by Microsoft, it supports all other Microsoft
apps, like Edge, the Office suite, but also Google Chrome. However, Narrator does not support plugins
or scripting.

17


https://youtu.be/EZtlH_2s60w

18 4 Screen Readers

Primary Screen Reader

100%
75%
50%
? 40.6% 40.1%
25%
5.4%
1% E—
0%
NVDA JAWS VoiceOver Narrator Other

Figure 4.1: Primary screen readers used by respondents to WebAIM’s Screen Reader User Survey
#8. [Created by Lisa Habich, from the results of WebAIM’s Screen Reader Survey (https://webaim.org/projects/
screenreadersurvey8/).]

Q

[ ] Rl foVis/austrian-population.svg

i Yt Start Page (#) austrian-population.svg +

‘Austrian Population over the Years

X Austrian Population over the Years This chart
shows the population of Austria from 1959 to
2019., Line Chart

Figure 4.2: On the left hand side, the audio description given by VoiceOver to the accompanying
SVG on the right hand side. [Screenshot taken by Lisa Habich.]


https://webaim.org/projects/screenreadersurvey8/
https://webaim.org/projects/screenreadersurvey8/

Chapter 5

Tools

Tools for dealing with accessible charts can be divided into three groups: chart generators, chart readers,
and other tools. These will be looked at in turn.

5.1 Chart Generators

Chart generators allow users to create annotated SVG charts from an input dataset.

5.1.1 Glimpse

Glimpse is an editor for generating infographics, developed by Michat Kasprzyk et al. [Kasprzyk et al.
2021]. It is a native app for macOS and developed upon Vega-Lite. Currently (as of May 2021), it is
in a closed beta stage. The developers state on their website, that they are planning to release it later in
2021. Glimpse seems especially promising with regards to its flexibility, as it is based on visual building
blocks which can be manipulated directly. The customization process seems to be comparable to chart
manipulation as seen in Microsoft Excel or Apple Numbers. Concerning accessibility, the software is
promising, as charts can be exported to ARIA-annotated SVG. The annotation mostly consists of ARIA
labels comprising contextual information as well as the values of data points within the chart. Once
released, Glimpse could become a very useful tool for creating SVG charts and especially valuable
because of its automatically generated ARIA-annotation. Figure 5.1 shows Glimpse being used to create
a grouped bar chart. An excerpt of the output markup generated by Glimpse be seen in Figure 5.2.

5.1.2 AChart Creator

AChart Creator is a command-line tool for creating annotated SVG graphics from a CSV source. It is
developed by Keith Andrews and Christopher Kopel [Andrews and Kopel 2021a], is freely available and
open source. Tabular data stored in CSV format can be opened and transformed into simple SVG charts.
There are three “recipes” available to choose from: bar chart, line chart, and pie chart. Optionally, a
title, a description, and labels for the x-axis and y-axis can be added. Everything from source-file and
output-file, over chart type to additional information has to be added as a parameter when invoking the
program. SVG files created by the program contain rich information like, for instance, data points and
their corresponding values. The program is easy to use, given basic knowledge in handling the command-
line. AChart Creator is limited to the three pre-defined chart-types and cannot annotate already existing
SVG charts. Making new chart types or modifying the existing chart types requires programming in
TypeScript.

An exemplary use of AChart Creator to create a line chart can be seen in Figure 5.3, alongside the
input CSV file. The generated output chart can be seen in Figure 5.4. An excerpt of its SVG source code
showing a data point group can be seen in Figure 5.5. To see AChart Creator in action, view the showcase
video on YouTube (https://youtu.be/tc9Z5zbMBLA).

19


https://youtu.be/tc9Z5zbMBLA

5 Tools

ol Bar

E5 Pasted

gn=e
316

County Inco
Cambridgeshirs 105
Derbyshire 128
Herefordshire 96
Lancashire 13.2
Cambridgeshire 62
Derbyshire 72
Herefordshire 56
Lancashire 82
Cambridgeshire  15.4
Derbyshire 13.1
Hersfordshire 178
Lancashire 185
Cambridgeshire  22.3
Derbyshire 19.8
Herefordshire 207
Lancashire 18.4

grouped_bar_chart.glimpse
@ ] ] W

“« »

Income Distribution Across Counties

Income (8, in thousands per year)

50 52 54 56 8 510 s12 §14 816 S8

Herefordshire Derbyshire Cambridgeshire

Lancashire

Age group: () 18-25 @ 26-35 @ 36-60 @ 60+

o700 % Wiath "contalnar* only works for single viaws and layered viawis.

e @
pata vz
di Bar
Contents
Size
Position
Palar
Color
Stroke
Width =
Stroke | EE——]
Offset
Cap
Dash
Pattern
Join
Join
Curve
Interpolate
Corners 2
Top-Left
Bottom-Left
Interaction
Accessibility

Layer

Miter Limit

Tension

10 pt
Top-Right

10pt 5
Bottom-Right

«©

Figure 5.1: Glimpse: Creating a grouped bar chart. [Screenshot taken from glipmse.io.]

<g class="mark-group role-axis"

role="graphics—-symbol" aria-roledescription="axis"

aria-label="Y-axis for a discrete scale with 4 values:

e = 2y 248 = 55, S8 = (0, Wit

Figure 5.2: Glimpse: Part of the richly annotated SVG code for a grouped bar chart. [Screenshot

captured by Alexander Perko viewing a Glimpse output file published on glimpse.io.]

@ Terminal Shell Edit View Window Help

J alexanderperko@Alexanders-MBP
chart-creator +

(base) > node build/acreate.js --chart 1i
ne ——dataset "./infovis/input/austria-pop
ulation-1959-2019.csv" —-output "./infovi
s/output/austrian—-population.svg" --chart
-title "Austrian Population over the Year
s" ——x-axis-title "Year" —--y-axis-title "
Population" --chart-desc "This chart show
s the population of Austria from 1959 to

austria-
population-1959-2019.csv

2019."

Year,Population
1959,7.014
1969,7.441
1979,7.549
1989,7.620
1999,7.992
2009,8.341
2019,8.878

Figure 5.3: AChart Creator: A command line to create a line and the corresponding input CSV file.
[Screenshot captured by Alexander Perko.]


glipmse.io
glimpse.io

Chart Readers 21

Austrian Population over the Years

13+

12 4

11+

10

Population

T T T T T T T T T T T T
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

Figure 5.4: AChart Creator: The resulting richly annotated line chart. [Created as SVG by Alexander Perko
with AChart Creator.]

<g tabindex="0" role="datapoint" aria-labelledby="namel-1">
<title role="heading" id="namel-1">
1959 I
</title>
<circle class="dot" cx="0" cy="266.044" r="5" fill="#66c2a5"></circle>
<title role="datavalue" id="valuel-1">
7.014
</title>
</g>

Figure 5.5: AChart Creator: Part of the richly annotated SVG code for a line chart. See A.2 for the
full listing of the SVG output code. [Screenshot captured by Alexander Perko.]

5.2 Chart Readers

Chart readers open and interpret annotated SVG charts in some way, for example by reading them out, or
by summarising them.

5.2.1 AChart Interpreter

AChart Interpreter is a web application developed by Keith Andrews and Christopher Kopel [Andrews
and Kopel 2021b] for reading out and navigating through annotated SVG files. It was inspired by Doug
Schepers’ Describler (see Section 5.2.2). The software is freely available and is open source. It can
be downloaded from GitHub to run it locally either as a standalone Electron App or as a server on
localhost. There is also a hosted version available on github.io (https://tugraz-isds.github.io/achart-
interpreter/). As there are some difficulties when opening files from disk, Google Chrome (or Mozilla
Firefox) is (are) recommended to access AChart Interpreter.

AChart Interpreter’s main screen consists of two panels: a Graphic Panel on the left-hand side and a Text


https://tugraz-isds.github.io/achart-interpreter/
https://tugraz-isds.github.io/achart-interpreter/

22 5 Tools

[ ] o AChart Interpreter

Graphic Panel: austrian- Text Panel
population.svg v
Graphic: contains 1 bar
R SVG
By
SVG Highlighting Mode: This chart shows the population
Fill @) Outline of Austria from 1959 to 2019.
Austrian Population over the Years ‘Bar chart 1: "Austrian

Population over the Years,
This chart shows the
‘;population of Austria from
1959 to 2019.", contains 1
data series.

Population

Bar chart showing "Population"
in relation to "Year" from 1959
T ™ to 2019.

x-axis: "Year", contains 7 labels
ranaina from 1959 to 2019

Figure 5.6: AChart Interpreter: Navigating through a richly annotated SVG chart. See A.3 for the
full listing of the input file. [Screenshot captured by Alexander Perko.]

Panel on the right-hand side. The software is built from the ground up to be accessible, which is why it
is fully navigable through the keyboard and reads out aloud every text element (including menu items)
on screen. The audio description feature can be turned off completely or used in tandem with a screen
reader, which-for there are different modes to optimize AChart Interpreter’s keyboard shortcuts. Richly
annotated SVG charts can be loaded from disk through the file chooser in the main menu. Moreover, there
are multiple sample SVG files to choose from. The main menu may be collapsed behind a menu button
depending on the screen size. Once opened, an annotated SVG chart is displayed in the synchronised
split screen, as can be seen in Figure 5.6. As the user navigates through the elements of a chart, the
accompanying annotations are read out aloud.

When the chart at hand was richly annotated with AChart Creator, for example, AChart Interpreter can
access special properties like data points and their values and hence navigate through data series or even
sort data points in a different order based on their value. In addition, it can jump between data points of
different data series to directly compare them, if there are multiple data series in the chart. Another useful
feature is the Statistics Window, which shows additional information about the data, such as the highest and
lowest values, as well as the mean or the range, as can be seen in Figure 5.7. This aims to give the user
a better understanding of the data and simulates the “first glance” at the chart experienced by sighted
people. For better illustration of the usage of AChart Interpreter consider viewing the showcase video on
YouTube (https://youtu.be/NLKqTTnKLII).

5.2.2 Describler

Describler [Schepers 2021a] is an experimental prototype screen reader for SVG by Doug Schepers and
was the first of its kind. It is a tool where you can upload your ARIA-SVG and then the chart is introduced
by it and you can navigate through the whole chart by pressing the tab or the right-arrow button to get all
the accessible information about the chart, as can be seen in Figure 5.8.

If you visit describler.com, at first, you see a detailed introduction what Describler is and what it is
supposed to do. Moreover, a description of what an SVG is and further information about how to use


https://youtu.be/NLKqTTnKLII

Other Tools 23

[ ] [ ] AChart Interpreter

Statistics for Data Series 1

Grap e Number of items: 7
POPUf | owest value: 7.014 for "1959" 'g
@ e Highest value: 8.878 for "2019"

e Range between highest and lowest value: 1.86
SVG H e Sum of all values: 54.84 "
Fill @] - Average: 7.83 P/

e Median: 7.62

[ Show statistics for this data series

Figure 5.7: AChart Interpreter: Statistics window. [Screenshot captured by Alexander Perko.]

it. Describler also offers to select between eight different example files, just to show how it works.
Unfortunately, to load the image successfully, you have to load it twice. But when it is loaded you can
navigate through it.

Since development for the tool has been stopped and it is still in an experimental state, other issues also
arise. For example, once you tab through the chart and would like to compare one data point to another,
it gets stuck. Also, the pronunciation of what has been read out depends on the operating system and not
on the chart itself.

To mention positive things, it is easy to use the web app (written in plain JavaScript), on all com-
mon operating systems in every common browser. Furthermore, it is also possible to run it on your
localhost, because the source code is open-source and can be found on Doug Schepers repository on
GitHub [Schepers 2021b].

In summary, it would be a really nice tool to handle accessible charts, because it is easy to use and
basically accessible to everyone, but the main problem is its very buggy behavior.

5.3 Other Tools

In addition to the classic screen readers and the tools mentioned above, which deal specifically with
accessible charts, some other tools are also worth mentioning.

Web Accessibility [van der Schee 2021] and Bril liant [Barth and McHugh 2021] are Visual Studio
Code language extensions, supporting web developers to make their websites more accessible. Both
suggest improvements to the HTML, CSS, and JavaScript code to improve the accessibility of websites.
An example can be seen in Figure 5.9.

Finally, current web browsers also provide an accessibility audit as part of their development tools,
which work like executing unit tests and serve as a short accessibility check of a website. Figure 5.10 and

Figure 5.11.



24 5 Tools

Intro Image Code

Select a file:

Upload an SVGfile... . .
Austrian Population over the Years

austrian-population-
barchart%20%281%29.svg 139

. ()
volume: 50% 12

File loaded
11

101

8.878

8 8.341
7.992

Population

: = 7.549 7.62

7.014

1959 1969 1979 1989 1999 2009 2019

Year

Figure 5.8: Describler: An uploaded annotated SVG chart. See A.3 for the full listing of the input
file. [Screenshot was captured by Markus Stradner using Describler.]

width: @px;
Provide an alt text that describes the image, or alt="" if image is purely
decorative

Provide an alt text that describes the image, or alt="" if image is purely
decorative. Alt text is an important comprehension tool for screen reader
users.

No quick fixes available

<img src="./source/view/profiles/standard/logo_startup.png" style="width: 300px;">

frameborder="0"

class="expressApp

Figure 5.9: Microsoft VS Code with multiple plugins. [Screenshot captured by Alexander Perko.]



Other Tools 25

Web Inspector — blogsitestudio.com — top-10-web-accessibility-plugins-and-tools-to-make-wordpress-inclusive

e Q} 1 T Elements &1 Network [ sources »‘\ Timelines S Storage [aa] Graphics

p Start Y, Import < T| Accessibility ) |t] testForLinkLabels T, Export

T| Demo Audit

) Accessibity % testForLinkLabels

testMenuRoleForRequiredChildren 20/04/2021, 23:05:43 16.0ms
testGridRoleForRequiredChildren Ensure links have accessible labels for assistive

testForAriaLabelledBySpelling technology.

testForMultipleBanners
(@) domAttributes: Array

"aria-label"
testRowGroupRoleForRequiredChildren ’ "aria-labelledby"

@ "title"
testForMultipleLiveRegions ‘
testListBoxRoleForRequiredChildren @

testForLinkLabels

testTableRoleForRequiredChildren

DOM Nodes:

<a href="http://blogsitestudio.com/web-services/web-design-
Filter estimate/' text-decoration: underline;'">.</a>

t
t
t
t
t
t
t
t
t

Auto — top-10-web-accessibi...wordpress-inclusive

Figure 5.10: An accessibility audit in Apple Safari. [Screenshot captured by Alexander Perko.]

Accessibility

These checks highlight opportunities to improve the accessibility of your
web app. Only a subset of accessibility issues can be automatically
detected so manual testing is also encouraged.

ARIA — These are opportunities to improve the usage of ARIA in your application which may enhance the experience for
users of assistive technology, like a screen reader.

A button, link, and nenuiten elements do not have accessible names. v
Contrast — These are opportunities to improve the legibility of your content.
A Background and foreground colors do not have a sufficient contrast ratio. v

Names and labels — These are opportunities to improve the semantics of the controls in your application. This may

enhance the experience for users of assistive technology, like a screen reader.

A Links do not have a discernible name v

Additional items to manually check (10) — These items address areas which an automated testing tool cannot cover. v
Learn more in our guide on conducting an accessibility review.

Passed audits (20) ~
[aria-+] attributes match their roles v
[aria-hidden="true"] is not present on the document <body> v
[aria-hidden="true"] elements do not contain focusable descendents v
[role]s have all required [aria-+) attributes v
Elements with an ARIA [role] that require children to contain a specific [role] have all required children. v

Figure 5.11: An accessibility audit in Google Chrome. [Screenshot captured by Markus Stradner.]



0 N N R W=

Appendix A
Listings

A.1 AChart Creator Input CSV

Listing A.1 shows tabular data in CSV format about the population of Austria from 1959 to 2019 in
10-year increments, which was distilled from official Austrian statistics [SA 2021]. It is used as input for
AChart Creator.

A.2 AChart Creator Line Chart

Listing A.2 shows the SVG source code including rich annotations generated by AChart Creator for a line
chart with the dataset from Listing A.1.

A.3 AChart Creator Bar Chart

Listing A.3 shows the SVG source code including rich annotations generated by AChart Creator for a bar
chart with the dataset from Listing A.1.

Year,Population
1959,7.014
1969,7.441
1979,7.549
1989,7.620
1999,7.992
2009,8.341
2019,8.878

Listing A.1: Tabular data in CSV format used as input for AChart Creator. The data shows the
population of Austria from 1959 to 2019 in 10-year increments.

26




O 00 N O L AW —

RN N D) — — —m om e e e e e
W N = OO0 03NN kW= O

24
25
26
27
28

29
30
31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

AChart Creator Bar Chart 27

<svg viewBox="0 0 750 600" version="1.1" xmlns="http://www.w3.0rg/2000/svg" xmlns:
xlink="http://www.w3.0rg/1999/x1link" role="graphics-document">
<style type="text/css">
.line {
fill: none;
stroke-width: 3;
}
.overlay {
fill: none;
pointer-events: all;

}

/* Style the dots by assigning a fill and stroke */
.dot {

stroke: #fff;
}

.focus circle {
fill: none;
stroke: steelblue;
}
</style>
<rect id="backdrop" width="750" height="600" fill="#fff"></rect>
<g id="ChartRoot" role="chart" tabindex="0" transform="translate(100,100)" aria-
labelledby="title desc" aria-charttype="line" aria-roledescription="Line Chart
">
<desc id="desc">
This chart shows the population of Austria from 1959 to 2019.
</desc>
<rect role="chartarea" width="600" height="400" fill="none"></rect>
<text id="title" role="heading" text-anchor="middle" font-size="14" x="275" y="
-25">
Austrian Population over the Years
</text>
<g id="xScale" role="xaxis" aria-roledescription="x-Axis" aria-axistype= aria-
labelledby="x-title" tabindex="0" aria-valuemin="1959" aria-valuemax="2019"
transform="translate(0,400)" fill="none" font-size="10" font-family="sans-
serif" text-anchor="middle">
<text y="50" x="300" text-anchor="middle" fill="black" font-size="12" role="
heading" id="x-title">
Year
</text>
<path class="domain" stroke="currentColor" d="M0.5,6V0.5H600.5V6"></path>
<g class="tick" opacity="1" transform="translate(10.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x1">
1960
</text>
</g>
<g class="tick" opacity="1" transform="translate(60.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x2">
1965
</text>
</g>
<g class="tick" opacity="1" transform="translate(110.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x3">

Listing A.2: SVG source code of a line chart generated by AChart Creator with the dataset shown in
Listing A.1.




51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

28 A Listings

1970
</text>
</g>
<g class="tick" opacity="1" transform="translate(160.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x4">
1975
</text>
</g>
<g class="tick" opacity="1" transform="translate(210.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x5">
1980
</text>
</g>
<g class="tick" opacity="1" transform="translate(260.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x6">
1985
</text>
</g>
<g class="tick" opacity="1" transform="translate(310.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x7">
1990
</text>
</g>
<g class="tick" opacity="1" transform="translate(360.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem">
1995
</text>
</g>
<g class="tick" opacity="1" transform="translate(410.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem">
2000
</text>
</g>
<g class="tick" opacity="1" transform="translate(460.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem">
2005
</text>
</g>
<g class="tick" opacity="1" transform="translate(510.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem">
2010
</text>

Listing A.2 (cont.): SVG source code of a line chart generated by AChart Creator.




101
102
103
104
105
106
107
108
109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

AChart Creator Bar Chart 29

</g>
<g class="tick" opacity="1" transform="translate(560.5,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem">
2015
</text>
</g>
</g>
<g id="yScale" role="yaxis" aria-roledescription="y-Axis" tabindex="0" aria-
valuemin="4" aria-valuemax="13" aria-labelledby="y-title" fill="none" font-
size="10" font-family="sans-serif" text-anchor="end">
<text transform="rotate(-90)" y="-38" x="-200" text-anchor="middle" fill="
black" font-size="12" role="heading" id="y-title">
Population
</text>
<path class="domain" stroke="currentColor" d="M-6,400.5H0.5V0.5H-6"></path>
<g class="tick" opacity="1" transform="translate(0,400.5)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y4">
4
</text>
</g>
<g class="tick" opacity="1" transform="translate(®,356.056)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y5">
5
</text>
</g>
<g class="tick" opacity="1" transform="translate(®,311.611)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y6">
6
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,267.167)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y7">
7
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,222.722)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y8">
8
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,178.278)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y9">
9
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,133.833)">

Listing A.2 (cont.): SVG source code of a line chart generated by AChart Creator.




151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

30

A Listings

<line stroke="currentColor"

x2="-6"></line>

<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y10">
10
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,89.389)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="yl1">
11
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,44.944)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="yl2">
12
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,0.5)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y13">
13
</text>
</g>
</g>

<g id="dataareal" role="dataset" aria-roledescription="Data Series"

aria-labelledby="dataset-t

tabindex="0"
itlel">

<title role="heading" id="dataset-titlel">

Population
</title>
<path class="line" d="M0,266.
.333,243.867,166.667,243.
.333,240.941,266.667,241.
.333,237.007,366.667,227.

044C33.333,258.156,66.667,250.267,100,247.067C133
593,200,242.267C233
215,300,239.111C333
919,400,222.578C433

.333,217.237,466.667,213.63,500,207.067C533
.333,200.504,566.667,191.852,600,183.2" stroke="#66c2a5"></path>
<g tabindex="0" role="datapoint" aria-labelledby="namel-1">
<title role="heading" id="namel-1">
1959
</title>
<circle class="dot"
<title role="datavalue"
7.014
</title>
</g>
<g tabindex="0" role="datapoint" aria-labelledby="namel-2">
<title role="heading" id="namel-2">
1969
</title>
<circle class="dot"
<title role="datavalue"
7.441
</title>
</g>
<g tabindex="0" role="datapoint" aria-labelledby="namel-3">
<title role="heading" id="namel-3">
1979

cx="0" cy="266.044" r="5"
id="valuel-1">

fill="#66c2a5"></circle>

cx="100" cy="247.067" r="5"
id="valuel-2">

fill="#66c2a5"></circle>

Listing A.2 (cont.): SVG source code of a line chart generated by AChart Creator.




200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

AChart Creator Bar Chart

31

1979
</title>
<circle class="dot" cx="200" cy="242.267" r="5" fill="#66c2a5"></circle>
<title role="datavalue" id="valuel-3">
7.549
</title>
</g>
<g tabindex="0" role="datapoint" aria-labelledby="namel-4">
<title role="heading" id="namel-4">
1989
</title>
<circle class="dot" cx="300" cy="239.111" r="5" fill="#66c2a5"></circle>
<title role="datavalue" id="valuel-4">
7.62
</title>
</g>
<g tabindex="0" role="datapoint" aria-labelledby="namel-5">
<title role="heading" id="namel-5">
1999
</title>
<circle class="dot" cx="400" cy="222.578" r="5" fill="#66c2a5"></circle>
<title role="datavalue" id="valuel-5">
7.992
</title>
</g>
<g tabindex="0" role="datapoint" aria-labelledby="namel-6">
<title role="heading" id="namel-6">
2009
</title>
<circle class="dot" cx="500" cy="207.067" r="5" fill="#66c2a5"></circle>
<title role="datavalue" id="valuel-6">
8.341
</title>
</g>
<g tabindex="0" role="datapoint" aria-labelledby="namel-7">
<title role="heading" id="namel-7">
2019
</title>
<circle class="dot" cx="600" cy="183.2" r="5" fill="#66c2a5"></circle>
<title role="datavalue" id="valuel-7">
8.878
</title>
</g>
</g>
</g>
</svg>

Listing A.2 (cont.): SVG source code of a line chart generated by AChart Creator.




[NV, BN NS I \S)

~

10
11

12
13
14

15

16
17
18

20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50

32 A Listings

<svg viewBox="0 0 750 600" version="1.1" xmlns="http://www.w3.0rg/2000/svg" xmlns:
xlink="http://www.w3.0rg/1999/x1link" role="graphics-document">
<style type="text/css">
.bar {fill: steelblue; }
</style>
<rect id="backdrop" width="750" height="600" fill="#fff"></rect>
<g id="ChartRoot" role="chart" tabindex="0" transform="translate(100,100)" aria-
labelledby="title desc" aria-charttype="bar" aria-roledescription="Bar Chart">
<desc id="desc">
This chart shows the population of Austria from 1959 to 2019.
</desc>
<rect role="chartarea" width="600" height="400" fill="none"></rect>
<text id="title" role="heading" text-anchor="middle" font-size="14" x="275" y="
-25">
Austrian Population over the Years
</text>
<g id="xScale" role="xaxis" aria-axistype="category" aria-roledescription="x-
Axis" aria-labelledby="x-title" tabindex="0" transform="translate(0,400)"
fill="none" font-size="10" font-family="sans-serif" text-anchor="middle">
<text y="50" x="300" text-anchor="middle" fill="black" font-size="12" role="
heading" id="x-title">
Year
</text>
<path class="domain" stroke="currentColor" d="M0®.5,6V0.5H600.5V6"></path>
<g class="tick" opacity="1" transform="translate(56.757,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x1">
1959
</text>
</g>
<g class="tick" opacity="1" transform="translate(137.838,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x2">
1969
</text>
</g>
<g class="tick" opacity="1" transform="translate(218.919,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x3">
1979
</text>
</g>
<g class="tick" opacity="1" transform="translate(300,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x4">
1989
</text>
</g>
<g class="tick" opacity="1" transform="translate(381.081,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel"” id="x5">
1999
</text>
</g>
<g class="tick" opacity="1" transform="translate(462.162,0)">
<line stroke="currentColor" y2="6"></line>

Listing A.3: SVG source code of a bar chart generated by AChart Creator with the dataset shown in
Listing A.1.




51
52
53
54
55
56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

AChart Creator Bar Chart 33

<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x6">
2009
</text>
</g>
<g class="tick" opacity="1" transform="translate(543.243,0)">
<line stroke="currentColor" y2="6"></line>
<text fill="currentColor" y="9" dy="0.7lem" role="axislabel" id="x7">
2019
</text>
</g>
</g>
<g id="yScale" role="yaxis" aria-roledescription="y-Axis" tabindex="0" aria-
valuemin="4" aria-valuemax="13" aria-labelledby="y-title" fill="none" font-
size="10" font-family="sans-serif" text-anchor="end">
<text transform="rotate(-90)" y="-38" x="-200" text-anchor="middle" fill="
black" role="heading" id="y-title" font-size="12">
Population
</text>
<path class="domain" stroke="currentColor" d="M-6,400.5H0.5V0.5H-6"></path>
<g class="tick" opacity="1" transform="translate(0,400.5)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y1">
4
</text>
</g>
<g class="tick" opacity="1" transform="translate(®,356.056)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y2">
5
</text>
</g>
<g class="tick" opacity="1" transform="translate(®,311.611)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y3">
6
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,267.167)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y4">
7
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,222.722)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y5">
8
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,178.278)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y6">
9

Listing A.3 (cont.): SVG source code of a bar chart generated by AChart Creator.




101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134

135
136
137
138

139
140

141
142
143
144

145
146

147
148
149
150

34

A Listings

</text>
</g>
<g class="tick" opacity="1" transform="translate(®,133.833)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y7">
10
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,89.389)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y8">
11
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,44.944)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y9">
12
</text>
</g>
<g class="tick" opacity="1" transform="translate(0,0.5)">
<line stroke="currentColor" x2="-6"></line>
<text fill="currentColor" x="-9" dy="0.32em" role="axislabel" id="y10">
13
</text>
</g>
</g>
<g id="dataarea" role="dataset" tabindex="0">
<title>
Population
</title>
<g tabindex="0" transform="translate(32.432,266.044)" role="datapoint" aria-
labelledby="x1">
<rect class="bar" width="48.649" height="133.956"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10" fill="white"
role="datavalue" id="valuel">
7.014
</text>
</g>
<g tabindex="0" transform="translate(113.514,247.067)" role="datapoint" aria-
labelledby="x2">
<rect class="bar" width="48.649" height="152.933"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10" fill="white"
role="datavalue" id="value2">
7.441
</text>
</g>
<g tabindex="0" transform="translate(194.595,242.267)" role="datapoint" aria-
labelledby="x3">
<rect class="bar" width="48.649" height="157.733"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10" fill="white"
role="datavalue" id="value3">
7.549
</text>
</g>
<g tabindex="0" transform="translate(275.676,239.111)" role="datapoint" aria-
labelledby="x4">

Listing A.3 (cont.): SVG source code of a bar chart generated by AChart Creator.




151
152

153
154
155
156

157
158

159
160
161
162

163
164

165
166
167
168

169
170

171
172
173
174
175
176

AChart Creator Bar Chart 35

<rect class="bar" width="48.649" height="160.889"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10" fill="white"
role="datavalue" id="value4">
7.62
</text>
</g>
<g tabindex="0" transform="translate(356.757,222.578)" role="datapoint" aria-
labelledby="x5">
<rect class="bar" width="48.649" height="177.422"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10" fill="white"
role="datavalue" id="value5">
7.992
</text>
</g>
<g tabindex="0" transform="translate(437.838,207.067)" role="datapoint" aria-
labelledby="x6">
<rect class="bar" width="48.649" height="192.933"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10" fill="white"
role="datavalue" id="value6">
8.341
</text>
</g>
<g tabindex="0" transform="translate(518.919,183.2)" role="datapoint" aria-
labelledby="x7">
<rect class="bar" width="48.649" height="216.8"></rect>
<text x="24.325" y="10" text-anchor="middle" font-size="10" fill="white"
role="datavalue" id="value7">
8.878
</text>
</g>
</g>
</g>
</svg>

Listing A.3 (cont.): SVG source code of a bar chart generated by AChart Creator.




36

A Listings



Bibliography

AMC [2021]. Accessibility in amCharts 4. amCharts. https://amcharts.com/accessibility/accessible-
charts (cited on page 12).

Andrews, Keith and Christopher Alexander Kopel [2021a]. AChart Creator. 09 May 2021. https://
github.com/tugraz-isds/achart-creator (cited on pages 12, 19).

Andrews, Keith and Christopher Alexander Kopel [2021b]. AChart Interpreter. 09 May 2021. https:
//github.com/tugraz-isds/achart-creator (cited on pages 12, 21).

Apple [2021]. VoiceOver User Guide. Apple, 09 May 2021. https://support.apple.com/de-at/guide/
voiceover/welcome/mac (cited on page 17).

Assistiv [2021]. Narrator Screen Reader. Assistiv Labs, 09 May 2021. https://assistivlabs . com/
assistive-tech/screen-readers/narrator (cited on page 17).

Barth, Cooper F. and Thomas B. McHugh [2021]. Brilliant. 09 May 2021. https://github. com/
InclusiveTechNU/brilliant/ (cited on page 23).

Bellamy-Royds, Amelia [2021]. SVG Accessibility/ARIA roles for charts. https://w3.org/wiki/SVG_
Accessibility/ARIA_roles_for_charts (cited on page 12).

Damera, Suman [2021]. Top 5 Rules of ARIA. 09 May 2021. https://deque. com/blog/top-5-rules-of-
aria/ (cited on page 3).

FC [2021]. Accessibility Extension for FusionCharts Beta. FusionCharts. https://semiotic.nteract.io/
guides/accessibility (cited on page 12).

FS [2021]. JAWS. Freedom Scientific, 09 May 2021. https://freedomscientific.com/products/software/
jaws/ (cited on page 17).

HC [2020]. Accessibility Module Feature Overview. Highcharts, 11 May 2020. https://highcharts.com/
(cited on page 12).

Kasprzyk, Michat, Marc Prud’hommeaux, and Severino Ribecca [2021]. Glimpse I/0. 09 May 2021.
https://glimpse.io/ (cited on page 19).

Meeks, Elijah [2021]. Semiotic — Accessibility. https://semiotic.nteract.io/guides/accessibility
(cited on page 12).

NVA [2021]. About NVDA. NV Access, 09 May 2021. https://nvaccess.org/about-nvda/ (cited on
page 17).

SA [2021]. Total population (Annual Average). Statistik Austria, 09 May 2021. https://statistik.
at/web_en/statistics/PeopleSociety/population/population_stock_and_population_change/total_
population_annual_average/index.html (cited on page 26).

Schepers, Doug [2021a]. Describler. 09 May 2021. http://describler.com/ (cited on pages 12, 22).

37


https://amcharts.com/accessibility/accessible-charts
https://amcharts.com/accessibility/accessible-charts
https://github.com/tugraz-isds/achart-creator
https://github.com/tugraz-isds/achart-creator
https://github.com/tugraz-isds/achart-creator
https://github.com/tugraz-isds/achart-creator
https://support.apple.com/de-at/guide/voiceover/welcome/mac
https://support.apple.com/de-at/guide/voiceover/welcome/mac
https://assistivlabs.com/assistive-tech/screen-readers/narrator
https://assistivlabs.com/assistive-tech/screen-readers/narrator
https://github.com/InclusiveTechNU/bri11iant/
https://github.com/InclusiveTechNU/bri11iant/
https://w3.org/wiki/SVG_Accessibility/ARIA_roles_for_charts
https://w3.org/wiki/SVG_Accessibility/ARIA_roles_for_charts
https://deque.com/blog/top-5-rules-of-aria/
https://deque.com/blog/top-5-rules-of-aria/
https://semiotic.nteract.io/guides/accessibility
https://semiotic.nteract.io/guides/accessibility
https://freedomscientific.com/products/software/jaws/
https://freedomscientific.com/products/software/jaws/
https://highcharts.com/
https://glimpse.io/
https://semiotic.nteract.io/guides/accessibility
https://nvaccess.org/about-nvda/
https://statistik.at/web_en/statistics/PeopleSociety/population/population_stock_and_population_change/total_population_annual_average/index.html
https://statistik.at/web_en/statistics/PeopleSociety/population/population_stock_and_population_change/total_population_annual_average/index.html
https://statistik.at/web_en/statistics/PeopleSociety/population/population_stock_and_population_change/total_population_annual_average/index.html
http://describler.com/

38 Bibliography

Schepers, Doug [2021b]. Describler Source Code. 09 May 2021. https: //github . com/ shepazu/
describler/ (cited on page 23).

Van der Schee, Max [2021]. Web Accessibility. 09 May 2021. https://github. com/mvdschee /web -
accessibility (cited on page 23).

W3C [2018]. WAI-ARIA Graphics Module. World Wide Web Consortium, 02 Oct 2018. https://w3.org/
TR/graphics-aria-1.0/ (cited on page 4).

W3C [2021a]. Introduction to Web Accessibility. World Wide Web Consortium, 09 May 2021. https:
//w3.org/WAI/fundamentals/accessibility-intro/ (cited on pages 1, 3).

W3C [2021b]. Making the Web Accessible. World Wide Web Consortium, 09 May 2021. https://w3.
org/WAI/ (cited on page 3).

W3C [2021c]. WAI-ARIA Overview. World Wide Web Consortium, 09 May 2021. https://w3.org/WAI/
standards-guidelines/aria/ (cited on page 3).


https://github.com/shepazu/describler/
https://github.com/shepazu/describler/
https://github.com/mvdschee/web-accessibility
https://github.com/mvdschee/web-accessibility
https://w3.org/TR/graphics-aria-1.0/
https://w3.org/TR/graphics-aria-1.0/
https://w3.org/WAI/fundamentals/accessibility-intro/
https://w3.org/WAI/fundamentals/accessibility-intro/
https://w3.org/WAI/
https://w3.org/WAI/
https://w3.org/WAI/standards-guidelines/aria/
https://w3.org/WAI/standards-guidelines/aria/

	Contents
	List of Figures
	List of Listings
	1 Web Accessibility
	2 WAI and ARIA
	2.1 WAI
	2.2 ARIA Rules
	2.3 ARIA Properties
	2.4 ARIA Roles

	3 Annotated SVG Charts
	3.1 Simply Annotated SVG Charts
	3.2 Richly Annotated SVG Charts

	4 Screen Readers
	4.1 NVDA
	4.2 JAWS
	4.3 VoiceOver
	4.4 Narrator

	5 Tools
	5.1 Chart Generators
	5.1.1 Glimpse
	5.1.2 AChart Creator

	5.2 Chart Readers
	5.2.1 AChart Interpreter
	5.2.2 Describler

	5.3 Other Tools

	A Listings
	A.1 AChart Creator Input CSV
	A.2 AChart Creator Line Chart
	A.3 AChart Creator Bar Chart

	Bibliography

