
Query Autocompletion

Knowledge Discovery and Data Mining 2 VU (706.715)
Summer Term 2019

Karmen Gostiša
karmen.gostisa@student.tugraz.at

ABSTRACT
This paper describes the implementation and evaluation of

a query autocompletion (QAC) mechanism, also known as

autocomplete suggestion. Given a prefix containing one or

more characters entered in a search box, the system returns

a list of suggestions to complete the prefix to a full query.

The paper starts with a brief introduction explaining moti-

vation and historical background of the topic. Afterwards it

describes the practical approach, going from choosing and

parsing dataset to creating QAC. Furthermore, evaluation

approach is presented and results of developed and base-

line QAC systems are provided. In the end conclusions are

drawn.

1. INTRODUCTION
1.1 Motivation
Word completion has been around as a feature of word ed-

itors and command shells for almost a half of century. It is

a convenient feature that offers the user a list of words after

one or more letters have been typed. The most typical usage

is in the field of information retrieval, that provides a list of

suggested queries when users begin to enter their query in

the search box. User’s incomplete input is often known as

a query prefix and suggested queries as query completions.

Query autocompletion (QAC) mechanism helps formulating

queries when users do not have a clear “image” of a query in

advance. It also helps avoiding spelling mistakes and saves

time. However, QAC is not only used as a web search en-

gine but also in other services for search tasks, for example,

YouTube provides QAC for searching videos; Facebook has

a QAC that is employed for finding friends, events, pages

and other content; and Twitter for searching tweets [1].

1.2 Historical background
The original idea of QAC comes from more than half a cen-

tury ago, when Longuet-Higgins and Ortony [2] discussed a

method to help decrease the number of keystrokes needed

to complete a word, specifically commands entered by de-

velopers. In that manner, QAC is actually a form of word

prediction: when first letter or letters of a word are written,

a word predictor lists possible words of choices that can be

selected; or in some other form, the most likely following

words are listed.

Early work on word prediction aimed both on evaluating

the cognitive benefits and algorithmic development. It was

found that time saved by reduction of keystrokes through

word prediction was often compensated by time spent for

going through the list of predicted words and selecting the

desired one [3]. The optimal and reasonable balance between

keystroke saving and cognitive load was displaying five pre-

dicted words in a vertical form [4]. Algorithmic work focused

on predicting characters, completing words or combinations

of the two. Character predictors reduce time spent on typing

input by making more likely letters faster to select. Word

completing systems offer words based on the user input.

Combined approaches do both, for example, the Reactive

Keyboard, is a prototypical example of word completion in

early 1990s. Its word completion was in the beginning based

only on a standard dictionary but then extended to adap-

tive modelling that produced word completions based on

previously entered text. Similarly, user’s previously entered

text [5] and long-term search history [6] have been taken into

account, although not implemented into a word completion

system. Word completion techniques mostly use a special

tree structure used to match the input and its completions,

that is similar to the one some QAC techniques use. Both

kind of techniques incorporate simple lexical models based

on n-grams, extracted directly from collection of texts or

query log [7].

In the early 2000s, Raskin [8] discussed the use of word

prediction in which users get instant feedback as they en-

ter a query. Such word prediction is also called an incre-

mental search or real-time suggestions and it is actually a

traditional search interface, consisting of three steps: sub-

mitting a query, system computing a result page, user re-

ceiving the result page. Since then, QAC has been used

by web browsers, web sites, operating systems, databases,

email clients and search engines.

2. PRACTICAL APPROACH
QAC was implemented using Solr, a search platform built on

Apache Lucene [9]. This platform was chosen because it is

open-source, reliable, scalable and fault tolerant, providing

full-text indexing, search and auto-suggest feature. Imple-

mentation steps are described in the following Subsections.



2.1 Choosing dataset
To build an English based QAC, a proper dataset has to

be chosen as its starting point. We used a Simple English

Wikipedia, containing 117,527 articles. The dump [10] is

available in BZ2 archive format and its extraction yields

a single XML file with the size of 1.13GB. We chose this

dataset because of its diversity on topics, scientific as well as

unscientific ones. An English dictionary, for example, would

not be a good choice for QAC as it is only a collection of

English words.

2.2 Parsing dataset file
The XML file was first processed using a command provided

by Gensim [11] that streams through all the XML articles,

decompressing and extracting plain text from articles and

their sections, putting it in JSON format. Afterwards, we

wrote a script to process plain text data, namely removing

redundant characters such as asterisks, single quotes and

triple equality sign. A new final JSON file was produced,

containing clean data fields describing Wiki’s article: ID,

title and content. Following is the first JSON line from

the dataset (with shortened content field):

{
”id”: 1,

”title”: ”April”,

”content”: ”Introduction April is the 4th month

of the year, and comes between March and May.

It is one of four months to have 30 days. April

always begins on the same day of week as July,

and additionally, January in leap years...”

}

2.3 Creating a collection and indexing
JSON data file created in the previous step was added to

Solr’s collection, representing Simple English Wikipedia da-

taset. A very important document that was modified in

this step, was XML schema that stores the details about

the fields and field types Solr is expected to understand.

Four fields were added: ID, title, content and titleAnd-

Content. The last one is a copy field, a field that has two

sources (title and content) and is used for indexing.

2.4 Configuring an autocomplete component
Solr provides Suggester, a component for automatic sugges-

tions for query terms. Its main parameters are:

• Dictionary implementation: specifying how terms

are stored in the suggestion dictionary;

• Lookup implementation: specifying how terms are

found in the suggestion dictionary;

• Field: a field from the index to use as the basis of

suggestion terms;

• Analyzer: specifying what tokenizers and filters are

applied at index-time and query-time.

Some dictionary and lookup implementation require addi-

tional parameters to be configured.

Our solution uses a standard document dictionary contain-

ing terms taken from the index. The lookup strategy looks

at the last N tokens (configurable parameter) plus the pre-

fix of the final token the user is typing, to predict the most

likely next token. Returned suggestions are n-gram tokens.

Analyzer carries out the same analysis both at index and

query-time as follows:

• Stopword filter: Following stopwords taken from Lu-

cene’s StopAnalyzer were removed: a, an, and, are, as,

at, be, but, by, for, if, in, into, is, it, no, not, of, on,

or, such, that, the, their, then, there, these, they, this,

to, was, will, with.

• Standard tokenizer: Text was split into tokens, treat-

ing whitespace and punctuation as delimiters.

• Lowercase filter.

2.5 Implementing the web application
To see how proposed solution worked in practice, a web ap-

plication was developed, containing short description and a

search bar. As we typed in the bar, 20 auto-suggestions were

shown. In the backend, typing in the field invoked a func-

tion that requested data from the Solr server. AJAX was

used in order to enable updating suggestions menu without

reloading the whole page.

3. EVALUATION AND RESULTS
In this Section we first discuss our evaluation approach.

Next, several rank-based metrics used for QAC evaluation

are described. Finally, we present the results.

3.1 Approach
QAC system is good if it returns user’s intended query at

the top of the list, even when only short input has been

provided. A lot of QAC research is based on a query log

that contains records with at least three main components:

a submitted query, a user ID and a timestamp. The first can

be used to generate query prefixes, while the other two are

used for extracting information about user and time. There

are not many publicly available query logs as sharing per-

sonal queries may lead to personal information leakage so

to evaluate QAC developed in this project, top 100 Google

search queries in the US (as of April 2019) [12] were used

instead. For each query, a random query prefix was gener-

ated. Random generator produced a random offset number

so that prefix was at least three characters long and not

longer than a half of a final query rounded up. For example,

possible prefix queries generated for the query “weather” are

“wea” and “weat”. Generated prefix was then given to QAC

and 20 suggestions were retrieved.

To get a better understanding of how good developed QAC

is, the best option is to compare it with other existing QAC



mechanisms. In our case that was Google Suggest.

3.2 Metrics
Mean Reciprocal Rank (MRR)
A standard measure to evaluate the effectiveness of QAC

rankings has become Mean Reciprocal Rank (MRR) [13]. It

is associated with a user model where the user only wishes

to see one relevant document, in our case one relevant query

completion. Representing the average of reciprocal ranks, it

is computed as follows:

MRR =
1

k

k∑
i=1

1

ranki
(1)

ranki refers to a rank position of the i-th final query submit-

ted by user. For example, user enters query prefix “know”

and the system retrieves queries completions in next or-

der: knowledge, knowledge discovery, know your meme. User

chooses the third one, marking know your meme as the final

query so the reciprocal rank for this query is 1
3
. Fig. 1 de-

picts MRR value in dependency of an average rank position

of queries.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Average rank position

M
R

R

Figure 1: A chart depicting MRR depending on av-

erage rank position of queries.

Success rate at top K (SR@K)
Although MRR is great for evaluating QAC results where

only few top items are relevant, another metric is introduced,

i.e. success rate at top K (SR@K). This metric presents the

average ratio of the final query that is found in the top K

query completion suggestions. Two values were chosen for

K, namely 5 and 10.

Average overlap score (AOS)
This metric measures a similarity score between two ranked

lists. It upgrades the idea of set intersection with the concept

of rank. In general, it determines the ratio of overlapping

content at different depths. For example, two lists are com-

pared in Table 1, showing fraction of elements overlapping

at various depths. Average overlap score is computed as the

average of the last column.

Depth List A List B Set intersection Fraction

1 a c {} 0

2 a,b c,b {b} 1/2

3 a,b,c c,b,f {b,c} 2/3

4 a,b,c,d c,b,f,d {b,c,d} 3/4

5 a,b,c,d,e c,b,f,d,g {b,c,d} 3/5

Table 1: Fraction of elements from List A and B

overlapping at various depths.

This kind of approach naturally gives more importance to el-

ements at higher ranks as a common element at lower depth

contributes to all further set intersections. It is therefore

good for assessing how similar two rank-based lists are.

3.3 Results
The results of previously described evaluation metrics are

shown in Table 2.

Our solution Google Suggest

MRR 0.205 0.510

SR@5 (%) 29 61

SR@10 (%) 36 67

AOS (%) 13

Table 2: Evaluation metrics values for our solution

and Google Suggest.

Developed QAC provided MRR value 0.205, meaning that

final queries were on average on 5th position. Google’s MRR

equals to 0.510, meaning final queries were on average on 2nd

position. Our solution put 29% of final queries in the top

5 suggestions and 36% in the top 10 suggestions. Success

rates at top K queries are higher on Google Suggest, being

61% for top 5 and 67% for top 10. The AOS for both lists

is 13%.

4. CONCLUSION
This paper started with a short introduction of the query

autocompletion topic, describing motivation and historical

background. Afterwards, our QAC implementation was pre-

sented, along with the evaluation approach, metrics and re-

sults.

The results our solution achieved look very promising, es-

pecially being compared to Google Suggest, a very popular

search system. Evaluation showed our QAC put final queries

on average on 5th position, meanwhile Google Suggest put

them on 2nd. Even though the 5th position is not an ideal



one, it still comes very high in a list, enabling user to rela-

tively fast find the desired query completion.

Several Solr’s lookup implementations were tested during

development, but the final decision was to only keep the

best-performing one. Many other implementations also work

in a different way as they provide suggestions based on the

whole content of the field from the index, that was specified

to use as the basis of suggestion terms. In our approach

that field contains title of the article as well as its content.

Providing both as suggestions would be irrational. We tried

to use only title as the basis of suggestion terms but the

results were not promising. By this, we learnt that Solr

Suggester is good for providing suggestions based on short

text field, for example, movie titles, people names, locations

and similar.

The solution would also apply to a basic search scenario as

once dataset is indexed, queries can be run using Solr Admin

UI. This scenario, however, requires the user has recreated

all our implementation steps and has his own instance of

Solr up and running.

In summary, I gathered a lot of new insights in the field of

Information retrieval. I learnt how to process large dataset,

clean the data and prepare it in a useful form for solving

query autocompletion problem. It was also the first time I

used Apache Solr search platform and after initial struggles

getting it up and running, I learnt a lot new about indexing

and using Solr for search as well as query autocompletion.

5. REFERENCES
[1] F. Cai, M. De Rijke, et al., “A survey of query auto

completion in information retrieval,” Foundations and

Trends R© in Information Retrieval, vol. 10, no. 4,

pp. 273–363, 2016.

[2] H. C. Longuet-Higgins and A. Ortony, “The adaptive

memorization of sequences,” Machine Intelligence,

vol. 3, 1968.

[3] G. Vanderheiden and D. Kelso, “Comparative analysis

of fixed-vocabulary communication acceleration

techniques,” Augmentative and Alternative

Communication, vol. 3, no. 4, pp. 196–206, 1987.

[4] A. Swiffin, J. Arnott, J. A. Pickering, and A. Newell,

“Adaptive and predictive techniques in a

communication prosthesis,” Augmentative and

Alternative Communication, vol. 3, no. 4, pp. 181–191,

1987.

[5] Z. Bar-Yossef and N. Kraus, “Context-sensitive query

auto-completion,” in Proceedings of the 20th

international conference on World wide web,

pp. 107–116, ACM, 2011.

[6] F. Cai and M. de Rijke, “Selectively personalizing

query auto-completion,” in Proceedings of the 39th

International ACM SIGIR conference on Research and

Development in Information Retrieval, pp. 993–996,

ACM, 2016.
[7] F. Cai and M. de Rijke, “Learning from homologous

queries and semantically related terms for query auto

completion,” Information Processing & Management,

vol. 52, no. 4, pp. 628–643, 2016.

[8] J. Raskin, The humane interface: new directions for

designing interactive systems. Addison-Wesley

Professional, 2000.

[9] “Apache Solr 8.1.1.”

https://lucene.apache.org/solr/. [Online; accessed

June 17, 2019].

[10] “Simple English Wikipedia dumps.”

https://dumps.wikimedia.org/simplewiki/.

[Online; accessed June 17, 2019].

[11] R. Řeh̊uřek and P. Sojka, “Software Framework for

Topic Modelling with Large Corpora,” in Proceedings

of the LREC 2010 Workshop on New Challenges for

NLP Frameworks, (Valletta, Malta), pp. 45–50,

ELRA, May 2010.

[12] “Top 100 Google search queries in the US (as of April

2019).”

https://ahrefs.com/blog/top-google-searches/.

[Online; accessed June 17, 2019].

[13] N. Craswell, Mean Reciprocal Rank, pp. 1703–1703.

Boston, MA: Springer US, 2009.

https://lucene.apache.org/solr/
https://dumps.wikimedia.org/simplewiki/
https://ahrefs.com/blog/top-google-searches/

	Introduction
	Motivation
	Historical background

	Practical approach
	Choosing dataset
	Parsing dataset file
	Creating a collection and indexing
	Configuring an autocomplete component
	Implementing the web application

	Evaluation and results
	Approach
	Metrics
	Results

	Conclusion
	References

