Information Retrieval and Evaluation Knowledge Discovery and Data Mining 2 (VU) (707.004)

Heimo Gursch, Roman Kern

ISDS, TU Graz

2019-04-04

Heimo Gursch, Roman Kern (ISDS, TU Graz) Information Retrieval and Evaluation

2019-04-04 1/66

Outline

Basics

- Foundations
- Inverted Index
- Text Preprocessing

2 Advanced Concepts

- Relevance Feedback
- Query Processing
- Learning-To-Rank
- Probabilistic IR
- Latent Semantic Indexing

Evaluation

Applications & Solutions

- Distributed & Federated Search
- Content-based Recommender systems
- Open Source Solutions
- Commercial Solutions

Basics Inverted Index & Text-Preprocessing

Heimo Gursch, Roman Kern (ISDS, TU Graz) Information Retrieval and Evaluation

Definition

Information Retrieval (IR) is **finding material** (usually documents) of an **unstructured** nature (usually text) that satisfies an **information need** from within **large collections** (usually stored on computers).

The term "term" is very common in Information Retrieval and typically refers to single words (also common: bi-grams, phrases, ...)

Basic assumptions of Information Retrieval

Collection Fixed set of documents

Goal Retrieve documents with information that is **relevant** to user's **information need** and help her complete a **task**.

Structured data

- Format and type of information is known
- IR task: normalize representations between different sources
- Example: SQL databases

Semi-structured data

- Combination of structured and unstructured data
- IR task: extract information from the unstructured part and combine it with the structured information
- Example: email, document with meta-data

Unstructured data

- Format of information is not know, information is hidden in (human-readable) text
- IR task: extract information at all
- Example: blog-posts, Wikipedia articles

This lecture focuses on unstructured data.

Split process

Indexing Convert all input documents into a data-structure suitable for fast searching

Searching Take an input query and map it onto the pre-processed data-structure to retrieve the matching documents

Inverted index

- Reverses the relationship between documents and contained terms (words)
- Central data-structure of a search engine

Dictionary

Sorted List of all terms found in all documents

Postings

Information about the occurrence of a term, consisting of:

Document (DocID) Document identifier, i. e. , in which document the term was found

Term Frequency (TF) How often the term occurs in the document^a

^{*a*}The term frequencies could also be calculated by counting the position entries. As computing time is more precious than memory, the term frequencies are stored as well.

Example

Document 1

Sepp was stopping off in Hawaii. Sepp is a co-worker of Heidi.

Document 2

Heidi stopped going to Hawaii. Heidi is a co-worker of Sepp.

Dictionary	\mapsto	Postings	
co-worker	\mapsto	(Doc:1; TF:1; Pos:10);(Doc:2; TF:1; Pos:9)	
going	\mapsto	(Doc:2; TF:1; Pos:3)	
Hawaii	\mapsto	(Doc:1; TF:1; Pos:6);(Doc:2; TF:1; Pos:5)	
Heidi	\mapsto	(Doc:1; TF:1; Pos:12); (Doc:2; TF:2; Pos:1,6)	
Sepp	\mapsto	(Doc:1; TF:2; Pos:1,7); (Doc:2; TF:1; Pos:11)	
stopped	\mapsto	(Doc:2; TF:1; Pos:2)	
stopping off	\mapsto	(Doc1; TF:1; Pos 3)	

Properties

Properties

- Search for terms
- Formulate boolean queries
- Search for phrases (i. e., terms in a particular order)
- Information where the term occurred in the document
- Possible creation of snippets
- Documents can be ranked by the number of terms they contain

Keep in mind that an inverted index

- ... takes up additional space, not only storing the original documents, but also the inverted index
- ... must be kept up to date

To make a text indexable, a couple of steps are necessary:

- Detect the language of the text
- Oetect sentence boundaries
- Oetect term (word) boundaries
- Stemming and normalization
- Remove stop words

Letter Frequencies

Letter	Percentage English	e of occurrence German
А	8.17	6.51
Е	12.70	17.40
I	6.97	7.55
0	7.51	2.51
U	2.76	4.35

N-Gram Frequencies

Better-more elaborate-methods use statistics over more than one letter, e. g. statistics over two, three or even more consecutive letters.

First approach Every period marks the end of a sentence Problem Periods also mark abbreviations, decimal points, email-addresses, etc. Utilize other features Is the next letter capitalized? Is the term in front of the period a known abbreviation? Is the period surround by digits? Ο ...

Goal

- Split sentences into tokens
- Throw away punctuations

Possible Pit Falls

- White spaces are no safe delimiter for word boundaries(e.g. New York)
- Non-alphanumerical characters can separate words, but need not (e.g. *co-worker*)
- Different forms (e.g. white space vs. whitespace)
- German compound nouns (e. g. *Donaudampfschiffahrtsgesellschaft*, meaning *Danube Steamboat Shipping Company*)

< □ >

Supervised Learning

- Train a model with annotated training data, use the trained model to tokenize unknown text
- Hidden-Markov-Models and conditional random fields are commonly used

Dictionary Approach

- Build a dictionary (i. e. list) of tokens
- Go over the sentence and always take the longest fitting token (greedy algorithm!)
- Remark: Works well for Asian languages without white spaces and short words. Problematic for European languages

< □ >

Normalization

Some definitions

Token Sequence of characters representing a useful semantic unit, instance of a type

Type Common concept for tokens, element of the vocabulary

Term Type that is stored in the dictionary of an index

Task

Map all possible tokens to the corresponding type

Store all representing terms of one type in the dictionary

Solutions

- Provide list of different representations
- Provide rules for mapping representations to main form
- Map different spelling version by using a phonetic algorithm

Heimo Gursch, Roman Kern (ISDS, TU Graz)

Information Retrieval and Evaluation

- 2 2019-04-04 17/66

< ロ > < 四 > < 回 > < 回 > < 回 >

Definition Goal of both Reduce different grammatical forms of a word to their common infinitive^a Stemming Usage of heuristics to chop off / replace last part of words (Example: Porter's algorithm). Lemmatization Usage of proper grammatical rules to recreate the infinitive.

^{*a*}The common infinitive is the form of a word how it is written in a dictionary. This form is called lemma, hence the name *Lemmatization*.

Examples

- Map do, doing, done, to common infinitive do
- Map going, went, gone to go

• • • • • • • • • • • •

Stop Words

Definition Extremely common words that appear in nearly every text Problem As stop words are so common, their occurrence does not characterise a text

Solution Just drop them, i. e., do not put them in the index directory

Common stop words

- Write a list with stop words (List might be topic specific!)
- Usual suspects: articles (*a*, *an*, *the*), conjunction (*and*, *or*, *but*, ...), preand postposition (*in*, *for*, *from*), etc.

Solution

Stop word list Ignore word that are given on a list (black list) Problem Special names and phrases (*The Who, Let It Be, ...*) Solution Make another list... (white list)

Advanced Concepts Relevance Feedback, Query Processing, ...

Heimo Gursch, Roman Kern (ISDS, TU Graz) Information Retrieval and Evaluation

Integrate feedback from the user

- Given a search result for a user's query
- ... allow the user to rate the retrieved results (good vs. not-so-good match)
- This information can then be used to re-rank the results to match the user's preference
- Often automatically inferred from the user's behaviour using the search query logs
- ... and ultimately improve the search experience

The query logs (optimally) contain the queries plus the items the user has clicked on (the user's session)

Pseudo relevance feedback

- No user interaction is needed for the pseudo relevance feedback
- ... the first n results are simply assumed to be a good match
- As if the users has clicked on the first results and marked them as good match
- ullet ightarrow often improves the quality of the search results

Pseudo relevance feedback is sometimes also called blind relevance feedback

Modify the query, during of after the user interaction

- Query suggestion & completion
- (Automatic) query correction
- (Automatic) query expansion

- The user start typing a query
- ... automatically gets suggestions
- ullet ightarrow to complete the currently typed word
- ullet ightarrow to complete a whole phrase (e.g. the next word)
- ullet ightarrow suggest related queries

- The user entered a query, which may contain spelling errors
- ... automatically correct or suggest possible rectified queries
- ... also known as Query Reformulation
- ullet ightarrow use other users behaviour (harvest query logs)
- $\bullet \ \to$ use the frequency of terms found in the indexed documents (and the similarity with the entered words)

Notebook with various distances (Levenshtein being the best known): http://nbviewer.ipython.org/gist/MajorGressingham/7691723

Heimo Gursch, Roman Kern (ISDS, TU Graz)

▲ ■ ▶ ■ つへで 2019-04-04 26/66

イロト イロト イヨト イヨト

- The user has entered a query
- ... automatically add (related) words to the query
- $\bullet \ \rightarrow$ Global query expansion only use the query plus corpus or background knowledge
- $\bullet \ \rightarrow$ Local query expansion conduct the search and analyse the search results

- Uses only the query and background knowledge
- Example: Use of a thesaurus
 - Query: [buy car]
 - Use synonyms from the thesaurus
 - Expanded query: [(buy OR purchase) (car OR auto)]

- Uses the query plus the search results
- ... conceptually similar to the pseudo relevance feedback
- Look for terms in the first n search results and add them to the query
- Re-run the query with the added terms

A common feature of search engines is the more like this search

- Given a search results
- ... the user wants items similar to one of the presented results
- This can be seen as: taking a document as query
- \rightarrow which is a common implementation (but restricting the query to the most discriminative terms)

Motivation from Web-Search

- Relevance might be due to a lot of different reasons
 - Keywords in the text or the meta-data
 - Anchor texts
 - PageRank
 - ... many other
- Basic idea:
 - Use evidence (from users)
 - ... which source of information
 - ... is the most beneficial
 - ... by the use of Machine Learning

Learning-To-Rank

Supervised Learning - Setting

- Number of queries $Q = \{q_1, q_2, \dots, q_m\}$
- Set of documents $\mathcal{D} = \{d_1, d_2, \dots, d_N\}$
 - Each queries has labelled relevant documents
 - With labels $\mathcal{Y} = \{1, 2, \dots, l\}$
 - being ranked, i. e. $l \succ l 1 \succ \cdots \succ 1$
 - Relevant documents for query q_i : $D_i = \{d_{i,1}, d_{i,2}, \dots, d_{i,n_i}\}$
 - Labels for the query q_i : $y_i = \{y_{i,1}, y_{i,2}, ..., y_{i,n_i}\}$
- Training data set: $S = \{(q_i, D_i), \mathbf{y}_i\}_{i=1}^m$
 - ► By replacing (*q*_i, *D*_i) by representative features

H. Li, "A Short Introduction to Learning to Rank," IEICE Trans. Inf. Syst., vol. E94-D, no. 1, pp. 1–2, 2011.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supervised Learning - Data Labelling

- Where to take the labelling information from?
 - Directly from human judgements
 - ★ e.g., perfect, excellent, good, fair, bad
 - Indirectly via user behaviour
 - ★ e.g., via Web logs analysis

Note: Ordinal classification (ordinal regression) vs. ranking, i. e. , ranking is about recreating the expected ordering

Supervised Learning - Main Approaches

- Pointwise approach
 - Transform the problem in a classification, regression or ordinal classification
 - ▶ e.g., SVM for ordinal classification, i.e., find parallel hyperplanes
- Pairwise approach
 - ► Transform the problem in a pairwise classification, pairwise regression
 - ▶ e.g., Ranking SVM, i.e., to classify the order of pairs
- Listwise approach
 - Directly learn/optimise the ranking
 - e.g. SVM MAP, i.e. to optimise on a scoring function (goodness of ranking)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Information flow

The classic search model

Heimo Gursch, Roman Kern (ISDS, TU Graz)

Information Retrieval and Evaluation

2019-04-04 35/66

Every transformation can hold a possible information loss

- Task to query
- Query to document
 - Information loss leads to uncertainty
 - Probability theory can deal with uncertainty

Basic idea behind probabilistic IR

- Model the uncertainty, which originates in the imperfect transformations
- Use this uncertainty as a measurement how relevant a document is, given a certain query

Basic model

- Given a query q
 - ... and an (unknown/uncertain) set of relevant document $\mathcal D$
 - ► ... and irrelevant documents ¬D
- Representation of a document d_i
- $P(D|d_i)$ is the probability that d_i is relevant and $P(\neg D|d_i)$ that it is irrelevant
- Rank documents in decreasing order of probability of relevance $P(D|q, d_i)$

Binary Independence Model

- **Binary:** documents and queries represented as binary term incidence vectors
- Independence: terms are assumed to be independent of each other

Note: Computing the "true" probabilities would not be feasible

Basic Idea

- Train a probabilistic model *M*_d for document *d*, i. e. , as many trained models as documents
- *M_d* ranks documents on how possible it is that the user's query *q* was created by the document *d*
- Results are document models (or documents, respectively) which have a high probability to generate the user's query

Alternative point of view

- Intuitively, each document defines a "language"
- What is the probability to generate the given query, given a language model
- What is the probability to generate the given document, given a language model

Successive Probability of query terms

 $P(t_1t_2...t_n) = P(t_1)P(t_2|t_1)P(t_3|t_1t_2)...P(t_n|t_1...t_{n-1})$

Unigram Languge Model

$$P_{uni}(t_1t_2\ldots t_n) = P(t_1)P(t_2)\ldots P(t_n)$$

Bigram Languge Model

$$P(t_1t_2\ldots t_n) = P(t_1)P(t_2|t_1)P(t_3|t_2)\ldots P(t_n|t_{n-1})$$

Probability $P(t_n)$ Probabilities are generated from the term occurrence in the document in question

And many more... A lot more, and more complex models are available

Note: Smoothing plays an important role in language models

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Going beyond simple indexing

- Term-document matrices are very large
- But the number of **topics** that people talk about is small (in some sense)
 - Clothes, movies, politics, ...
- Can we represent the term-document space by a lower dimensional latent space?

Latent Semantic Indexing (LSI)

- is based on Latent Semantic Analysis (see KDDM1), which
- is based on Singular Value Decomposition (SVD), which
- creates a new space (new orthonormal base), which
- allows to be mapped to lower dimensions, which
- might improve the search performance

SVD overview

• For an $m \times n$ matrix A of rank r there exists a factorization (Singular Value Decomposition = SVD) as follows:

• $M = U \Sigma V^T$

- ... *U* is an $m \times m$ unitary matrix
 - ... Σ is an $m \times n$ diagonal matrix
 - ... V^{T} is an $n \times n$ unitary matrix
- The columns of *U* are orthogonal eigenvectors of *AA*^{*T*}
- The columns of V are orthogonal eigenvectors of A^TA
- Eigenvalues $\lambda_1 ... \lambda_r$ of AA^T are the eigenvalues of A^TA .

Matrix Decomposition

SVD enables lossy compression of a term-document matrix

- Reduces the dimensionality or the rank
- Arbitrarily reduce the dimensionality by putting zeros in the bottom right of sigma
- This is a mathematically optimal way of reducing dimensions

Reduced SVD

- If we retain only k singular values, and set the rest to 0
- Then Σ is $k \times k$, U is $m \times k$, V^T is $k \times n$, and A_k is $m \times n$
- This is referred to as the reduced SVD
- It is the convenient (space-saving) and usual form for computational applications

Approximation Error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error

Application of SVD - LSI

- From term-document matrix A, we compute the approximation A_k .
- There is a row for each term and a column for each document in A_k
- Thus documents live in a space of *k* << *r* dimensions (these dimensions are not the original axes)
- Each row and column of A gets mapped into the k-dimensional LSI space, by the SVD.
- Claim this is not only the mapping with the "best" approximation to *A*, but in fact improves retrieval.

Application of SVD - LSI

- A query q is also mapped into this space
- ... within this space the query q is compared to all the documents
- ... the document closest to the query are returned as search result

LSI - Results

- Similar terms map to similar location in low dimensional space
- Noise reduction by dimension reduction

Evaluation Assess the quality of search

Heimo Gursch, Roman Kern (ISDS, TU Graz) Information Retrieval and Evaluation

2019-04-04 49/66

Two basic questions / goals

- Are retrieved documents relevant for the user's information need?
- Have all relevant documents been retrieved?

In practice these two goal contradict each other.

Evaluation Scenario

- Fixed document collection
- Number of queries
- Set of documents marked as relevant for each query

Main Evaluation Metrics

∃ ► < ∃ ►</p>

Precision & Recall

2019-04-04 52/66

Mean Average Precision - MAP

- ... mean of all average precision of multiple queries
- $Map = \frac{1}{|Q|} \sum_{q \in Q} AP_q$
- $AP_q = \frac{1}{n} \sum_{k=1}^{n} Precision(k)$

(Normalised) discounted cumulative gain (nDCG)

• ... where there is a reference ranking the relevant results

Application & Solutions Federated Search, Recommender Systems, Open-source, & commercial IR solutions

Distributed Search - Architectures

2019-04-04 55/66

イロト イタト イヨト イヨト 一日

Term Based Index Split

Index Creation

- The index is split based on dictionary terms
- Called Global Inverted Files or Global Index Organization

• Example:

...

- Terms beginning with A to B
 - Terms beginning with C to G

Properties

- Single index is split over multiple machines
- Each index returns part of its postings to broker
- Broker merges postings to generate result
- ullet \Rightarrow High network traffic, high load at broker

Document Based Index Split

Index Creation

- The index is split based on document categories
- Called local inverted file
- Example:

3 ...

- Documents from computer science
- 2 Documents from physics

Properties

- Each partition is a full index
- Broker unifies the result lists
- \Rightarrow re-ranking problem at broker

Definition

- Simultaneous search in multiple search engines
- Single user interface or API to access multiple search engine

Examples:

Properties

- Unified access to multiple search engines
- Each search engines is a full search on its own, not only an index
- ullet \Rightarrow Re-ranking problem at broker
- \Rightarrow Access control

Recommender systems - Overview

- Recommender systems should provide usable suggestion to users
- Recommender systems should show new, unknown-but similar-documents
- Recommender systems can utilize different information sources

Content-based Recommender

Finds similar documents on the basis of document content

Collaborative Filering

Employs user rating to find new and useful documents Knowledge-based Recommender

Makes decisions based on pre-programmed rules

Hybrid Recommender

Combination of two or three other approaches

Types of Content-based Recommender

Document-to-Document Recommender

Document-to-User Recommender

Heimo Gursch, Roman Kern (ISDS, TU Graz)

Information Retrieval and Evaluation

Building a Recommender by Using an Index

Document-to-Document Recommender

- Take the terms from a document
- Onstruct a (weighted) query with them
- Query the index
- Results are possible candidates for recommending

Document-to-User Recommender

- Create a user model from
 - Terms typed by the user
 - Documents viewed by the user
 - \Rightarrow Simplest user model is just a set of terms
- Onstruct a (weighted) query with them
- Query the index
 - Results are possible candidates for recommending

Apache Lucene

- Very popular, high quality
- Backbone of many other search engines, e.g. Apache Solr (fully), Elasticsearch
 - Lucene is the core search engine library
 - Solr provides a search solution (service & configuration infrastructure, distribution, indexing, etc.)
 - Elasticsearch provides a search solution and document database focusses on distributed
- Implemented in Java, bindings for many other programming languages

Other Open-Source Search Engines

Xapian

- Written in C++, Support for many (programming) languages
- Used by many open-source projects

Terrier

- Many algorithms
- Academic background

Sphinx

- Written in C++
- Offers also features comparable to database

Whoosh

for Pythonistas

Lemur & Indri

- Language models
- Academic background

What customers want

Indexing pipeline

And also: user interface, access control mechanisms, logging, etc.

Heimo Gursch, Roman Kern (ISDS, TU Graz)

2019-04-04 64/66

・ロト ・ 四ト ・ ヨト ・ ヨト

Dassault Exalead

- Dassault acquired the Exalead project
- Offers specialised features for CAD/CAE/CAM files

Sinequa

- Expert Search
- Creates new views, i. e. do not only show result list, but combine results to new unit

Attivio

• Use SQL statements in queries

IntraFind

• Elasticearch-based commercial search solution

And many, many more...

The End Next: Pattern Mining

Heimo Gursch, Roman Kern (ISDS, TU Graz) Information Retrieval and Evaluation

2019-04-04 66/66

▶ < ≣ ▶