Extracting keywords from Reddit submissions

Rok Hudobivnik

ABSTRACT

Implementing a good automatic keyword extraction algorithm is
no trivial task, it has been attempted many times with various de-
grees of accuracy. The aim of this paper is to present, evaluate and
compare some well known methods for this specific problem. In
this paper we compare methods RAKE, TextRank and keyword
extraction using a LSTM neural network. The LSTM network com-
parison is then further expanded by implementing a bidirectional
LSTM network. Given all of this, the evaluation shows us that the
bidirectional LSTM networks are by far the best choice for the
automatic keyword extraction out of the compared algorithms.

KEYWORDS

datasets, neural networks, RAKE, automatic keyword extraction,
word embedding, TextRank, LSTM

1 INTRODUCTION

Implementing a good automatic keyword or key-phrase extraction
algorithm is no trivial task. It is a quite complex problem of discern-
ing which word out of many is the one that conveys the meaning
of the sentence or a text. The desire to solve this problem comes
from the need for an automatic method that can scan a lengthy text
and summarize with a couple of words or phrases that still retain
the meaning of the initial text. For such a task human extraction of
such words or phrases would be just too slow.

To achieve a solution to this problem, a lot of different attempts
were made, from relying solely on frequencies of words in text,
using the texts to built a network of interconnected words, to using
neural networks. In the following sections some of these approaches
will be explained and later on the results of these approaches will
be compared to one another.

2 RELATED WORK

2.1 Rapid automatic keyword extraction
(RAKE)

In their paper Rose et al. [7] propose an unsupervised, domain-
independent, and language-independent method for extracting key-
words from individual documents. The proposed approach provides
a computationally inexpensive method of keyword extraction over
single documents, but the good aspects are somewhat overshad-
owed by the accuracy of the algorithm. Nonetheless, this algorithm
provides a quick and computationally inexpensive way of acquiring
a baseline for our comparison to the algorithms listed later on. This
approach selects keywords candidates from the input text and con-
structs a co-occurrence graph. The main part of the algorithm then
calculates multiple measures based on that graph, like the degree
of nodes, frequency of occurrence, etc. Based on those metrics, the
candidate keywords are then ranked by their word score.

2.2 TextRank

Mihalcea and Tarau [5] show an implementation of a novel unsu-
pervised graph-based methods of keyword and sentence extraction.
An important aspect of this approach is that it does not require deep
linguistic knowledge. Its weakness however stems from ignoring se-
mantic similarities between different texts. This approach takes its
inspiration from the PageRank [6] algorithm for ranking web pages
based on the number and quality of links to a certain page. The idea
behind TextRank is the same, build a network out of words and
create connections between them based on co-occurrence of those
words in a sentence or a text. Given that, estimates which words are
more important that the others, the most central in the constructed
network. Unlike PageRank, the edges of the network created by
TextRank are undirected. The intuition behind this keyword ex-
traction algorithm is, that the created co-occurrence network will
contain densely connected regions for words, terms, that appear
often and in different contexts.

2.3 LSTM

Long short-term memory neural networks or LSTM for short were
first proposed by Hochreiter and Schmidhuber in 1997 [3]. Since
then the LSTM architecture has been improved and built upon, the
most notable change was the addition of a forget gate by Schmidt
and Schmidhuber [2]. In the recent years the architecture has been
adapted for the in natural language processing due to its ability to
keep track of dependencies between elements of input sequences,
without the vanishing gradient problem that occurs in the simpler
recurrent neural networks (RNN) for longer sequences. Not going
to much into the details about the math behind a single LSTM
cell (Image 1), the main intuition behind this architecture is that,
as mentioned before, each cell keeps track of the dependencies
between the elements in the input sequence. Inside a single LSTM
cell we have an input, an output and a forget gate. These gates
control the flow of information from the input to the cell (input
gate), the extent to which the input stays in the cell (forget gate) and
the extent to which the value in the cell is then used to compute the
output activation of that LSTM cell (output gate). The connections
from and into the gates are weighted and can be recurrent. Said
gates need to be learned during the training phase. For the purposes
of this report a slightly modified version of the LSTM network will
be used (bidirectional LSTM [1]) in addition to the LSTM network
described above.

3 METHODOLOGY

The methods used in this report are mostly implementations of
related works described in the previous section. The only notable ex-
ception comes in the form of LSTM netowrks where some additional
changes were made due to results acquired during preliminary test-
ing.



hy
>

Forget Gate

Figure 1: An illustration of a single LSTM cell.

3.1 Datasets

In our paper we will mostly be dealing with a dataset of submissions
and comments from the platform Reddit!, more specifically from a
Subreddit called Movie Suggestions?. The dataset is a product of
crowdsourced work and is comprised of submissions, comments
and hand denoted keywords. The texts are relatively short (with
average around 60 words per text) in length and contain between 0
and 18 keywords (with the average around 3). For further references,
this will be the dataset used in the experiments and the calculation
of the results.

In addition to the Reddit submissions data, we also used the
INSPEC datset [4], a well known keyword extraction dataset, for
the purpose of transfer learning. A method of supervised learning
where a model is firstly trained on a well established dataset and
afterwards it is fine tuned on the target dataset. in practice such an
approach is often used with smaller or less well defined datasets,
such as, in our case, the Reddit dataset.

To prepare the mentioned datasets for keyword extraciton, sev-
eral preprocessing techniques were implemented, most notably
tokenization, the process of dividing a text/sentence into tokens
and a simple substitution methods, used to remove markdown tags
and some other special characters that might appear in the texts.
For the first two approaches the set of keywords for each text was
left untouched. For the use in deep learning, the part of the dataset,
that contains the keywords of the current text was transformed into
a two dimensional binary array in which the keywords of certain
text are marked with 1 and other words with 0.

3.2 Word embedding

To be able to train the deep learning models, we would need vec-
torized representations of the input texts , since the normal string
versions of words cannot be used. A simple solution to this would
be the use of one-hot encoding of words. That kind of encoding
unfortunately does not retain any dependencies between words, i.e.
words "bird" and "birds" would be considered completely equally
different to one another as perhaps words "computer” and "person".
Since we would like to train the neural network to learn about
connections between words, we will need to use a better encoding
method.

!https://www.reddit.com/
https://www.reddit.com/r/MovieSuggestions/

One such method is Word2Vec, a method of training a model
on a large dataset, to predict what words come next in a certain
sequence. By then taking the second to last layer of this neural
network model, we can extract word encodings. For training the
deep learnign models we will be using a pre-trained Word2Vec
model, that was trained on 100 billion words from a Google News
dataset.

3.3 LSTM

As we described in the beginning of this report, we will use a modi-
fication of the original LSTM [3] network called the bidirectional
LSTM (bi-LSTM) network [1]. This architecture uses uses 2 LSTM
layers for the input data, one for sequences from the original data
and the second one for the same sequences, but this time reversed.
In the end the outputs of the two LSTMs are joined togehter. This
is done to capture any additional hidden features that might not be
apparent from just a normal pass over a sequence.

Additionally, during the fine tuning of the network we have
discovered that we could obtain slightly better results if we used
two bi-LSTM layers one after another instead of just one. Given
that, the final architecture of the network that we used started
with two bi-LSTM layers, followed by a dropout layer, to prevent
overfitting, and afterwards a fully connected layer which is then
connected to a softmax output layer. For the fully connected layer,
we have discovered, similarly to the bi-LSTM article [1], that 150
neurons works best for this problem.

4 EXPERIMENTS AND RESULTS

For the experimental part of this report we have compared the
implementations of the algorithms described above using precision,
recall and the F1 score. The measures were calculated by comparing
the ground truth keywords of the original Reddit dataset and the
keywords extracted by the implemented algorithms.

Method Precision Recall F1-score
Rake 0.797 0.063 0.117
TextRank 0.683 0.089 0.158
LSTM 0.622 0.213 0.317
bidirectional LSTM 0.684 0.258 0.375
LSTM (transfer) 0.623 0.323 0.425

bidirectional LSTM (transfer) 0.518 0.438 0.475

Table 1: Evaluation results of the described keyword extrac-
tion algorithms

As we can see from the table of results (Table 1), the two simpler
algorithms TextRank and RAKE get a very high precision but a very
low recall, meaning that the keywords that are chosen by these two
algorithms are highly likely the true keywords, but at the same time,
they are unable to find more than a handful of these. In contrast the
LSTM algorithms have slightly lower precision, but for that reason
a very high recall compared to the first two, also resulting in a high
F1 score.

Additionally we can also see big differences in the F1 score be-
tween the normally trained LSTM networks and the ones trained
using transfer learning. On the other hand, the differences between


https://www.reddit.com/
https://www.reddit.com/r/MovieSuggestions/

LSTM and bi-LSTM network become more ambiguous with trans-
fer learning, where the LSTM network has a noticeably higher
precision, but still a lower recall.

5 CONCLUSION

To wrap things up, the algorithms performed as expected, with the
simpler two algorithms being on very similar terms in regard to the
results (Table 1) and the deep learning ones performing very much
better. Concluding this report, it needs to be mentioned that the
number of neurons and the architecture of the neural networks are
by no means optimal and could be improved with more extensive
testing.

REFERENCES

[1] Marco Basaldella, Elisa Antolli, Giuseppe Serra, and Carlo Tasso. 2018. Bidirec-
tional Istm recurrent neural network for keyphrase extraction. In Italian Research
Conference on Digital Libraries. Springer, 180-187.

[2] Felix A Gers, Jirgen Schmidhuber, and Fred Cummins. 1999. Learning to forget:
Continual prediction with LSTM. (1999).

[3] Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

[4] Anette Hulth. 2003. Improved automatic keyword extraction given more linguistic
knowledge. In Proceedings of the 2003 conference on Empirical methods in natural
language processing. Association for Computational Linguistics, 216-223.

[5] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In
Proceedings of the 2004 conference on empirical methods in natural language pro-
cessing.

[6] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[7] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic
keyword extraction from individual documents. Text Mining: Applications and
Theory (2010), 1-20.



	Abstract
	1 Introduction
	2 Related work
	2.1 Rapid automatic keyword extraction (RAKE)
	2.2 TextRank
	2.3 LSTM

	3 Methodology
	3.1 Datasets
	3.2 Word embedding
	3.3 LSTM

	4 Experiments and results
	5 Conclusion
	References

