
TU Graz – Institute of Interactive Systems and Data Science 

8010 Graz, Inffeldgasse 12/I, Austria, Tel.: +43 316 873-0000

Dieter Ladenhauf, dieter.ladenhauf@student.tugraz.at

How to train your own CNN for Object Localization using Transfer 
Learning on the ImageNet dataset?

Evaluation and Results
The data was divided into 80% training data, 10% dev (validation) data, and 
10% test data. The dev data was used to evaluate the hyperparameters and 
to decide on how to split the labels for training (how many models). After this 
phase was finished, the dev (validation) set was added to the training data in 
order to maximize the amount of used training data.

Training with darkflow automatically produced checkpoint files from time to 
time. An evaluation script was used for evaluating these checkpoints in an 
automated fashion. For each ckeckpoint it took all the test data and performed 
a prediction with the given model for each image. It then produced a score 
between 0 and 1 to depict the overall accuracy. 0 means that the object never 
appeared within the test data of the given label, 1 means that the abject was 
always correcty located within the test data. Additionally, the evaluation script 
calculated precision, recall and F1 score:

Future Work
 Use Google‘s Open Images dataset5 for training since the training ran into 

overfitting quite fast. Overfitting means that we memorize the training data, 
which decreases the overall accuracy on the test set.

Object localization using the YOLO1 algorithm

©
 R

ed
m

on
, J

os
ep

h 
an

d 
F

ar
ha

d
i, 

A
li

Transfer Learning
The task was to use transfer learning to train the tiny yolo nn-architecture (this 
is a convolutional neural network (CNN)) with a set of own labels. Transfer 
learning is a technique of using an already pre-trained neural network for a 
different set of labels. This approach works surprisingly well because the first 
layers of the neural network detect low-level features, like edges, lines, or 
shapes, which can be used to detect different objects as well.

„You only look once“ 1 (YOLO)
The term YOLO stands for "You Only Look Once" and it depicts an algorithm 
where a fixed set of bounding boxes is used to detect objects. Additionally, it 
subdivides the training images into a grid (usually 19x19) and each object is 
assigned to a single grid cell during training. The different grid cells are then 
represented by a specific part of the output volume of the neural network.

At the end of a prediction, YOLO returns a set of bounding boxes with different 
confidence levels assigned to them. Now the algorithm non-max supression is 
used to filter out unnecessary or overlapping bounding boxes. To detect 
overlapping bounding boxes, intersection over union is used. In the end only 
the most promising bounding boxes (highest confidence and no overlapping) 
survive the postprocessing done in non-max supression.

Purpose
The results (obtained models) of this project will be used for a smartphone 
game which contains a game element, where the user is required to take a 
photo of certain objects from time to time. If this action is performed, a 
machine learning server analyzes the photo if it contains the required object 
and localizes it. The plan is to release the game by the end of the year.

Data Engineering
Aquiring the necessary training data was definitely the hardest part of this 
project. It required several iterations, until the acquired data could be used for 
training the neural network. The data was downloaded from the ImageNet2 
API in an automated fashion.

Training
For training the neural network, the open source project darkflow3 was used. It 
ports the original YOLO implementation darknet4 to Tensorflow. Training was 
performed on the cloud on a machine with just CPUs. GPUs would have been 
nice, but since time was not a limiting factor, it didn't really matter that it took 
quite a long time to produce the needed machine learning models.

Literature

1 Redmon et al (2015). You Only Look Once: Unified, Real-Time Object Detection. 
2 http://www.image-net.org/
3 https://github.com/thtrieu/darkflow
4 https://pjreddie.com/darknet/
5 https://storage.googleapis.com/openimages/web/index.html

Dieter Ladenhauf, dieter.ladenhauf@student.tugraz.at

https://pjreddie.com/darknet/

	Slide 1

