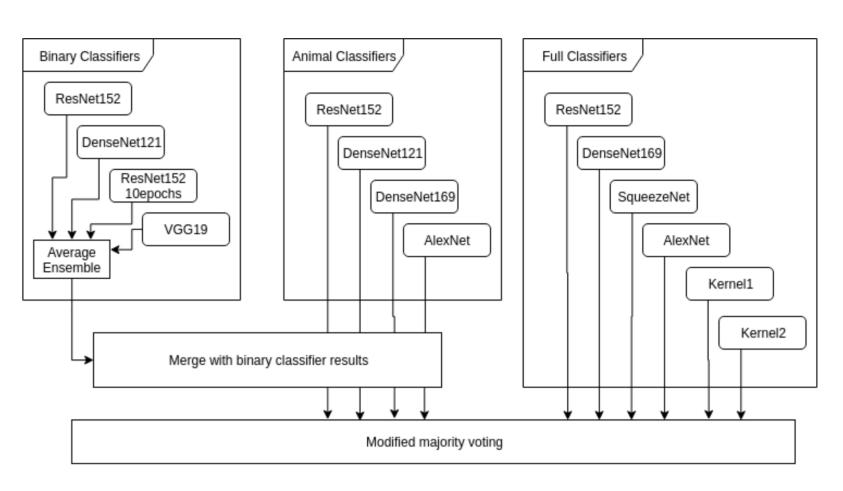

Animal classification from trap cameras - from iWildCam 2019 Kaggle challenge


Adrian Spataru, Hussain Hussain, Nikita Lvov Institute of Interactive Systems and Data Science

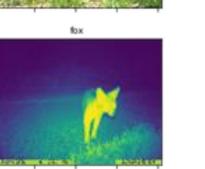
Problem and Data

- Trap images
- Training set taken in the American Southwest
- Test set taken in the American Northwest
- 14 classes: 13 animals + empty
- Unevenly distributed

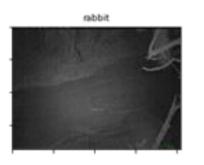
Ensemble

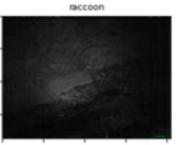
- Average ensemble × 4 binary classifiers
- Merge result × 4 animal classifier → 4 complete models

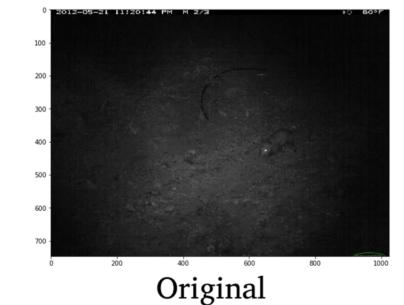
nature/environment

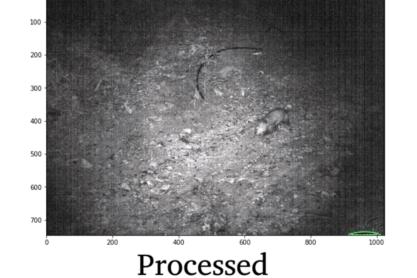


Samples from training set


Samples from test set


Image pre-processing ¹


Approaches


For better image recognition experience the next techniques were used:

- CLAHE (Contrast Limited Adaptive Histogram Equalization)
- Simple WB (Algorithm stretching the image channels to the specified range)
- Rotation and Warping

An example that shows the result of the image preprocessing stage Deep learning models

Finally: MAJORITY VOTING ENSEMBLE × 10 models Filtered voting

Empty \rightarrow **AT LEAST 6 models** voted for empty

Misclassified deer as dog/coyote \rightarrow replace dog/coyote votes with deer

Results

- Private/public leaderboard on kaggle.com
- Included late submissions (denoted with *)

Approach	Private	Public
Time metadata	0.80	0.90
DenseNet169 (all in one)	0.103	0.106
DenseNet121 (2-stage)	0.108	0.113
Average ensemble (on 2 stages)	0.107	0.110
*Majority vote (not filtered)	0.106	0.118
*Majority vote + reassign votes	0.152	0.165
*Majority vote + empty vote majority	0.116	0.124
Maj. vote - fully filtered - all models	0.159	0.166
*Maj. vote filtered (only 2-stage)	0.154	0.162
*Maj. vote filtered (only full)	0.148	0.161

Insights

- Filtered majority voting: ~50% improvement over a single model
- Average ensemble didn't actually improve
- 2-stage models > full models ➡ divide and conquer
- Necessity of taking empty class on majority

- **Two-stage Pipeline Model** (Idea from Sadegh, et al., 2018²)
- The binary classifier: Is the animal presented or not?
- The animal classifier: Which animal is it?
 - ➡ Override the second classifiers result by the first one
- **Full model** classify all of the 14 classes including the *empty* class
 - includes two implemented Kaggle kernels ^{3,4}
- Average ensemble of 2-stage methods
- Separate approach
- Average ensemble × 4 binary classifiers
- Average ensemble **× 4 animal classifiers**
- Merge \Rightarrow 1 classifier

• Reassigning votes helped the most. Empty majority: not as much

Rank

- 21st/336 on public leaderboard
- 22nd/336 on private leaderboard (in top 7%)

Literatur / Zitat

- ¹ Chanran, K. (2019, March). *Image Pre-processing for Wild Images.* Retrieved from kaggle.com:https://www.kaggle.com/seriousran/image-pre-processing-for-wildimages#CLAHE-&-Simple-WB
- ² Sadegh, M. N., Nguyenb, A., Kosmalac, M., Swansond, A., Palmere, M. S., Packere, C., & Clunea, J. (2018). Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. PNAS Journal.
- ³ Preda, G. (2019, May). *iWildCam 2019 EDA and Prediction.* Retrieved from https://www.kaggle.com/gpreda/iwildcam-2019-eda-and-prediction
- ⁴ (2019, March). *DenseNet Transfer Learning iWildCam 2019.* Retrieved from https://www.kaggle.com/xhlulu/densenet-transfer-learning-iwildcam-2019

