Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707.004)

Roman Kern

Institute for Interactive Systems and Data Science, TU Graz

2019-03-14

2019-03-14 1/38

A D > A B > A B > A B >

Introduction to Ensemble Methods

Image: A math a math

Quick facts

- Basic Idea: Have **multiple models** and a **method to combine** them into a single one.
- Predominately used in classification and prediction
- Sometimes called: combined models, meta learning, committee machines, multiple classifier systems
- Ensemble methods do have a long history and used in statistics for more than 200 years

Types of ensembles

- ... different hypothesis
- ... different algorithms
- ... different parts of the data set

Motivation

- ... as every model has its limitations
- Goal: combine the strength of all models
- Improve the accuracy of using an ensemble
- Be more robust in regard to noise

Basic Approaches

- Averaging
- Voting
- Probabilistic methods

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Combination of Models

- Need a function to combine the results from the models
- For real values output
 - Linear combination
 - Product rule
- For categorical output, e.g. class labels
 - Majority vote

Linear combination

- Simple form of combining the output of an ensemble
- Given *T* models, $f_t(y|x)$
- $g(y|x) = \sum_{t=1}^{T} w_t f_t(y|x)$
- Problem of estimating the optimal weights (w_t)
- Simple solution: use the uniform distribution: $w_t = 1/T$

Product rule

- Alternative form of combining the output of an ensemble
- $g(y|x) = \frac{1}{Z} \prod_{t=1}^{T} f_t(y|x)^{w_t}$
- ... where Z is a normalisation factor
- Again, estimating the weights is non-trivial

Majority Vote

- Combining the output, if categorical
- The models produce a label as output, e.g. $h_t(x) \in \{+1, -1\}$
- $H(x) = sign(\sum_{t=1}^{T} w_t h_t(x))$
- If the weights are non-uniform, it is a weighted vote

▲ロト ▲圖ト ▲屋ト ▲屋ト

Selection of models

- The models should not be identical, i.e. produce identical results
- ... therefore an ensemble should represent a degree of diversity
- Two basic types of achieving this diversity
 - Implicitly, e.g. by integrating randomness (bagging)
 - Explicitly, e.g. integrate variance into the process (boosting)
- Most of the methods implicitly integrate diversity

Motivation for ensemble methods

- Statistical
 - Large number of hypothesis (in relation to training data-set)
 - Not clear, which hypothesis is the best
 - Using an ensemble reduces the risk of picking a bad model
- Computational
 - Avoid local minima
 - Partially addressed by heuristics
- Representational
 - A single model/hypothesis might not be able to represent the data

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems (pp. 1-15).

Classification Ensemble Methods for Classification

Roman Kern (ISDS, TU Graz)

2019-03-14 13/38

メロト メロト メヨト メヨト

Underlying question

How much of the ensemble prediction is due to the accuracies of the individual models and how much due to their combination?

 \rightarrow express the ensemble error as two terms:

- Error of individual models
- Impact of interactions, the **diversity**

Note: It depends on the combination, whether one can separate the two terms

Diversity

Regression error for the linear combination

- Squared error of the ensemble regression
- $(g(x) d)^2 = \frac{1}{T} \sum_{t=1}^{T} (g_t(x) d)^2 \frac{1}{T} \sum_{t=1}^{T} (g_t(x) g(x))^2$
- First term: error of the individual models
- Second term: interactions between the predictions
- $\bullet \ \ldots$ the ambiguity, ≥ 0
- $\bullet \rightarrow$ Therefore it is preferable to increase the ambiguity (diversity)
- Smallprint: Actually there is a tradeoff of bias, variance and covariance, known as accuracy-diversity dilemma

Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross-validation and active learning. In Advances in neural information processing systems (pp. 231–238). Cambridge, MA: MIT Press. Kuncheva,

イロト 不得 とくほ とくほ とうほう

Classification error for the linear combination

- For a simple averaging ensemble (and some assumptions)
- $e_{ave} = e_{add}(\frac{1+\delta(T-1)}{T})$
- ... where e_{add} is the error of the individual model
- $\bullet\,\ldots$ and δ being the correlation between the models

Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensemble classifiers. Connection Science 8(3-4), 385-403.

(ロ) (四) (注) (注) (注) [

Basic Approaches

- Bagging combines strong learners \rightarrow reduce variance
- Boosting combines weak learners \rightarrow reduce bias
- Many more: mixture of experts, cascades, ...

イロト 人間 とくほとく ほう

Bootstrap Sampling

- Create a distribution of data-sets from a single data-set
- If used within ensemble methods, it is typically called **Bagging**
- Simple approach, but has proven to increase performance

Davison, A. C., & Hinkley, D. (2006). Bootstrap methods and their applications (8th ed.). Cambridge: Cambridge Series in Statistical and Probabilistic Mathematics

Bagging

- Each member of the ensemble is generated by a different data-set
- Good for unstable models
 - ... where small differences in the input data-set yield big differences in output
 - Also known as high variance models
- ullet \to not so good for simple models

Note: Bagging is an abbreviation for bootstrap aggregating Breiman, L. (1998). Arcing classifiers. Annals of Statistics, 26(3), 801–845.

Bagging

Bagging Algorithm (train)

- Input: Ensemble size T, training set $D = \{(x_1, y_1), ..., (x_n, y_n)\}$
- 2 For each model M_t
 - For n' times, where $n' \leq n$
 - Sampling (random) from D with replacement
 - **2** Train model M_t with subset

Bagging Algorithm (classify)

- For classification typically majority vote
- For regression typically linear combination

Note: Subset may contain duplications, i.e. if n' = n

Boosting

- Family of ensemble learners
- Boost weak learners to a strong learner
- Adaboost is the most prominent one
- Weak learners need to be better than random guessing

Adaboost

- Basic idea: Weight the individual instances of the data-set
- Iteratively learn models and record their errors
- Distribute the effort of the next round on the mis-classified examples

Boosting

Adaboost (train)

- Input: Ensemble size T, training set $D = \{(x_1, y_1), ..., (x_n, y_n)\}$
- ② Define a uniform distribution W_t over elements of D
- For each model M_i
 - Train model M_i using distribution W_t
 - **2** Calculate the error of model ϵ_t and weight $\alpha_t = \frac{1}{2} ln(\frac{1-\epsilon_t}{\epsilon_t})$
 - **③** ... if $\epsilon_t > 0.5$ break (and discard model)
 - **③** ... else update the distribution W_t according to ϵ_t

Adaboost (classify)

• Linear combination, $H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$

Stacked generalisation

- Basic idea: Have the output of a layer of classifiers as input to another layer
- For 2 layers:
 - Split the training data-set into two parts
 - 2 Learn the first layer using the first part
 - Classify the second part and
 - ... take the decision as input for the second part

Wolpert, D. H. (1992). Stacked generalization. Neural Networks 5(2), 241-259

(a) < (a) < (b) < (b)

Mixture of Experts

- Basic idea: some models should specialise on parts of the input space
- Ingredients
 - Base models (e.g. specialised models so called experts)
 - Component to estimate probabilities, often called a gating network
- The gating networks learns to select the appropriate expert for parts of the input space

Mixture of Experts - Example #1

- Ensemble of base learners being combined using weighted linear combination
- The weight is found via a neural network
 - > The neural network is learnt via the same input data-set

Mixture of Experts - Example #2

- Mixture of expert models are called mixture models
- e.g. the Expectations-maximisation algorithm

・ロッ ・雪 ・ ・ 日 ・

Cascading

Cascade of classifiers

- Setting
 - Have a sequence of models, each with high hitrate $(\geq h)$ and low false alarm rate (< f)
 - ... with increasing complexity
 - In the data-set the negative examples are more common
- The cascade is learnt via boosting
- For example:
 - For h = 0.99 and f = 0.3 and a cascade of size 10
 - ... one gets the hitrate of about 0.9 and a false alarm rate of about 0.000006

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001.

イロト 不得 とくき とくき とうき

- Decision stump are a popular choice for (some) ensemble learning
- ... as they are fast
- ... as they are less prone to overfitting
- A decision stump is a decision tree that only uses a single feature (attribute)

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-91.

- Basic idea: Instead of taking a subset of the data-set, use a subset of the feature set
- ... will work best, if there are many features
- ... and will not work as well if most of the features are just noise

- Combines two randomization strategies
 - Select random subset of the data-set to learn decision tree (bagging), e.g. select n = 100 random trees
 - Select random subset of features, e.g. select \sqrt{m} features
- Random forests are used to estimate the importance of features (by comparing the error using a feature vs. not using a feature)
- Typically good performance

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Multiclass Classification

- Basic idea: split a multi-class problem into a set binary classification problems
- e.g. Error correcting output codes

Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output coding corrects bias and variance. In International conference on machine learning.

・ロト ・回 ト ・ ヨト ・ ヨト

Ensemble classification for multi-class problems

- Have different base classifiers for different parts of the feature set
- Train all base classifiers using the training data-set
- Record their performance with cross-evaluation for each class
- ... have two thresholds, *min_{precision}* and *min_{recall}*
- If the precision for a certain class and model is \geq *min*_{precision} \rightarrow allowed to vote
- If the recall for a certain class and model is $\geq min_{recall} \rightarrow$ allowed to vote against (veto)
- In the classification use a weighted vote
 - where veto is a negative vote
 - ... and the weight is according to the respective measure (precision or recall)

Kern, R., Seifert, C., Zechner, M., & Granitzer, M. (2011, September). Vote/Veto Meta-Classifier for Authorship Identification Notebook for PAN at CLEF 2011.

<ロ> (四) (四) (三) (三) (三)

- Active learning is a form of semi-supervised learning
- The basic idea is to give the human instances to label
- ... which carry the most information (to update the model)
- Query by Committee
- ... use an ensemble, i.e. the disagreement of multiple classifiers to pick instances

Clustering and other approaches

Roman Kern (ISDS, TU Graz)

2019-03-14 34/38

(ロ) (四) (注) (注) (注) [

- Basic idea: Have multiple clustering algorithms group a data-set
- ... combine all results into a single clustering results
- Motivation: More reliable result than individual cluster solutions

Consensus Clustering

- Have a set of clusterings: $\{C_1, ..., C_m\}$
- Find an overall clustering solution C
- Minimise the disagreement using a metric: $D(C) = \sum_{C_i} d(C, C_i)$
- Also known as clustering aggregation

Mirkin Metric

- The metric reflects the numbers of pairs of instances ...
- ... being together in the overall clustering, but separate in C_i
- ... and vice versa

- Ensemble methods are not limited to machine learning tasks alone
- For example, in the field of recommender systems they are known as **hybrid** recommender system
 - e.g. combine a content based recommender with a collaborative filtering one

The End Next: Text Mining + Tools

Roman Kern (ISDS, TU Graz)

● 注 ● 注 一 つ Q (P) 2019-03-14 38/38

・ロト ・回ト ・ヨト ・ヨト