
Explorable Explainers

Survey Paper

Philipp Drescher, Jeremias Kleinschuster, Sebastian Schreiner, Burim Vrella

706.057 Information Visualisation 3VU SS 2023
Graz University of Technology

19 May 2023

Abstract
Explorable explainers seek to explain complex concepts and data using guided narrative
linked to interactive visualizations. This survey paper provides an overview of the current
state-of-the-art in explorable explainers by giving various examples. In addition, some
popular software solutions were compared by implementing an explorable explainer about
parallel coordinates in each of them.

© Copyright 2023 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents ii

List of Figures iii

List of Tables v

1 Introduction 1

2 Examples of Explorables 3
2.1 Pair . 3
2.2 Distill. 4
2.3 Explorable Explanations . 5
2.4 K-Means Clustering . 6

3 Tools 7

4 Jupyter Notebooks 9
4.1 Local Installation and Execution . 9
4.2 Google Colab Installation and Execution 9
4.3 Content Elements . 10

4.3.1 Text . 10
4.3.2 Code. 10

4.4 Libraries . 10
4.4.1 Jupyter Widgets . 10
4.4.2 Data Table. 10
4.4.3 Matplotlib . 10
4.4.4 Plotly . 10

4.5 Installing Locally . 11
4.6 Hosting Online . 11

5 Observable 13
5.1 Installation and Execution . 13
5.2 Content Elements . 13

5.2.1 Text . 13
5.2.2 Code. 13
5.2.3 D3.js. 13

5.3 Hosting Online . 14

i

6 Shiny 15
6.1 Local Installation and Execution . 15
6.2 Posit Cloud Installation and Execution 16
6.3 Shiny Components . 16

6.3.1 User Interface . 16
6.3.2 Server . 17
6.3.3 Running . 17

6.4 Installing Locally . 17
6.5 Hosting Online . 17

7 D3 Standalone 19
7.1 Standalone File Structure. 19
7.2 Visual Studio Code Editor . 19
7.3 Running Locally . 20
7.4 Hosting Online . 20

8 Flourish 21

9 Results 23
9.1 Dataset . 23
9.2 Interactivity and Analysis . 23
9.3 Narrative . 23
9.4 Jupyter . 24

9.4.1 Execution . 25
9.4.2 Limitations . 25
9.4.3 Results . 25

9.5 Shiny . 25
9.5.1 Execution . 26
9.5.2 Limitations . 26
9.5.3 Results . 26

9.6 Observable . 26
9.6.1 Limitations . 27
9.6.2 Results . 27

9.7 D3 Standalone . 27
9.7.1 Execution . 27
9.7.2 Limitations . 27
9.7.3 Results . 27

10 Conclusion 29

Bibliography 31

ii

List of Figures

2.1 Pair Website . 3
2.2 Distill Website . 4
2.3 Explorable Explanations Website . 5
2.4 K-Means Explorable Website . 6

6.1 Creating a Shiny Workspace . 16

8.1 Flourish Website . 21

9.1 Parallel Coordinates using Python and Jupyter 25
9.2 Parallel Coordinates using Shiny. 26
9.3 Parallel Coordinates using Observable. 27
9.4 Parallel Coordinates using JavaScript and D3 28

iii

iv

List of Tables

3.1 Tools Overview . 7

9.1 Dataset . 24

10.1 Tools Comparison . 29

v

vi

Chapter 1

Introduction

Explorable explainers support active reading by offering the reader the possibility to interact with the
article itself [Victor 2011]. This means that an explorable informative medium offers some sort of
interactive simulation which responds to user input. This enables users to play with the premise of
the article and come up with their own assumptions, all while observing the changes immediately. In
addition, an explorable explainer guides the reader through the article so as to provide a structure for
the learning process. As Victor [2011] puts it, “An active reader asks questions, considers alternatives,
questions assumptions, and even questions the trustworthiness of the author.”

Simpson’s Paradox is a classic example of an unintuitive problem, which can be more easily understood
through an explorable explainer. At its core, it describes a fringe case of statistics, which is typically
difficult for an unknowing observer to understand. The textbook case of Simpson’s Paradox is the story
of a real life medical study [Charig et al. 1986]. In this study, it was found that two different treatments
for kidney stones had a different effectiveness depending on the size of the kidney stones. The surprising
part however was that, overall, treatment A was more effective than treatment B. However the study
found that for large kidney stones treatment B was better. And, when looked at in this way, for small
kidney stones treatment B was also better. This phenomenon is the essence of the Simpson’s paradox.
An excellent explorable from Phillip Wacker details some examples and explains in great detail how
Simpson’s Paradox works and why it is so unintuitive whenever it occurs [Wacker 2018].

1

2 1 Introduction

Chapter 2

Examples of Explorables

There are many different examples and websites which demonstrate how explorable explainers are created
and utilized. This chapter presents some particulary good collections and examples.

2.1 Pair
Pair is a website with many interactive learning resources about artificial intelligence [Pair 2010]. It has
a large collection of tools that can help people understand complicated concepts. These tools allow users
to interact with and explore data, visualizations, and models to improve their understanding of AI. Pair is
a great resource for people who want to learn more about AI and machine learning.

Figure 2.1: Pair: A website hosting explorable explainers with a focus on artificial intelligence [Pair
2010].

3

4 2 Examples of Explorables

Figure 2.2: Distill: Hosts scientific papers as explorable explainers [Carter and Olah 2016].

2.2 Distill
Distill is an online scientific journal which hosts peer-reviewed papers in the form of explorable explainers
[Carter and Olah 2016]. The website also offered a prize of $ 10,000 for outstanding work. Unfortunately,
Distill was discontinued in 2021, but the content hosted on the website is still available.

Explorable Explanations 5

Figure 2.3: Explorable Explanations: Interactive learning platform with 180 engaging explanations
[Case 2015].

2.3 Explorable Explanations
Explorable Explanations is a comprehensive web platform housing a collection of 180 interactive ex-
plorable explanations, along with articles and talks about this educational format [Case 2015]. The
explorable explainers are categorized based on specific subjects, enabling users to explore various con-
cepts through interactive experiences. The website also offers tutorials on creating explorable explainers
and introduces tools that can facilitate the development of such interactive content.

6 2 Examples of Explorables

Figure 2.4: Interactive k-means explorable explainer by Yi Zhe Ang [Ang 2022].

2.4 K-Means Clustering
This explorable explainer by Yi Zhe Ang explains how the k-means clustering algorithm works and what
it is used for [Ang 2022]. The explorable utilizes a scrolly-telling approach to walk the user through the
narrative. The user can step through the algorithm step by step, visualizing the iterative optimization of
k-means clustering. After that, the user is encouraged to try the algorithm on different datasets. This
helps to visualize the limitations of the k-means approach for clustering.

This explorable is highly interactive and offers a very good explanation of the algorithm. The user is
encouraged to play with the data, all while guided by the author in the form of a scrolly-telling narrative.
It was awarded Best Submission at the VISxAI 2022 workshop.

Chapter 3

Tools

When it comes to creating explorable explainers, there are many tools available for different programming
languages. Table 3.1 provides an overview of the range of toolkits available. The following chapters take
a closer look at four of these tools: Jupyter, Observable, Shiny, and D3.

Tool Programming Language URL

Shiny R https://shiny.rstudio.com/
Jupyter Julia, Python, R, C++, GNU Octave, Ruby, Scheme https://jupyter.org/
Bokeh Python https://bokeh.org/
Vega-Altair Python https://altair-viz.github.io/
Plotly Python https://plotly.com/
Observable Javascript, SQL https://observablehq.com/
D3 Javascript https://d3js.org/
Tangle Javascript http://worrydream.com/Tangle/
Joy.js Javascript https://ncase.me/joy/
Idyll Javascript https://idyll-lang.org
Highcharts Javascript https://www.highcharts.com/

Table 3.1: Overview of tools for creating explorable explainers.

7

8 3 Tools

Chapter 4

Jupyter Notebooks

Jupyter notebooks are a popular solution for interactable, web-based computing environments. They can
contain text, code, equations, and visualizations making them relatively popular in fields such as data
science and machine learning. The notebook itself is structured in code blocks, allowing the user to
explore the code step by step. Naturally, Jupyter notebooks can be used to build interactive explorable
explainers. Users can experiment and interact with the code snippets to gain more insight, enabling them
to actively participate in the learning process.

4.1 Local Installation and Execution
Jupyter notebooks can be created and executed locally by settings up a Python development environment.
After the successful creation of such an environment, Jupyter can be installed as a package by using pip
with the following command:

pip install notebook

The next step is to create a .ipynb file which will serve as the notebook. This notebook can then be
executed by running:

jupyter notebook <notebook>.ipynb

After running this command the notebook can be accessed using a web browser. The default port is 8888
and therefore the notebook can be reached by accessing localhost:8888.

Alternatively, JupyterLab can be used to run and edit the notebook. It can be installed by running:

pip install jupyterlab

After that, the web interface can be started by executing:

jupyter lab

4.2 Google Colab Installation and Execution
An online Jupyter notebook can be created at Google Colab. The only thing other than a web browser
needed to create new Jupyter Notebooks is a Google account. Uploading and viewing notebooks on the
other hand also works without an account. No local Python and Jupyter installations are required. A new
notebook can simply be created by navigating to colab.research.google.com and selecting File → New.

9

https://colab.research.google.com/

10 4 Jupyter Notebooks

4.3 Content Elements
Jupyter notebooks are a great tool for working with data and doing analysis. There are different possibilities
that can be used to make an interesting, informative, and interactable explorable explainer in Jupyter.

4.3.1 Text
Text in Jupyter can be written using the markup language Markdown. It is written using plain text with
a relatively simple syntax to indicate different formatting elements such as headings, lists, and images.
Simple text and images can be used to provide the user with more information about a topic or equation
and therefore guide the user through the explorable explainer.

4.3.2 Code
Jupyter notebooks support a wider variety of languages, including Julia, R, Haskell, Ruby, and Python.
The code itself is structured in independent blocks which can be executed one after another. The blocks
themselves can be manipulated and rewritten by the user, offering fine-grained control over the explorable
explainer itself. After a code block is altered it can be re-run to explore the impact of the changes.

4.4 Libraries
A number of popular Python libraries can be utilized to construct visualizations.

4.4.1 Jupyter Widgets
Another way to implement user interactions are special widgets that directly alter variables and other
behaviors of the notebook. These include sliders, text fields, radio buttons, checkboxes, and many
more. With widgets, end users with little to no programming experience can alter certain aspects of the
explorable explainer without diving too deep into the code itself.

4.4.2 Data Table
This special kind of table can be used to render data in a spreadsheet format. It also offers some interaction
in the form of data filtering and keyword searching.

4.4.3 Matplotlib
Matplotlib is a data plotting library supporting a wide range of different types of visualizations including
scatter plots, bar charts, line charts, and many more. The downside of Matplotlib is that it is generally
not interactable. This can be overcome by altering code blocks and re-generating the plots to apply the
changes to the graphics.

4.4.4 Plotly
Plotly is similar to Matplotlib in that it is also used to plot and visualize data. The main difference is that it
supports different types of plots including parallel coordinates, and that it offers common user interactions
out of the box. The supported types of interaction differ between the types of plots. Many common
interactions like zooming, hovering over data points, and saving are already present, but extending them
for more custom ones is quite difficult.

Installing Locally 11

4.5 Installing Locally
One of the most common ways to host and run Jupyter notebooks is, to install Jupyter locally. Once
installed users can launch Jupyter Notebooks locally in their web browser.

4.6 Hosting Online
Jupyter Notebooks can be hosted on self-owned or rented remote servers by using tools like JupyterHub
or Docker.

MyBinder is a free cloud-based service to host, share and run Jupyter notebooks. It offers the possibility
to directly link to a Git repository to load the notebooks from. The usage of this service is relatively
intuitive and well-documented, but testing showed, that it is rather unreliable and unstable. This happens
probably because of limitations such as limited computational resources and storage.

As previously mentioned, Google Colab is a free cloud-based solution to host and share Jupyter
notebooks. The setup boils down to uploading or creating a new notebook. Then the link to the
workspace can be shared or made publicly available for anyone to explore. Testing showed, that the
service is really reliable and stable.

12 4 Jupyter Notebooks

Chapter 5

Observable

Observable is an online platform specialised in interacting and visualising data. It allows users to create
interactive code bases online in so called notebooks. These notebooks can be shared and worked on by
multiple developers at once and can contain a multitude of different information such as code, raw data,
images, text, charts, and more.

5.1 Installation and Execution
Observable is a purely online service that is available for free with certain caveats after signing up on
the website. The signup process is as easy as submitting an email address, entering a password, and
confirming the link that is sent by mail. Afterwards, you can start creating your own notebooks. However,
when using the free version of the service, all notebooks and data used are publicly available to all other
users.

5.2 Content Elements
Observable notebooks are perfect for data analysis and visualization. They have native support of many
database connectors, APIs, file attachments, and cloud files. They also support many large libraries such
as D3.js and have their own plotting library called observable plot.

5.2.1 Text
Text in Observable can be written using Markdown. Thus adding text and images to guide a user through
an Explorable could easily be achieved.

5.2.2 Code
Code in Observable is written in JavaScript, but there are some things that are unique about the code
in Observable that are not strictly JavaScript and can make it harder for someone expecting to write
JavaScript. It is also difficult to find exactly where the differences between actual JavaScript and
Observable’s version of JavaScript lie. Observable also supports HTML and SQL.

5.2.3 D3.js
D3.js is a JavaScript library for manipulating documents based on data. D3 allows a user to integrate
and manipulate data in a way that makes it much easier to understand. It is supported by Observable and
makes visualising and manipulating data within an observable notebook possible.

13

14 5 Observable

5.3 Hosting Online
All Observable notebooks are hosted online on their website and can immediately be shared without
needing to host or publish them separately, which would make it easier to create and distribute an
explorable explainer through these means.

Chapter 6

Shiny

Shiny for R is a powerful and versatile web application framework that enables the creation of interactive
dashboards, data visualization tools, and custom web applications. With Shiny, complex web applications
in R can be built without needing to know HTML, CSS, or JavaScript. It provides a wide range of built-in
widgets, like sliders, input boxes, buttons, and plots, that can be easily added to the applications with just
a few lines of code.

Furthermore, Shiny’s reactive programming feature ensures that your application updates itself au-
tomatically in response to user interactions or data changes, giving users the ability to create dynamic
and responsive applications that can be updated in real-time. It also is compatible with various other
R libraries, but the combination might not be as interactive and responsive. Shiny applications are not
naturally designed to be explorable explainers, but the tools within might make it a candidate to build
one.

6.1 Local Installation and Execution
Shiny can be used after setting up an R environment locally, most commonly using RStudio. RStudio is
an IDE for the R programming language. After the successful creation of such an environment, the Shiny
package can be installed using the R console with the following command:

install.packages("shiny")

After that, a simple R script needs to be created with the needed Shiny components, which are explained
in Section 6.3. The following line needs to be added to the script:

library(shiny)

Finally, the app can be run by referencing the R script (for example “script.R”) in the R console like
this:

runApp(’script.R’)

Furthermore, eleven built-in examples can be used after the installation of Shiny by using this command:

runExample("01_hello")

This command would run the first example called “hello”.
Every Shiny application is run on a local server (“Listening on http://127.0.0.1” should be displayed in

the R console). By visiting our local host (127.0.0.1) in our browser we should see our Shiny application
hosted on our local server.

15

16 6 Shiny

Figure 6.1: Initialisation of a Shiny application in a Posit Workspace.

6.2 Posit Cloud Installation and Execution
Another viable option is the use of the online workspace provided by Posit, which is accessible at
posit.cloud. Since it is developed by the same group who develop RStudio, the workspace looks familiar
to RStudio users. A Posit account is needed to use the workspace. After logging in, you can create a new
project and create a Shiny web application, as shown in Figure 6.1.

This leaves you with a ready-to-go Shiny project as this approach takes care of installing packages and
setting them up. You also have the option to click on the "Run App" button to start the application and
automatically launch a browser window showing your application.

6.3 Shiny Components
Shiny consists of three main parts, which are needed for a working web application. In this section, we
take a closer look at them and explore possible definitions.

6.3.1 User Interface
The first component of a Shiny app is the User Interface (UI). Within the definition, every needed
component and layout can be defined. The UI is initialized with the following code:

ui <- fluidPage()

In Shiny, you can utilize the fluidPage function to design a display that automatically adapts to the
size of your users’ web browser window. By incorporating various elements into the fluidPage function,
you can arrange and configure the user interface of your application. The following elements are most
commonly added to the page:

• Layouts are mostly one of the first things defined in the UI. We can use single page layouts like
sidebarLayout() or fluidRow(). The sidebarLayout() consists of one mainPanel() and one
sidebarPanel(). Whereas using fluidRow() lets us define multiple row containers for a single
page. On the other hand, multi-page layouts are also possible. To create an application with
many taps we can use tapsetPanel() with one or more tapPanel(). Another way is to use a
nalistPanel() for navigation instead of the tapsetPanel().

• Text and images are really important to every UI. Text can be added by using the p() command.
While we can also create headers by using h*() in a panel definition, where * is the level of the title
(similar to HTML).

https://posit.cloud/

Installing Locally 17

• For interactability, most Shiny apps use control widgets, which can be defined in any panel. There
are many standard widgets like actionButton(), textInput(), dateInput(), checkboxInput, and
many more. Every widget has at least a name attribute, which can be used to access the value in the
program, and a label attribute, which is a label shown within the application.

• To respond to user input reactive output can be used, by defining an output function in any panel.
They include dataTableOutput, plotOutput, textOutput, and many more. Every output function
requires at minimum a single argument, which is a name string.

6.3.2 Server
After designing the UI, the second needed part is the server of the Shiny app. The server is responsible
for defining the logic and behavior of the web application. It can be defined with the following line:

server <- function(input, output) {}

where every constraint and needed computation needs to be defined within the “{}”. The input and output
provide us access to variables defined in the UI. For example, input$var reads the value from an input
widget with the name var. Every dependency we want in our applications can be set up like this:

output$selected_var <- renderText({
paste("You have selected", input$var)

})

This example dependency reads the input at var and pastes the text “You have selected” + var to the output
selected_var. To react to changing user input more efficiently, we can use the reactive() function to
define what value gets updated every time user input is changed. Furthermore, we can use the server
definition to read data from files and datasets, use other R packages, or do computations of data.

6.3.3 Running
After the UI and server are set up, we lastly need to create the Shiny app by defining our UI and server
like this:

shinyApp(ui = ui, server = server)

Now, the application is ready to be run.

6.4 Installing Locally
As discussed previously, a Shiny web application can be started from a local R environment, which starts
the application on a local server. Afterward, the application can be used in the browser by accessing the
local host.

6.5 Hosting Online
The most straightforward way to convert your Shiny application into a web page is by using shinyapps.io,
which is a hosting service specifically designed for Shiny applications provided by Posit. This platform
gives you full control over your application, including server administration tools. The application can
be directly imported from the R workspace on posit.cloud.

Posit Connect is a publishing platform which allows publishing Shiny applications with just one button.
It is made for commercial projects and is not available for free. The cheapest solution starts at $15,745
per year.

https://shinyapps.io/
https://posit.cloud/

18 6 Shiny

For self-hosting, Shiny Server is a program which works alongside Shiny to create a web server
specifically designed to host Shiny apps. It is a free, open-source program which can be downloaded
from GitHub. Shiny Server can be run using a Linux server and can host multiple Shiny applications.

Chapter 7

D3 Standalone

D3 is a JavaScript library for creating custom visualizations. It provides a wide range of recipes
and examples for many kind of visualisations, including parallel coordinates. JavaScript is a popular
programming language that is widely used for building interactive websites and web applications. HTML
is the markup language used to create the structure of a web page, while CSS is the styling language
used to control the layout and appearance of a web page. Using D3 with JavaScript, HTML, and CSS,
it is possible to constuct a fully functional and interactive explorable explainer, which facilitates user
understanding of complex concepts.

7.1 Standalone File Structure
The standalone structure of a web application comprises several files that work together to create the user
interface and functionality. In the case of the standalone, the files index.html, ParallelCoordinates.js,
and styles.css are used to build the web application, as shown in Listing 7.1. The index.html file serves
as the main entry point for the web application and contains the HTML code that defines the structure and
content of the web page. The Parallelcoordinates.js file contains the JavaScript code that provides the
functionality of the web application, including data visualization and interaction. Finally, the styles.css
file contains the CSS code that defines the visual styling and layout of the web page.

Name | Type

- index.html | HTML document
- ParallelCoordinates.js | JavaScript code
- styles.css | CSS styles

Listing 7.1: Files in the D3 standalone explainer.

The D3 library is best downloaded and included in a subfolder called, say, libs/, It is included in the
web application by referencing its path in a script element in the index.html file, for example:

"<script src = "./libs/d3.min.js"></script>".

This approach is useful when working with a specific version of the library, or starting the application
locally without any need for an internet connection.

7.2 Visual Studio Code Editor
Visual Studio Code is a popular code editor that has been optimized for building and debugging modern
web and cloud applications [Microsoft 2015]. It has gained popularity due to its open-source nature,

19

20 7 D3 Standalone

versatility, and extensive customization options through various extensions. Its seamless integration with
different programming languages and its ability to offer an easy-to-use development environment has
made it a preferred choice for many developers. Therefore, using Visual Studio Code for developing the
D3 standalone explainer was a straightforward decision.

7.3 Running Locally
Running a standalone web application locally involves setting up a local server, configuring it to host the
application, and opening the application in a web browser. One possibility, assuming Python is installed,
is to run the one-line command:

python3 -m http.server 8000

in the folder containing the index.html file, and then open a web browser at localhost:8000.

7.4 Hosting Online
A standalone web-based explainer can be hosted on either self-owned or rented remote servers. One of
the easiest is through GitHub Pages [GitHub 2023].

Chapter 8

Flourish

Flourish is an online data visualization platform that allows users to create interactive charts, maps, and
other forms of data visualization [Flourish 2021]. It is designed to be user-friendly, with a drag-and-drop
interface that enables even non-technical users to create sophisticated visualizations. Flourish provides
users with various chart types, such as line, bar, scatter, and tree maps. It also offers a wide range of
customization options such as colors, fonts, and animation effects. Flourish was considered as a basis for
producing explorable explainers, but was found to be unsuitable, due to the lack of support for custom
code or the integration of external libraries.

Figure 8.1: Flourish an online data visualization platform [Flourish 2021].

21

22 8 Flourish

Chapter 9

Results

To be able to better compare the different tools described in Chapter 3, four of them were chosen to be
used to implement parallel coordinates for an explorable explainer, namely: Jupyter, Shiny, Observable,
and D3 Standalone. Parallel coordinates are a classic technique for the visualization of multidimensional
datasets. All four implementations aim to support the creation of an explorable explainer for parallel
coordinates using the same dataset and narrative. It was not possible in the timeframe of the survey to
build fully functional explorable explainers.

9.1 Dataset
The dataset shown in Table 9.1 was carefully curated to illustrate the use of parallel coordinates. It
represents the marks (between 0 and 100) achieved by 30 students in 8 different subjects. Each row
(record) represents a student, and each column (dimension) represents a subject.

9.2 Interactivity and Analysis
The following interactions are typically supported by parallel coordiniates:

• Hovering over a record: to temporarily highlight and identify the record(s) beneath the pointer.

• Selection of one or more records: to select and highlight a group of one or more records.

• Filtering on a dimension: to disable records from consideration.

• Moving a dimension: to move a dimension to another position.

• Inverting a dimension: to flip the dimension from ascending to descending, or vide versa.

To inspect a dataset for potential correlations, dimensions of interest have to be moved adjacent to one
another. A cross pattern indicates a potential negative correlation. A straight-line pattern indicates a
potential positive correlation (one of the dimensions can be inverted to check).

9.3 Narrative
The narrative of the future explorable explainer aims to provide guidance in learning how to use parallel
coordinates to explore multi-dimensional datasets for outliers, patterns, and correlations. The explorable
might start with a brief introduction. After that, the user is encouraged to find correlations by looking at a
traditional table. Following that, the explorable introduces the user to parallel coordinates and how to spot
correlations and inverse correlations in the dataset. At the end of the explorable, the user is encouraged
to find explore the dataset themselves.

23

24 9 Results

Name Maths English PE Art History IT Biology German

Adrian 95 24 82 49 58 85 21 24
Robert 78 32 98 55 56 81 46 29
Thomas 76 47 99 34 48 92 30 38
Amelia 92 98 60 45 82 85 78 92
Lydia 75 49 98 55 68 67 91 87
Mark 51 70 87 40 97 94 60 95
Brooke 27 35 84 45 23 50 15 22
Nicole 70 8 84 64 26 70 12 8
Oswin 96 14 62 35 56 98 5 12
Peter 98 10 71 41 55 66 38 29
Chloe 78 9 83 66 80 63 29 12
Renette 96 39 82 43 26 92 20 2
Sylvia 86 12 97 4 19 80 36 8
Dylan 92 47 91 56 47 81 60 51
Sasha 87 1 84 70 56 88 49 2
Emily 67 3 98 77 25 100 50 34
Evan 53 60 97 74 21 78 72 75
Finn 42 73 65 52 43 61 82 85
Gia 50 81 85 80 43 46 73 91
Grace 24 95 98 94 89 25 91 69
Harper 69 9 97 77 56 94 38 2
Hayden 2 72 74 53 40 40 66 64
Isabella 8 99 84 69 86 20 86 85
Zack 19 84 83 42 93 15 98 95
Victor 5 60 70 65 97 19 63 83
Monica 62 89 98 90 85 66 84 99
Jesse 63 39 93 84 30 71 86 19
Jordan 11 80 87 68 88 20 96 81
Kai 27 65 62 92 81 28 94 84
Kaitlyn 7 70 51 77 79 29 96 73

Table 9.1: Curated dataset of the marks (between 0 and 100) achieved by 30 students in 8 different
subjects, used to illustrate parallel coordinates.

9.4 Jupyter
For the implementation of the explorable explainer as a Jupyter notebook, several Python libraries were
used. The parallel coordinate plot itself was realized using Plotly. The dataset is stored as a pandas data
frame which makes it simple to manipulate. Manipulation was necessary to offer the user the possibility
to choose which columns of the dataset should be included in the plot. Another type of user interaction is
to invert certain data columns. This is a common technique to simplify the process of finding correlations
in the dataset. All user interactions were implemented using checkboxes included in the Jupyter widgets
package. The left side of Figure 9.1 shows the user interaction to specify which columns to include in
the parallel coordinates plot as well as the possibility to invert individual dimensions by selecting the
corresponding checkboxes.

Shiny 25

Figure 9.1: The Python implementation of parallel coordinates in a Juypter notebook.

9.4.1 Execution
The Jupyter Notebook is hosted on Google Colab, to make its execution as easy and frictionless as
possible. By using this service, the user does not need to set up a Python environment, since the whole
execution takes place in the browser. Another benefit especially for large datasets and machine learning
tasks is, that the notebook will run on dedicated GPUs provided by the service, which could result in
faster execution times and therefore less waiting.

9.4.2 Limitations
One limitation of the realization using a Jupyter notebook is that, although the Plotly library is very
versatile and simple to use as-is, it is rather complicated and cumbersome to expand. This means, that if
some necessary functionality is not already supported, a great deal of extra work is needed to implement
it. This was the case with column inversion, which was bypassed by modifying the dataset directly.

9.4.3 Results
The resulting parallel coordinate plot is shown in Figure 9.1. The graphic itself is interactable, offering
the possibility to rearrange and filter columns. Via the widgets, the user is able to choose which columns
to include and whether a given column should be inverted. Another feature is that the plot can be
downloaded directly as a png image.

9.5 Shiny
A parallel coordinates plot is not natively supported within the Shiny package for R. Therefore, several
additional packages MASS, GGally, and Plotly were tested. While all three options yielded a correct
representation of a parallel coordinates plot, Plotly was the only package enabling instant intractability.
To enable the user to invert certain data columns, some manipulation was necessary. This was done by
using UI widgets for every data column, which inverts the data before creating the plot with Plotly. The
dataset gets read at the beginning of the program using the read.csv() function, which leads to a data
format easily usable with Plotly. To react to the user checking the checkboxes, several variables were
declared, with the reactive() function is used to react to user input changes.

26 9 Results

Figure 9.2: The R implementation of parallel coordinates in Shiny.

9.5.1 Execution
The Shiny web application was created on the Posit Cloud workspace, because it is an easy-to-start
working environment for R and Shiny. The code can be run directly from the workspace using the "Run
App" button or the R console. The Plotly package was automatically installed by the workspace. The
only drawback of the Posit Cloud workspace is that you cannot publicly share your application. You can
only invite specific individuals to access it.

Therefore, the application was also hosted on its companion service shinyapps.io. The application
could be imported from the posit cloud to shinyapps and hosted instantly. With this hosting service, the
application can be used by everyone knowing the link.

9.5.2 Limitations
The biggest limitation encountered while using the Plotly package for additional plot variants is that the
parallel coordinates plot looks great initially, but is not very customizable. The only workaround is to
“hack” certain aspects, like manipulating the dataset before plotting to invert a column.

However, this approach has some annoying drawbacks. Whenever a checkbox is changed, the plot
is newly generated and resets, causing previously moved columns to return to their original position.
Additionally, since an external package is used to create the plot, some of the features of Shiny are lost.
For example, plot animation is not available.

Although Shiny is suitable for building an explorable explainer, there is no pre-built function or layout
specifically designed to support such a project. This means everything would need to be written from
scratch.

9.5.3 Results
The implementation yields a web application featuring a parallel coordinates plot using the student grades
dataset. As shown in Figure 9.2, the dataset is displayed correctly and can be interacted with. The columns
can be reordered and inverted using the UI widgets. Specific records can be selected in the plot.

9.6 Observable
As a starting point, the parallel coordinates implementation of Sophiegri [2020] based on D3 was forked
and then reworked. Adding a selection feature to the axis was also partially realised in the forked code
and could easily be expanded upon.

https://shinyapps.io/

D3 Standalone 27

Figure 9.3: The JavaScript implementation of parallel coordinates in Observable.

9.6.1 Limitations
Some of the functionality such as reordering and inverting dimensions could not easily be implemented
in Observable within the limited time and are missing from the implementation.

9.6.2 Results
The resulting parallel coordinate plot is shown in Figure 9.3. The plot does not allow for much interaction
aside from selecting sections of the axis and is in its current state is not suitable for use in an explorable
explainer. The fact that Observable uses its own version of JavaScript, that is just far enough from the
original, makes it harder to build a fully working explorable within a short time.

9.7 D3 Standalone
In order to implement the standalone parallel coordinates implementation, the code editor Visual Studio
Code was used. The parallel coordinates functionality was constructed using the D3 library.

9.7.1 Execution
A local web server can be started in the folder containing the index.html file.

9.7.2 Limitations
The standalone has the potential for expansion and versatility, however, its limitations lie in the handling
of large datasets. When the user attempts to load a high volume of data points onto the web application,
the increased computational load may cause lagging, and ultimately lead to an unresponsive interface.

9.7.3 Results
The web application generated through this project allows the user to construct a parallel coordinate
plot, as illustrated in Figure 9.4. This interactive parallel coordinate plot enables the user to modify
the arrangement and filtering of the columns. Prior to creating the plot, the user can specify which
dimensions should be included. Additionally, when hovering over a polyline, more information can be
displayed. In this specific dataset, the name of the student is shown.

28 9 Results

Figure 9.4: The standalone JavaScript implementation of parallel coordinates with D3.

Chapter 10

Conclusion

Explorable explainers can be very helpful in teaching complex concepts through user interactions. Ta-
ble 10.1 shows our verdict on the four tools explored in this survey for potentially creating an explorable
explainer for parallel coordinates. A standalone implementation in JavavScript with D3 seems the most
promising approach.

Tool Ease of use Interactivity Customizability Graphs

D3 Standalone ★★★ ★★★★ ★★★★★ ★★★★★

Jupyter Notebooks ★★★★ ★★★ ★★★ ★★★★★

Observable ★★ ★ ★★★ ★★★★★

Shiny ★ ★★★★★ ★★★★★ ★★★

Table 10.1: Comparison of different tools for creating an explorable explainer.

29

30 10 Conclusion

Bibliography

Ang, Yi Zhe [2022]. K-Means Clustering. 15 Nov 2022. https://k-means-explorable.vercel.app/ (cited
on page 6).

Carter, Shan and Chris Olah [2016]. Distill. 2016. https://distill.pub/ (cited on page 4).

Case, Nicky [2015]. Explorable Explanations. 21 Mar 2015. https://explorabl.es/ (cited on page 5).

Charig, C. R., D. R. Webb, S. R. Payne, and J. E. A. Wickham [1986]. Comparison of Treatment of Renal
Calculi by Open Surgery, Percutaneous Nephrolithotomy, and Extracorporeal Shockwave Lithotripsy.
British Medical Journal 292.6524 (29 Mar 1986), pages 879–882. doi:10.1136/bmj.292.6524.879 (cited
on page 1).

Flourish [2021]. Flourish. 09 Nov 2021. https://flourish.studio (cited on page 21).

GitHub [2023]. GitHub Pages. 18 May 2023. https://pages.github.com/ (cited on page 20).

Microsoft [2015]. Documentation for Visual Studio Code. 29 Apr 2015. https://code.visualstudio.com
/docs (cited on page 19).

Pair [2010]. AI Explorables. 2010. https://pair.withgoogle.com/explorables (cited on page 3).

Sophiegri [2020]. Exercise 3: Parallel coordinates. Jun 2020. https://observablehq.com/@sophiegri/exe
rcise-3-parallel-coordinates (cited on page 26).

Victor, Bret [2011]. Explorable Explanations. 10 Mar 2011. http://worrydream.com/ExplorableExplanat
ions/ (cited on page 1).

Wacker, Phillip [2018]. An Explorable Explanation of Simpson’s Paradox. 28 Sep 2018. https://pwacker
.com/simpson.html (cited on page 1).

31

https://k-means-explorable.vercel.app/
https://distill.pub/
https://explorabl.es/
http://doi.org/10.1136/bmj.292.6524.879
https://flourish.studio
https://pages.github.com/
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs
https://pair.withgoogle.com/explorables
https://observablehq.com/@sophiegri/exercise-3-parallel-coordinates
https://observablehq.com/@sophiegri/exercise-3-parallel-coordinates
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ExplorableExplanations/
https://pwacker.com/simpson.html
https://pwacker.com/simpson.html

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Examples of Explorables
	2.1 Pair
	2.2 Distill
	2.3 Explorable Explanations
	2.4 K-Means Clustering

	3 Tools
	4 Jupyter Notebooks
	4.1 Local Installation and Execution
	4.2 Google Colab Installation and Execution
	4.3 Content Elements
	4.3.1 Text
	4.3.2 Code

	4.4 Libraries
	4.4.1 Jupyter Widgets
	4.4.2 Data Table
	4.4.3 Matplotlib
	4.4.4 Plotly

	4.5 Installing Locally
	4.6 Hosting Online

	5 Observable
	5.1 Installation and Execution
	5.2 Content Elements
	5.2.1 Text
	5.2.2 Code
	5.2.3 D3.js

	5.3 Hosting Online

	6 Shiny
	6.1 Local Installation and Execution
	6.2 Posit Cloud Installation and Execution
	6.3 Shiny Components
	6.3.1 User Interface
	6.3.2 Server
	6.3.3 Running

	6.4 Installing Locally
	6.5 Hosting Online

	7 D3 Standalone
	7.1 Standalone File Structure
	7.2 Visual Studio Code Editor
	7.3 Running Locally
	7.4 Hosting Online

	8 Flourish
	9 Results
	9.1 Dataset
	9.2 Interactivity and Analysis
	9.3 Narrative
	9.4 Jupyter
	9.4.1 Execution
	9.4.2 Limitations
	9.4.3 Results

	9.5 Shiny
	9.5.1 Execution
	9.5.2 Limitations
	9.5.3 Results

	9.6 Observable
	9.6.1 Limitations
	9.6.2 Results

	9.7 D3 Standalone
	9.7.1 Execution
	9.7.2 Limitations
	9.7.3 Results

	10 Conclusion
	Bibliography

