

Set Visualization

Una Ibrahimpasic, Eemil Hukkanen, Magne Tenstad, Azra Bajramovic Information Visualisation, Group 2, 08 May 2024

Set-Typed Data

- Set = collection of unique objects based on specific properties.
- Each object belongs to one or more sets.
- Example: movie genres.
- Sometimes with inner hierarchy.
- Sometimes dynamic (changes over time).

Country	EEA	EU	Schengen	EFTA
Albania	0	0	0	0
<u>Andorra</u>	0	0	0	0
<u>Armenia</u>	0	0	0	0
<u>Austria</u>	1	1	1	0
<u>Azerbaijan</u>	0	0	0	0
<u>Belarus</u>	0	0	0	0
<u>Belgium</u>	1	1	1	0
Bosnia and Herzegovina	0	0	0	0
Bulgaria	1	1	1	0
Croatia	1	1	1	0
Cyprus	1	1	0	0
<u>Czechia</u>	1	1	1	0
<u>Denmark</u>	1	1	1	0
<u>Estonia</u>	1	1	1	0
<u>Finland</u>	1	1	1	0
<u>France</u>	1	1	1	0

49 European countries. Sets = which organizations they are part of, https://www.nl/eu-eea-efta-schengen-countries netherlandsworldwide

Movie Genres Dataset

Adapted from Alexander Lex

- 1000 entries
- 12 fields

Poster_Link	Series_Title	Released_Year	Certificate	
<u>Link</u>	The Shawshank Redemption	1994	А	
<u>Link</u>	The Godfather	1972	А	
Runtime	Genre	IMDB_Rating	Overview	
142 min	Drama	9.3	Two imprisoned men bond over a number of years, finding solace and eventual redemption through acts of common decency.	
175 min	Crime, Drama	9.2	An organized crime dynasty's aging patriarch transfers control of his clandestine empire to his reluctant son.	
Meta_score	Director	Star1	Star2	
80	Frank Darabont	Tim Robbins	Morgan Freeman	
100	Francis Ford Coppola	Marlon Brando	Al Pacino	
Star3	Star4	No_of_Votes	Gross	
Bob Gunton	William Sadler	2343110	28,341,469	
James Caan	Diane Keaton	1620367	134,966,411	

Set Visualization

- Graphical representation of set data.
- Shows relationships between sets and objects.
- Taxonomy of tasks:
 - Tasks related to elements.
 - B. Tasks related to sets and set relations.
 - C. Tasks related to element attributes.

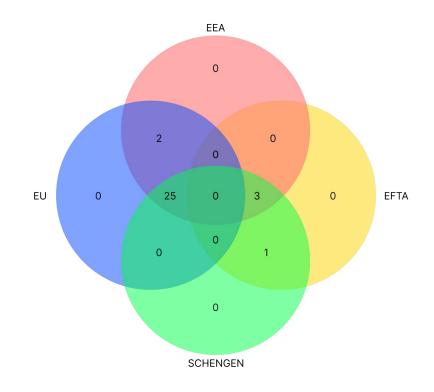
Tasks on Set-Typed Data

Element-related Tasks (A1 - A7)											
Find/Select elements of a specific set			Find/Select elements by set membershi				out elements by memberships	Filter out elements by their degrees		Create a set out of certain elements	
	Set-related Tasks (B1 - B12)										
Find the number of sets in a family	Inclusion relations / hierarchies		Exclusion / inter		ldentify intersection between k sets		Identify sets involved in an overlap		n lo	Identify intersections of a set	
Identify the set with largest / smallest number of pair-wise set intersections	largest / smallest Analyze & compare number of pair-wise cardinalities		Analyze & compare set Analyze & comp exclusivene			set Highlight specific sets, subsets, etc.		ets,	Create a set by set- theoretic operation		
Attribute-related Tasks (C1 - C5)											
		ribution in a set / ubset	a set / Compare attribute values between subsets		5	Set memberships for specific Cr attr. values		Creat	reate a set of elements by attributes		

Categories of Set Visualization Techniques

- 1. Venn and Euler Diagrams
- 2. Matrix
- 3. Node-Link
- Overlay
- 5. Aggregation

The category names have been adapted from Alsallakh et al. [2014]



1. Venn and Euler Diagrams

Venn Diagrams

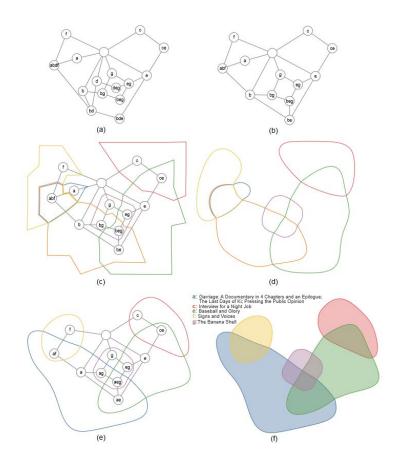
- Must show all possible curve overlaps.
- Accurate area-proportional Venn diagram can be drawn with circles for only two-set data.
- Examples:
 - InteractiVenn & nVenn



Euler-based Diagrams

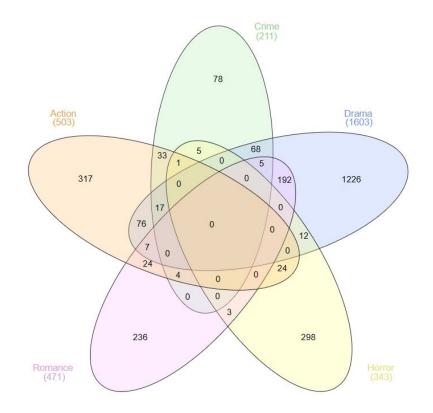
- Uses different shapes to represent sets and their relationships.
- Focusing on the depiction of the logical relationships between sets, such as intersections and unions.

Examples:


 Euler diagrams & Eulermerge.

EulerMerge

- Tool to visualize of large-scale Euler diagrams.
- It allows efficient merging of multiple Euler diagrams.



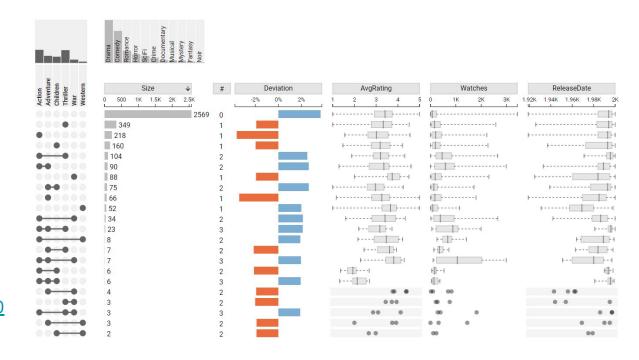
InteractiVenn

- Tool for interactive visualization of Venn diagrams.
- Can take data up to six sets of data.
- Allows users to merge sets.
- Showcase video:

https://youtu.be/GRsvxMJIUoM

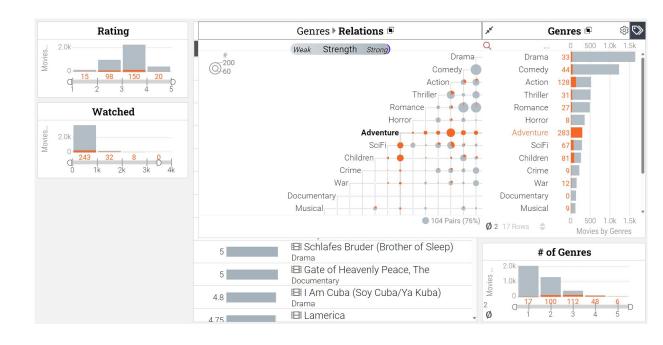
2. Matrix Diagrams

Matrix Diagrams


- Set intersections are defined by either:
 - a matrix row.
 - a matrix cell.
- Scalable in number of elements and sets.

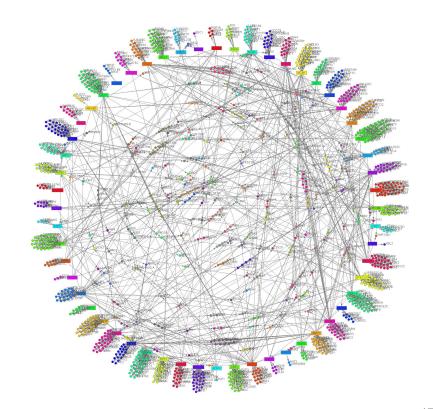
UpSet

- Row = intersection
- Includes:
 - Histograms
 - Bar charts
 - Box plots
 - Scatter plots
- Showcase video:


https://youtu.be/VD7IhfqkIc0

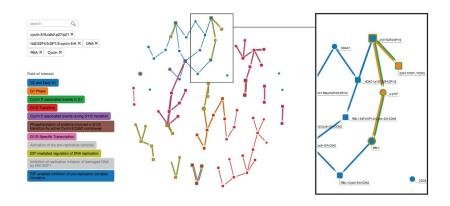
AggreSet

- Cell = intersection.
- Customizable:
 - Histograms
 - Bar charts
 - Scatter plots

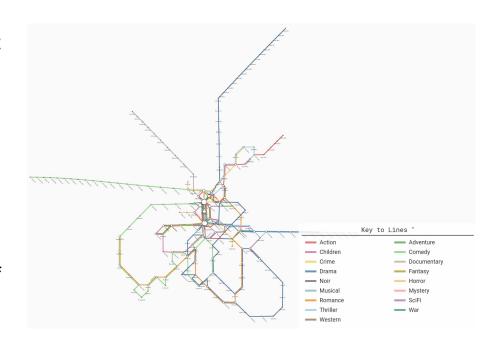


3. Node-Link Diagrams

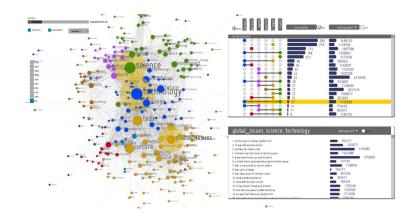
Node-Link Diagrams


- Element-based techniques model the membership relations between elements and sets as edges of a bipartite graph whose nodes represent the elements and sets.
- Used to show the similarity between the sets as links of varying thicknesses.
- Are commonly used to facilitate reasoning about Formal Concept Analysis.

BranchingSets


- Resolve challenges in representing large datasets of biological pathway networks.
- Interactive set visualisation technique.
- Easy pattern recognition and relationship identification.

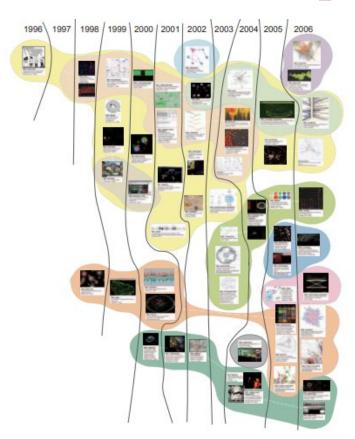
MetroSets


- Sets are represented by metro lines and set elements are represented by metro stations.
- Elements that belong to multiple sets corresponding to interchange stations.
- Each vertex is represented as a circle with the diameter determined by either:
 - the number of incident sets.
 - the largest number of adjacent lines of all incident edges.
- Showcase video: <u>https://youtu.be/59sYNQQZOuY</u>

NetSet

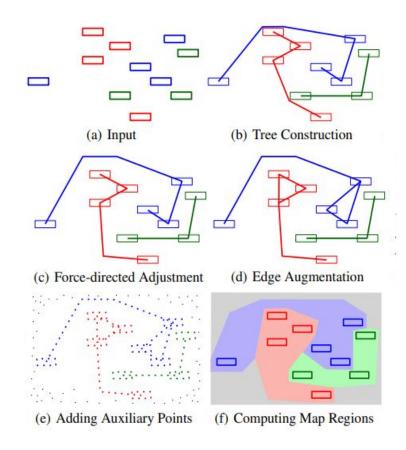
- Addresses limitations of both matrix-based visualisations and network visualisations by merging them.
- Uses UpSet model as reference.
- Network is built using a bipartite network construction method:
 - nodes represent sets and edges indicating intersections
 - thickness of edges represents the cardinality of intersections
 - node size reflects the degree centrality

4. Overlay Diagrams


Overlay Diagrams

- Analyzing information in the data in context of other data features.
- Examples:
 - Elements with a spatial reference
 - Points in a scatter plot
 - Nodes in a graph
- Types:
 - Region-based
 - Line-based
 - Glyph-based

F2-Bubbles


- Simultaneous construction of spanning trees.
- Relation-aware energy fields with adaptive contour widths based on nearby set elements.
- Interactions:
 - Add/delete/move nodes and edges (suggestions provided).
 - Add/delete control points to adjust edge routing.
 - Direct manipulation of smooth contour control points.

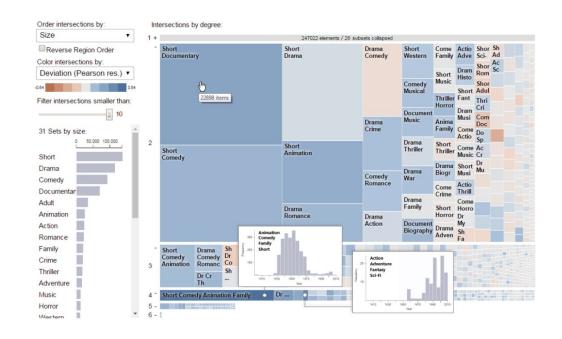
MapSets

- Fixed vertex positions for embedded and clustered graphs.
- Contiguous, non-overlapping, convex regions for each cluster.
- "minimum ink" concept to optimize the convexity of the generated regions (clusters).

GridSet

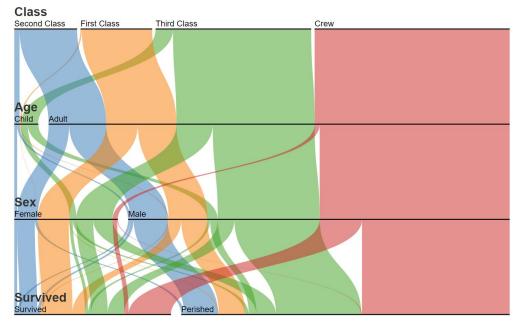
- A. the Main view
- B. the Visual Property menu
- C. the Query view
- D. the Set view (orange-highlight ed views represent added sets on the Main view)
- E. the Detail view that provides detailed information of the elements

5. Aggregation Diagrams


Aggregation Diagrams

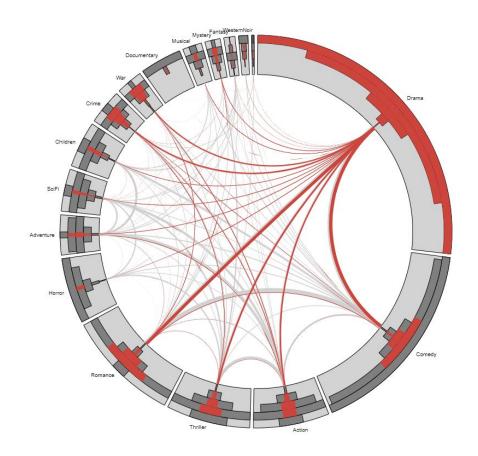
- Hides individual objects.
- Set size determined by area.
- Highly scalable in number of elements.

PowerSet


- Rectangle = intersection.
- Sorted by:
 - size: x-axis
 - intersections: y-axis
- Customizable coloring.

Parallel Sets

- First row decides color.
- Blocks split and join based on intersections.
- Customizable order.
- Not all sets can overlap.


Made by Jason Davies. https://www.jasondavies.com/parallel-sets/

Radial Sets

- Sets placed in a circle.
- Inner segment= "anonymous intersection".
- Lines explain chosen segment, similar to Node-Link.
- Showcase video:

https://youtu.be/XWsI50i01wA

Comparison of Techniques

	Strengths	Weaknesses			
1. Euler-based diagrams	Intuitive when well-matched (little training is required). Represent all standard set relations compactly.	Limited to few sets due to clutter and drawability issues. Desired properties not always possible (e.g. convexity).			
2. Matrix-based techniques	Fairly scalable both in the number of elements and sets. Do not suffer from edge crossings or topological constraints.	Limited in the set relations they can represent. Revealed membership patterns are sensitive to ordering.			
3. Node-link diagrams	Visually emphasize the elements as individual objects. Show clusters of elements having similar set memberships.	No representation of set relations in element-set diagrams.			
4. Overlays	Emphasize element and set distributions according to other data features (e.g. map locations).	Often limited in the number of elements and sets. Undesired layout artifacts (overlaps, crossing, shapes, etc.). Limited scalability due to edge crossings.			
5. Aggregation- based	Highly scalable in the number of elements. Some techniques can show how attributes correlate with set membership.	Usually, do not emphasize sets and elements as objects. Limited in the set relations they can represent.			

SurVis - Survey Browser

https://info-vis-24.github.io/survey-browser/

Questions?