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Introduction to Ensemble Methods
Motivation & Basics
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Ensemble Methods Intro

�ick facts
Basic Idea: Havemultiple models and a method to combine them into a single one.

Predominately used in classification and prediction

Sometimes called: combined models, meta learning, commi�ee machines, multiple
classifier systems

Ensemble methods do have a long history and used in statistics for more than 200 years
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Ensemble Methods Intro

Types of ensembles
… di�erent hypothesis

… di�erent algorithms

… di�erent parts of the data set
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Ensemble Methods Intro

Motivation
… as every model has its limitations

Goal: combine the strength of all models

Improve the accuracy of using an ensemble

Be more robust in regard to noise

Basic Approaches
Averaging

Voting

Probabilistic methods
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Ensemble Methods Intro

Combination of Models
Need a function to combine the results from the models
For real values output

I Linear combination
I Product rule

For categorical output, e.g. class labels
I Majority vote
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Ensemble Methods Intro

Linear combination
Simple form of combining the output of an ensemble

Given T models, ft(y|x)
g(y|x) =

∑T
t=1 wt ft(y|x)

Problem of estimating the optimal weights (wt )

Simple solution: use the uniform distribution: wt = 1/T
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Ensemble Methods Intro

Product rule
Alternative form of combining the output of an ensemble

g(y|x) = 1
Z

∏T
t=1 ft(y|x)wt

… where Z is a normalisation factor

Again, estimating the weights is non-trivial
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Ensemble Methods Intro

Majority Vote
Combining the output, if categorical

The models produce a label as output, e.g. ht(x) ∈ {+1,−1}
H(x) = sign(

∑T
t=1 wtht(x))

If the weights are non-uniform, it is a weighted vote
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Ensemble Methods Intro

Selection of models
The models should not be identical, i.e. produce identical results

… therefore an ensemble should represent a degree of diversity
Two basic types of achieving this diversity

I Implicitly, e.g. by integrating randomness (bagging)
I Explicitly, e.g. integrate variance into the process (boosting)

Most of the methods implicitly integrate diversity
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Ensemble Methods Intro

Motivation for ensemble methods
Statistical

I Large number of hypothesis (in relation to training data-set)
I Not clear, which hypothesis is the best
I Using an ensemble reduces the risk of picking a bad model

Computational
I Avoid local minima
I Partially addressed by heuristics

Representational
I A single model/hypothesis might not be able to represent the data

Die�erich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems (pp. 1-15).
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Classification
Ensemble Methods for Classification
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Diversity

Underlying question
How much of the ensemble prediction is due to the accuracies of the individual models and how
much due to their combination?

→ express the ensemble error as two terms:

Error of individual models

Impact of interactions, the diversity
Note: It depends on the combination, whether one can separate the two terms
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Diversity

Regression error for the linear combination
Squared error of the ensemble regression

(g(x)− d)2 = 1
T

∑T
t=1 (gt(x)− d)2 − 1

T

∑T
t=1 (gt(x)− g(x))2

First term: error of the individual models

Second term: interactions between the predictions

… the ambiguity, ≥ 0

→ Therefore it is preferable to increase the ambiguity (diversity)

Smallprint: Actually there is a tradeo� of bias, variance and covariance, known as
accuracy-diversity dilemma

Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross-validation and active learning. In Advances in neural information
processing systems (pp. 231–238). Cambridge, MA: MIT Press. Kuncheva,
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Diversity

Classification error for the linear combination
For a simple averaging ensemble (and some assumptions)

eave = eadd(
1+δ(T−1)

T )

… where eadd is the error of the individual model

… and δ being the correlation between the models

Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensemble classifiers. Connection Science 8(3–4), 385–403.
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Approaches

Basic Approaches
Bagging - combines strong learners→ reduce variance

Boosting - combines weak learners→ reduce bias

Many more: mixture of experts, cascades, …
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Bootstrap

Bootstrap Sampling
Create a distribution of data-sets from a single data-set

If used within ensemble methods, it is typically called Bagging
Simple approach, but has proven to increase performance

Davison, A. C., & Hinkley, D. (2006). Bootstrap methods and their applications (8th ed.). Cambridge: Cambridge Series in Statistical
and Probabilistic Mathematics
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Bagging

Bagging
Each member of the ensemble is generated by a di�erent data-set
Good for unstable models

I … where small di�erences in the input data-set yield big di�erences in output
I Also known as high variance models

→ not so good for simple models

Note: Bagging is an abbreviation for bootstrap aggregating
Breiman, L. (1998). Arcing classifiers. Annals of Statistics, 26(3), 801–845.
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Bagging

Bagging Algorithm (train)
1 Input: Ensemble size T , training set D = {(x1, y1), ..., (xn, yn)}
2 For each model Mt

1 For n′ times, where n′ ≤ n
1 Sampling (random) from D with replacement

2 Train model Mt with subset

Bagging Algorithm (classify)
For classification typically majority vote

For regression typically linear combination

Note: Subset may contain duplications, i.e. if n′ = n
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Boosting

Boosting
Family of ensemble learners

Boost weak learners to a strong learner

Adaboost is the most prominent one

Weak learners need to be be�er than random guessing
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Boosting

Adaboost
Basic idea: Weight the individual instances of the data-set

Iteratively learn models and record their errors

Distribute the e�ort of the next round on the mis-classified examples
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Boosting

Adaboost (train)
1 Input: Ensemble size T , training set D = {(x1, y1), ..., (xn, yn)}
2 Define a uniform distribution Wt over elements of D
3 For each model Mi

1 Train model Mi using distributionWt
2 Calculate the error of model εt and weight αt =

1
2 ln(

1−εt
εt

)
3 … if εt > 0.5 break (and discard model)
4 … else update the distributionWt according to εt

Adaboost (classify)
Linear combination, H(x) = sign(

∑T
t=1 αtht(x))
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Stacking

Stacked generalisation
Basic idea: Have the output of a layer of classifiers as input to another layer
For 2 layers:

1 Split the training data-set into two parts
2 Learn the first layer using the first part
3 Classify the second part and
4 … take the decision as input for the second part

Wolpert, D. H. (1992). Stacked generalization. Neural Networks 5(2), 241–259
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Mixture of Experts

Mixture of Experts
Basic idea: some models should specialise on parts of the input space
Ingredients

I Base models (e.g. specialised models - so called experts)
I Component to estimate probabilities, o�en called a gating network

The gating networks learns to select the appropriate expert for parts of the input space
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Mixture of Experts

Mixture of Experts - Example #1
Ensemble of base learners being combined using weighted linear combination
The weight is found via a neural network

I The neural network is learnt via the same input data-set

Mixture of Experts - Example #2
Mixture of expert models are called mixture models

e.g. the Expectations-maximisation algorithm
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Cascading

Cascade of classifiers
Se�ing

I Have a sequence of models, each with high hitrate (≥ h) and low false alarm rate (< f )
I … with increasing complexity
I In the data-set the negative examples are more common

The cascade is learnt via boosting
For example:

I For h = 0.99 and f = 0.3 and a cascade of size 10
I … one gets the hitrate of about 0.9 and a false alarm rate of about 0.000006

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pa�ern
Recognition, 2001.
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Decision Stump

Decision stump are a popular choice for (some) ensemble learning

… as they are fast

… as they are less prone to overfi�ing

A decision stump is a decision tree that only uses a single feature (a�ribute)

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63–91.
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Random Subset Method

Basic idea: Instead of taking a subset of the data-set, use a subset of the feature set

… will work best, if there are many features

… and will not work as well if most of the features are just noise
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Random Forest

Combines two randomization strategies
I Select random subset of the data-set to learn decision tree (bagging), e.g. select n = 100

random trees
I Select random subset of features, e.g. select

√
m features

Random forests are used to estimate the importance of features (by comparing the error
using a feature vs. not using a feature)

Typically good performance

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
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Multiclass Classification

Multiclass Classification
Basic idea: split a multi-class problem into a set binary classification problems

e.g. Error correcting output codes

Kong, E. B., & Die�erich, T. G. (1995). Error-correcting output coding corrects bias and variance. In International conference on
machine learning.
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Vote / Veto Classification

Ensemble classification for multi-class problems
Have di�erent base classifiers for di�erent parts of the feature set

Train all base classifiers using the training data-set

Record their performance with cross-evaluation for each class

… have two thresholds, minprecision and minrecall
If the precision for a certain class and model is ≥ minprecision → allowed to vote

If the recall for a certain class and model is ≥ minrecall → allowed to vote against (veto)
In the classification use a weighted vote

I where veto is a negative vote
I … and the weight is according to the respective measure (precision or recall)

Kern, R., Seifert, C., Zechner, M., & Granitzer, M. (2011, September). Vote/Veto Meta-Classifier for Authorship Identification
Notebook for PAN at CLEF 2011.
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Active Learning

Active learning is a form of semi-supervised learning

The basic idea is to give the human instances to label

… which carry the most information (to update the model)

�ery by Commi�ee
… use an ensemble, i.e. the disagreement of multiple classifiers to pick instances
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Clustering
… and other approaches
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Cluster Ensembles

Basic idea: Have multiple clustering algorithms group a data-set

… combine all results into a single clustering results

Motivation: More reliable result than individual cluster solutions
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Cluster Ensembles

Consensus Clustering
Have a set of clusterings: {C1, ...,Cm}
Find an overall clustering solution C

Minimise the disagreement using a metric: D(C) =
∑

Ci
d(C,Ci)

Also known as clustering aggregation

Mirkin Metric
The metric reflects the numbers of pairs of instances …

… being together in the overall clustering, but separate in Ci

… and vice versa
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Other Ensembles

Ensemble methods are not limited to machine learning tasks alone
For example, in the field of recommender systems they are known as hybrid
recommender system

I e.g. combine a content based recommender with a collaborative filtering one
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The End
Next: Text Mining + Tools
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