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Recall from earlier
Why KDDM2?
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What are time series?
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What are time series?
Data observed over time
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What are time series?
Stochastic processes indexed by integers

{Xt |t ∈ T} T = Z

Confirmatory data analysis

Goal: See if model is sound

Mainly about: theorems, models, proofs

Pros: Provably correct, theoretically sound

Cons: ”All models are wrong” - George Box
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What are time series?
Data vs Process

xt = {114, 117, 104, . . .}

Exploratory data analysis

Work with data

Pros: fast, domain specific

Cons: possibly unsound

{Xt |t ∈ T} T = Z

Confirmatory data analysis

Work with models

Pros: theoretically sound

Cons: slow, simplification
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What are time series data?
Sunspot counts (monthly)
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What are time series data?
EU stock market prices (daily)?
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What are time series data?
Volcano topography?
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Obtaining time series data
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Obtaining time series data
Databases

Stream data mining repository
http://www.cse.fau.edu/~xqzhu/stream.html

UCI machine learning repository
https://archive.ics.uci.edu/ml/datasets.html

UEA & UCR time series classification repository
http://timeseriesclassification.com/
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Obtaining time series data
Unevenly spaced & incomplete data

Often data are not evenly sampled

Time series theory requires t ∈ Z

Linear interpolation: xt = x0 + t x1−x0
r1−r0

r ∈ R

Missing value imputation
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γ and ρ
Some math we’ll need later
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Some math we’ll need later
Autocovariance

µt = E[Xt ]

γ(τ, k) = E[(Xτ − µτ )(Xk − µk)]

µ̂ = undefined, µ̂t = 1
m

∑m
i=1 x

(i)
t

γ̂(τ, k) = 1
n−1

∑N
i=1(xiτ − µτ )(xik − µk)
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Some math we’ll need later
Autocorrelation

ρ(τ) = γ(τ,k)√
γ(τ,τ)γ(k,k)

ρ̂(τ, k) = γ̂(τ,k)√
γ̂(τ,τ)γ(k,k)

With only one realization xt , we can’t compute this
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Stationarity
What, why and how?
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Stationarity
What? - Theoretical definition

Strict stationarity
I FX (Xt , . . . ,Xt+k) = FX (Xt+τ , . . . ,Xt+τ+k) for all t, τ, k ∈ Z
I Time and order do not matter

Weak stationarity
I E [Xt ] = µ for all t
I E [X 2] <∞
I E [(Xt − µ)(Xt+τ − µ)] = γ(τ) for all t and any τ

Maximilian Toller (Know-Center) Time Series Data Analysis 2019-03-28 17 / 62



Stationarity
A short quiz
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Stationarity
For dummiesnon-statisticians

Data can’t be stationary or non-stationary

Stationarity is a property of processes

Correct question: ”Was my data generated by a stationary process?”

Roughly: ”no change over time”
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Stationarity
Why?

Classical statistics require strict stationarity

Most models require at least weak stationarity

Transformation to stationary form often possible

Non-stationary theory is complex

We can estimate autocorrelation

Maximilian Toller (Know-Center) Time Series Data Analysis 2019-03-28 20 / 62



Stationarity
How?

Augmented Dickey-Fuller test

Priestley-Subba Rao test

Hyndman’s suggestion

Visual inspection
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γ and ρ
Revisited
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Autocovariance
This time with only one parameter

µ = E[Xt ]

γ(τ) = E[(Xt − µ)(Xt+τ − µ)] for all t, τ ∈ Z

µ̂ = 1
n

∑n
i=1 xi

γ̂(τ) = 1
n

∑n−τ
i=1 (xi − µ̂)(xi+τ − µ̂)
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Autocorrelation
This time with only one parameter

ρ(τ) = γ(τ)
γ(0)

ρ̂(τ) = γ̂(τ)
γ̂(0)
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Autocorrelation
Examples
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Autocorrelation
Examples
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Autocorrelation
Examples
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Autocorrelation
Examples
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Time Series Models
AR, MA, ARMA,. . .
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Time Series Models
Autoregressive-Model

AR(1) : Xt = c + θXt−1 + εt

AR(p) : Xt = c + θ1Xt−1 + θ2Xt−2 + . . .+ θpXtp + εt

Simple linear model of past

Stationary if
∑
θ is small

Least squares parameter fitting
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AR-Model
Examples

AR(0.0001)

0 100 200 300 400 500

−3
−2

−1
0

1
2

3

AR(0.4,0.4,0.1)

0 100 200 300 400 500

−4
−2

0
2

4

Maximilian Toller (Know-Center) Time Series Data Analysis 2019-03-28 31 / 62



AR-Model
Examples

AR(−0.8)
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Time Series Models
Moving Average-Model

MA(1) : Xt = c + εt + φεt−1

MA(q) : Xt = c + εt + φ1εt−1 + φ2εt−2 + . . .+ φqεt−q

Don’t confuse with rolling average

Always weakly-stationary

Assume distribution and maximize likelihood
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MA-Model
Examples

MA(0.0001)
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MA-Model
Examples

MA(−0.8)
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Time Series Models
Autoregressive Moving Average-Model

ARMA(p, q) : Xt = c +
∑p

i=1 θiXt−i +
∑q

j=1 φjεt−j + εt

ARMA(p, q) : xt = AR(p) + MA(q)− c − εt

Approximates large p or q

Stationary if AR part stationary

Parameter fitting as above
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Time Series Models
Other models

Exponential Smoothing

Hidden Markov Models

NARX

GARCH
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How can we choose p and q?
ARMA order estimation
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ARMA order estimation
Partial autocorrelation

α(1) = ρ(1)

α(τ) =
E[(Xτ+1−Psp{1,X2,...,Xτ}(Xτ+1)−µ)(X1−Psp{1,X2,...,Xτ}(X1)−µ)]√

E[(Xτ+1−Psp{1,X2,...,Xτ}(Xτ+1)−µ)2]E[(X1−Psp{1,X2,...,Xτ}(X1)−µ)2]

ACF with lagged values estimated by linear model

Usually Yule-Walker equations or OLS
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ARMA order estimation
Estimating AR order p

α(τ ≤ p) will be non-zero

α(τ > p) will be zero

Compute α̂

p is lag where α̂ enters confidence borders
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ARMA order estimation
Estimating AR order p
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ARMA order estimation
Estimating MA order q

Plot ACF

q is lag where ACF becomes zero

Hyndman’s method for stationary
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ARMA order estimation
The Box-Jenkins Method

ACF Shape Indication

Some spikes, almost zero MA model, q = time to first zero
Exponential decay to zero AR model, plot PACF to find p
Alternating exp. decay to zero AR model, plot PACF to find p
Delayed decay ARMA model
Peaks at fixed intervals Data are seasonal, use SARMA
Never reaches zero Probably not stationary, detrend
Everything almost zero Data are independent, noise
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Dt and St
Trend and Seasonality
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Trend and Seasonality
The additive model

Xt = Dt + St + Yt Dt = f (t), St = g(t), St = St+k

Yt . . .stochastic residual

Estimate D̂t and Ŝt

Subtract and analyze residual
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Trend and Seasonality
Detrending

Filters
I Assume St = 0 ∀t
I Remove arbitrary polynomial

Regression
I Linear
I Non-isotonic
I Isotonic

Differencing
I Stochastic trend
I ∇(Xt) = Xt − Xt−1

log(Xt)
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Trend and Seasonality
Detrending: Example
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Trend and Seasonality
ARIMA

Discrete integration
∫∞
−∞ Xtdt≈

∑t−1
i=1 Xi

Idea: Model integrated data

ARIMA(p, d , q) : Integrate AR(p) + MA(q) d times

Actually ∇xt computed
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Trend and Seasonality
Identifying Seasonality

Repeating events → Fourier Analysis

Periodogram:
I Fourier Sequence Fn(ω)
I Fast Fourier Transform of ACF

Peak Analysis: s = 1
arg max

ω
(Fn)

SARIMA(p, d , q)(P,D,Q)s
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Trend and Seasonality
Periodogram: Example
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Time Series Forecasting
Estimating xt+k from x1, . . . , xt
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Time Series Forecasting
Facts

In pure theory, we are done: Set s = t + 1

Maximum likelihood estimator

Models have forecast function

Residual analysis
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Time Series Forecasting
Applying what we learned so far

Live Demo

Maximilian Toller (Know-Center) Time Series Data Analysis 2019-03-28 53 / 62



Other Time Series Data Mining
Classification

Time Series Database

Identify class

Distance/Similarity Measures
I Euclidean distance
I Cosine similarity
I Dynamic time warping
I Edit distance
I . . .
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Other Time Series Data Mining
Classification

Insect classification by clustering audio snippet time series. Adapted from Insect Detection and Classification Based on Wingbeat Sound by Yanping Chen 2014,
retrieved from http://alumni.cs.ucr.edu/~ychen053/. Copyright 2014 by Yanping Chen.
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Other Time Series Data Mining
Pattern Mining

Discretization: xt = a, b, a, c , a, c, d , c , . . .

Piecewise Aggregate Approximation

Breakpoints

Symbolic time series
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Other Time Series Data Mining
Event Detection

Time series segmentation

Change points/novelties

Sliding windows

CUSUM

Detection-threshold problem
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Other Time Series Data Mining
Event Detection

acceleration

gear change

engine start
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Tools
Some help for the practicals

R
I http://www.statmethods.net/advstats/timeseries.html
I https://cran.r-project.org/web/views/TimeSeries.html
I https://github.com/robjhyndman/

Python
I Prophet
I TS-Fresh
I Pandas, NumPy, scikit-learn, Statsmodels

MatLab/Octave
I TSA
I Signal
I . . .

Java
I JMotif
I Weka
I . . .
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One last thing. . .
Remarks about artificial neural networks

Feedforward ANN simulates nonlinear-MA(q)

Recurrent ANN simulates nonlinear -ARMA(p, q)

Autoregressive ANN 6= AR(p)

Long Short-Term Memory
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The End
Next: Information Retrieval
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l i b r a r y ( f o r e c a s t )

t s d a t a <− A i r P a s s e n g e r s %>% c ( ) %>% as . t s ( )

t s d a t a %>% p l o t . t s ( )
t s d a t a %>% a c f ( )
t s d a t a %>% p a c f ( )

model1 <− Arima ( y = t s d a t a , o r d e r = c ( 2 , 0 , 0 ) )
model1 %>% f o r e c a s t %>% p l o t ( showgap=F )
model1$s igma2
m o d e l 1 $ a i c

d e t r e n d e d d a t a <− t s d a t a %>% d i f f ( )
d e t r e n d e d d a t a %>% p l o t ( )

model2 <− Arima ( y = t s d a t a , o r d e r = c ( 2 , 1 , 0 ) )
model2 %>% f o r e c a s t %>% p l o t ( showgap=F )
model2$s igma2
m o d e l 2 $ a i c

d e t r e n d e d d a t a %>% p l o t ( )
d e t r e n d e d d a t a %>% a c f ( )
d e t r e n d e d d a t a %>% p a c f ( )

model3 <− Arima ( y = t s d a t a , o r d e r = c ( 2 , 1 , 1 ) )
model3 %>% f o r e c a s t ( ) %>% p l o t ( showgap=F )
model3$s igma2
m o d e l 3 $ a i c

d e t r e n d e d d a t a %>% a c f ( l a g . max = 100)
pgram <− t s d a t a %>% s p e c . pgram ( )
{pgram$spec} %>% which . max ( ) %>% {1/ pgram$freq [ . ] }

model4 <− Arima ( y = t s d a t a , o r d e r = c ( 2 , 1 , 1 ) , s e a s o n a l = l i s t ( o r d e r=c ( 0 , 1 , 0 ) , p e r i o d =12))
model4 %>% f o r e c a s t ( ) %>% p l o t ( showgap=F )
model4$s igma2
m o d e l 4 $ a i c

#s h o r t v e r s i o n
model5 <− auto . ar ima ( t s ( t s d a t a , f r e q u e n c y = 1 2 ) )
model5 %>% f o r e c a s t ( ) %>% p l o t ( showgap=F )
model5$s igma2
m o d e l 5 $ a i c
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