
Student: Lukas Pichler

Graz, University of Technology

TU Graz – Knowledge Discovery and Data Mining 2, VU (706.715)

SS 2018

Lukas Pichler, l.pichler@student.tugraz.at

Training classifiers

As already mentioned scikit-learn had been used. Its an easy-to-use, general-purpose toolbox

for machine learning in Python and it provides various supervised machine learning techniques. When

looking at our features we now had a typical binary classification problem to solve. There exist different

classification techniques which all differ in the context of usage.

One such technique is Nearest Neighbors. Nearest Neighbor uses the notion of similarity to assign

class labels. scikit-learn implements two different nearest neighbors classifiers and I have decided to

choose the KNeighborsClassifier. Further I have used Support Vector Machines, which are a set of

supervised learning methods for classification. In detail I have tested the C-Support Vector

Classification and Linear Support Vector Classification. Naive Bayes methods are a set of

supervised learning algorithms based on applying Bayes’ theorem with the “naive” assumption of

independence between every pair of features. I have chosen the Multinomial Naive Bayes and the

Bernoulli Naive Bayes method for testing. Further I have tested the Stochastic Gradient Descent a

generalized linear model and a Multi-layer Perceptron classifier from the family of neural networks. I

have used grid search for tuning the hyper parameters of my classifier, with that it is possible to

recommend or search the hyper-parameter space for the best score. In k-fold cross-validation, the

original sample is randomly partitioned into k equal size subsamples. Of the k subsamples, a single

subsample is retained as the validation data for testing the model, and the remaining k-1 subsamples

are used as training data. I have used this method for splitting my data set to get the best scores.

Results

Conclusion

The best results were achieved with the Bernoulli Naive Bayes classifier. High precision leads to

low false positive rate which is very good at all classifiers. The recall is significantly higher than 0.5 for

every classifier which is also pretty good. The F1 score (weighted average of Precision and Recall)

and accuracy are a good indicator to figure out how well the classifier performs. The F1 score is above

0.8 for most of the classifiers which is good considering the linguistic quality of the tweets I have

crawled. The quality of the tweets is also the reason for the moderate accuracies I have got at the end.

Improvements in the approach can be achieved by doing an annotation of the tweets by human

experts, because the question remaining here is, can we detect sarcasm now or just classify that a

tweet belongs to a certain hashtag. Further the k-fold cross validation could be extended with the leave

one out method and in the feature engineering process different n-grams could be used.

Also the approach from Jennifer Ring et al1 can be further applied to this scenario with German text to

also distinguish between sarcasm and irony.

Tools

Twitter Development API, scikit-learn, Natural Language Toolkit, python 3.6

Literatur / Zitat

1 Jennifer Ring and Roman Klinger, An Empirical, Quantitative Analysis of the Differences between Sarcasm

and Irony, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Sarcasm and Irony Detection for German

Problem and Task

Distinguishing between a sarcastic statement and a non-sarcastic statement can even for

humans be a hard challenge. Irony and sarcasm are rhetoric devices present in everyday

live. The task was to train a classifier to detect sarcastic and ironic statements in German

text. The classifiers I have trained cannot distinguish or differ between sarcasms and irony

but they are able to classify between sarcasm and irony, or not in a text-corpus of German

tweets. For those who are interested in classifying between sarcasm and irony I prefer to

read the paper of Jennifer Ring and Roman Klinger1 .

Data Set

As a data set I have collected tweets tagged with specific hash tags to create my training

set. I have adapted the approach from the seed paper from Jennifer Ring and Roman

Klinger1 and used not only the hashtag #Sarkastisch but a variation of different hashtags

with the same meaning. Following hashtags were used to create a training set with tweets.

To get this Data I have used the Twitter developer API where it is possible to stream data

from twitter.

Bag of Words Approach and Feature Engineering

To get a representation of the data set suitable for our machine learning mechanism the text

data must be represented in a different form. For that process, called feature engineering, I

have chosen the Bag of Words approach which replace the document by a simple

representation consisting of the words that appear in the document. This means that we are

creating a feature vector by counting the occurrences of each word in a sentence and

create a vocabulary for the whole document.

For each sentence a list as seen above is constructed and put into a vocabulary. This

results in a NxM matrix where N stands for the number of texts in the corpus and M for the

number of features, where each entry of one row refers to the count of the word appearing

in the tweet. To remove common terms which appear very frequently in German sentences I

have used a list of German stop words to not take this common terms into account. This

list of German stops words is provided by the Natural Language Toolkit and consists of

words like „und“, „oder“, „doch“, „der“,“die“,“das“. A further improvement I have used to get

better features was stemming. Stemming is the process of reducing inflected words to their

word stem. A German stemming corpus is provided by the scikit learn library. These two

improvements gave me up to 5% better results at the end. In this project the bag of word

model is represented as uni-gram representation. The scikit learn library offers also the

possibility to realize the bag of word approach. Further it also offers the possibility to further

improve the quality of the features by using the term frequency-inverse document

frequency which is a numerical statistic that is intended to reflect how important a word is

to a document in a corpus.

By using these methods the feature generation process is nearly completed, what still had

to be done was to create a target vector which labels my output of the bag of word

approach accordingly to sarcastic or non sarcastic. For that I have to create a Nx1 vector

which is labeled either 1 or 0 according to if the text comes from the sarcastic data set or

non sarcastic data set. This feature engineering process results in a typical binary

classification task where it is the task to classify if the element belongs to one of the two

labels. During preprocessing the hashtags, links and usernames were removed from the

tweets and further all tweets with less than 3 words were ignored. Additionally in my

approach all tweets must pass a sentiment analysis to get into the final data set. This

prevents the datasets from tweets with poor German quality.

Hashtags used for streaming Tweets

#Ironie,#Sarkasmus, #Ironisch, #Sarkastisch,#Fail, # Glück,

#Glücklich,#Fröhlich,#Freude,#Erfreut,#erbost,#verärgert

Sarcastic Tweet Example

Wow #InfinityWar macht so viel Spaß, ey, kam aus dem lachen gegen Ende

gar nicht mehr raus... #Sarkasmus

Non-Sarcastic Tweet Example

Es sind die kleinen Dinge im Leben, die einen glücklich machen… #glücklich

Uni-Gram Example of Non-Sarcastic Tweet

{die:2, Dinge: 1,Es: 1, einen: 1, glücklich: 1, kleinen: 1, im: 1, machen: 1, sind:

1, Leben: 1}

Classifier Accuracy Precision Recall

F1-

Score

Bernoulli, Naive Bayes 0,75 0,98 0,77 0,86

MultiNomial, Naive Bayes 0,75 0,98 0,77 0,86

Linear Support Vector Classification,

Support Vector Machines 0,74 0,98 0,76 0,85

C-Support Vector Classification, Support

Vector Machines 0,74 0,98 0,76 0,85

Multi-layer Perceptron classifier, Neural

Network 0,71 0,99 0,74 0,84

Stochastic Gradient Descent,

Generalized Linear Models 0,72 0,98 0,75 0,84

k-nearest neighbors, Neares Neighbours 0,63 0,98 0,65 0,77

Sarcastic Dataset Non-Sarcastic DatasetSarcastic Dataset after

preprocessssing

Non-Sarcastic Dataset

after preprocessing

1553 tweets 1717 tweets 1009 tweets 824 tweets

