Anomalies in Data

Maximilian Toller KDDM2

SCIENCE PASSION TECHNOLOGY

Anomalies in Data Recall from earlier

What are *Outliers*?

A recap from KDDM1

What are *Outliers*? **Definitions**

- An observation that appears to deviate markedly from other members of the sample in which it occurs. (Grubbs, 1969)
- An observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data. (Barnett and Lewis, 1974)
- An observation, which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism.
 - (Hawkins, 1980)

www.tugraz.at

What are *Outliers*? Examples (easy)

Inliers

Outliers (Grubb, Barnett)

Outliers (Grubb, Barnett, Hawkins)

Maximilian Toller, Know-Center KDDM2

5

1

What are *Outliers*? Methods: Preview

- There are many outlier detection methods:
 - Local outlier factor
 - Angle-based outlier degree
 - Artificial neural networks
 - ...
- Why are there so many?

What are Anomalies?

What are *Anomalies*? Difference from Outliers

- In literature, *outlier* and *anomaly* are used interchangeably
- For both, only vague definitions exist that are very similar
- However, the terms have different origins and different typical use:

Outliers typically...

- ... are motivated by statistics.
- ... are unusual data.

... are investigated by traditional researches and statisticians.

Anomalies typically...

- ... require context.
- ... are abnormal events.
- ... are investigated by data analysts and data scientists.

What are *Anomalies*? Example: Credit card fraud

- Billions of dollars lost every year
- Fraudulent transactions often significantly different
- Difficult to disguise fraud s.t. it is not visible on any scale

What are *Anomalies*? Example: Cancer

- One of the most common causes of human death
- Disease with abnormal cell growth
- Cancer has abnormal gene expression signature

Maximilian Toller, Know-Center

What are *Anomalies*? The role of context

Abnormality is context-dependent

- Discordant data problem (credit card fraud example)
 - Many normal observations
 - Rare outlying data
- Anomaly class problem (cancer example)
 - Normal data class
 - Anomaly classes
- Can data define abnormality?

Unlikely, Discordant and Contaminated Data

How to interpret suspicious data

Unlikely, Discordant and Contaminated Data The Case of Hadlum vs Hadlum

- Mr Hadlum accuses Mrs Hadlum of adultery
- Sole evidence: Birth of child 349 days after Mr Hadlum left the country
- Average human gestation period: 280 days

Unlikely, Discordant and Contaminated Data The Case of Hadlum vs Hadlum

- Mr Hadlum conjectured different distribution (red)
- Judges did not find Mrs Hadlum guilty, since 349 days unlikely, but not impossible (blue)
- (Modern research showed that more than 340 days is impossible)

Unlikely, Discordant and Contaminated Data The Antarctic Ozone Hole

- Ozone layer protects Earth from solar radiation
- Damaged by human emissions of chlorofuorocarbons
- High depletion (hole) above poles

https://de.wikipedia.org/wiki/Datei:Ozone_layer.jpg

www.tugraz.at

Unlikely, Discordant and Contaminated Data The (Ant)Arctic Ozone Hole

- Farman et al. (1985) discover hole in field study
- Authors hesitant to publish
- Nimbus satellite data showed no drop
- Problem: Largely deviating values discarded as measurement errors

NASA/JPL-Caltech

Unlikely, Discordant and Contaminated Data **Definition**

Unlikely data

- Position of judges
- "Random drop of ozone not caused by humans"
- Data unlikely but still normal
- No correction
- Action: none

Discordant data

- Position of Mr Hadlum
- Ozone field study by Farman et al. (1985)
- Data too unlikely to be normal
- Correction of model
- Action: investigate

Contamination

- "Wrong day of birth?"
- Satellite measurement error
- Data incorrect or misleading
- Correction of data
- Action: remove

Unlikely, Discordant and Contaminated Data Implications

- It is hard to classify data as *unlikely*, *discordant* or *contaminated*
- No universal decision criterion
- Domain knowledge as remedy
- Ultimately subjective

Unlikely, Discordant and Contaminated Data Strategies

1. Try to ignore anomalies (Not interesting)

2. Find anomalies for investigation or removal (Interesting)

Data Analysis in Presence of Anomalies

- Setting
 - Potentially contaminated dataset
 - Majority uncontaminated
 - Cannot find or remove contamination, e.g. inserted by attacker

 Task: Analyze data in spite of contamination, understand what is normal

- Challenges
 - No prior information about data
 - Contamination may be arbitrarily "bad" (adversarial)

Question: Which methods are suitable?

- Two common estimators
 - Sample mean $\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$
 - Sample variance $\hat{\sigma}_x^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j \bar{x})^2$

- Mean and variance are influenced by contamination
 - Original x = [1, 3, 2, 1, 9, 2, 3, 2, 3, 2, 2, 1] $\bar{x} \approx 2.58$ $\hat{\sigma}_x^2 \approx 4.63$
 - Clean y = [1,3,2,1, 2,3,2,3,2,2,1] $\bar{y} = 2$ $\hat{\sigma}_y^2 = 0.6$

What happens when attacker corrupts data unfavorably?

- What happens when attacker corrupts data unfavorably?
 - Attack #1 $a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_1 \approx 76.83$ $\hat{\sigma}^2_{a_1} \approx 67200.88$

- What happens when attacker corrupts data unfavorably?
 - Attack #1 $a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_1 \approx 76.83$ $\hat{\sigma}^2_{a_1} \approx 67200.88$
 - Attack #2 $a_2 = [1, 3, 2, 1, 90000000, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_2 \approx 7.5 \times 10^7$ $\hat{\sigma}^2_{a_2} \approx 6.75 \times 10^{16}$

- What happens when attacker corrupts data unfavorably?
 - Attack #1 $a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_1 \approx 76.83$ $\hat{\sigma}^2_{a_1} \approx 67200.88$
 - Attack #2 $a_2 = [1, 3, 2, 1, 90000000, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_2 \approx 7.5 \times 10^7$ $\hat{\sigma}^2_{a_2} \approx 6.75 \times 10^{16}$
 - Attack #3 $a_3 = [1, 3, 2, 1, \infty, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_3 = \infty$ $\hat{\sigma}^2_{a_3} = \infty$

- What happens when attacker corrupts data unfavorably?
 - Attack #1 $a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_1 \approx 76.83$ $\hat{\sigma}^2_{a_1} \approx 67200.88$
 - Attack #2 $a_2 = [1, 3, 2, 1, 90000000, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_2 \approx 7.5 \times 10^7$ $\hat{\sigma}^2_{a_2} \approx 6.75 \times 10^{16}$
 - Attack #3 $a_3 = [1, 3, 2, 1, \infty, 2, 3, 2, 3, 2, 2, 1]$ $\bar{a}_3 = \infty$ $\hat{\sigma}^2_{a_3} = \infty$
- \rightarrow Mean and variance are not *robust*.

Robust Statistics Example: Median and MAD

- Two different estimators
 - Median m(X)
 - Any real number satisfying $P(X \le m(X)) \ge 0.5$ and $P(X \ge m(X)) \ge 0.5$
 - For finite data $\mathbf{x} = [x_1, \dots, x_n]$: $m(x) = \frac{x_{\lfloor (n+1)/2 \rfloor} + x_{\lceil (n+1)/2 \rceil}}{2}$ (middle value)
 - Median Absolute Deviation (MAD) $\zeta(x) = m(|\mathbf{x} m(\mathbf{x})|)$

Median and MAD are less influenced by contamination

Median and MAD are less influenced by contamination

•
$$a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$$

 $m(a_1) = 2 \quad \zeta(a_1) = 1$

Median and MAD are less influenced by contamination

•
$$a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$$

 $m(a_1) = 2 \quad \zeta(a_1) = 1$

•
$$a_2 = [1, 3, 2, 1, \infty, 2, 3, 2, 3, 2, 2, 1]$$

 $m(a_2) = 2 \quad \zeta(a_2) = 1$

Robust Statistics

Median and MAD are less influenced by contamination

•
$$a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$$

 $m(a_1) = 2 \quad \zeta(a_1) = 1$

- $a_2 = [1,3,2,1,\infty,2,3,2,3,2,2,1]$ $m(a_2) = 2 \quad \zeta(a_2) = 1$
- $a_3 = [\infty, 3, 2, \infty, \infty, 2, \infty, 2, 3, 2, 2, \infty]$ $m(a_3) = 3 \quad \zeta(a_3) = 1$

Robust Statistics

Median and MAD are less influenced by contamination

•
$$a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$$

 $m(a_1) = 2 \quad \zeta(a_1) = 1$

•
$$a_2 = [1, 3, 2, 1, \infty, 2, 3, 2, 3, 2, 2, 1]$$

 $m(a_2) = 2 \quad \zeta(a_2) = 1$

•
$$a_3 = [\infty, 3, 2, \infty, \infty, 2, \infty, 2, 3, 2, 2, \infty]$$

 $m(a_3) = 3 \quad \zeta(a_3) = 1$

•
$$a_4 = [\infty, \infty, 2, \infty, \infty, 2, \infty, 2, \infty, 2, 2, \infty]$$

 $m(a_4) = \infty \quad \zeta(a_4) = \infty$

Robust Statistics

Median and MAD are less influenced by contamination

•
$$a_1 = [1, 3, 2, 1, 900, 2, 3, 2, 3, 2, 2, 1]$$

 $m(a_1) = 2 \quad \zeta(a_1) = 1$

•
$$a_2 = [1, 3, 2, 1, \infty, 2, 3, 2, 3, 2, 2, 1]$$

 $m(a_2) = 2 \quad \zeta(a_2) = 1$

•
$$a_3 = [\infty, 3, 2, \infty, \infty, 2, \infty, 2, 3, 2, 2, \infty]$$

 $m(a_3) = 3 \quad \zeta(a_3) = 1$

•
$$a_4 = [\infty, \infty, 2, \infty, \infty, 2, \infty, 2, \infty, 2, 2, \infty]$$

 $m(a_4) = \infty \quad \zeta(a_4) = \infty$

- \rightarrow Median and MAD are robust estimators of central tendency and dispersion

Robust Statistics Definition

- A *statistic* $T(\cdot)$ maps data to single value, i.e. $T : \mathbb{R}^n \to \mathbb{R}$
- Examples: *mean, minimum,* χ^2 *tests,* ...
- Robust Statistics = Robust + $T(\cdot)$

Definition

A statistic $T(\cdot)$ is robust if it behaves favorably as the data it is computed on increasingly deviates from the assumptions made by $T(\cdot)$.

Robust Statistics About mean and variance I

- What is estimated by
 - sample mean $\bar{x} = \hat{\mu}_X = \frac{1}{n} \sum_{j=1}^n x_j$?
 - sample variance $\hat{\sigma}_X = \frac{1}{n-1} \sum_{j=1}^n (x_j \bar{x})^2$?
- By the strong law of large numbers (L.L.N.)

•
$$ar{x} \stackrel{ ext{a.s.}}{ o} \mu_X = \mathbb{E}[X] \quad (n o \infty)$$

 $\bullet \quad \hat{\sigma}_{\mathbf{X}} \to \sigma_{\mathbf{X}} \qquad (\mathbf{n} \to \infty)$

Robust Statistics About mean and variance II

- The strong L.L.N. assumes $x \stackrel{\text{iid}}{\sim} \mathcal{D}(\cdot)$.
- Anomalies typically follow a different distribution
 - A single anomaly might break iid assumption
 - \bar{x} and $\hat{\sigma}_X$ become *biased* towards anomaly

- Mean \bar{x} and median m(x) are affected differently by contamination
 - \rightarrow Different amount of contamination needed to *bias* them
 - Single corrupted observation will add bias to \bar{x}
 - At least $\frac{n}{2}$ corrupted observations needed to bias m(x)
- Question: How do we measure the impact of contamination on bias?

Robust Statistics Breakdown point I

Definition

Let $T_n(\cdot)$ be an estimator of θ and let $T_n(\mathbf{x}_n) = \hat{\theta}$. Further, let 0 < k < n observations in x_n be contamination to an arbitrary value. Then the breakdown point β^* of T_n is given by

$$eta^{\star}_{T}(\textit{n}) = \min\left\{rac{k}{n}\Big||\mathbb{E}[\hat{ heta}] - heta| = \sup\textit{b}(\textit{T}_{n}, heta)
ight\}$$

Robust Statistics Breakdown point II

- In simple terms
 - The smallest fraction of corrupted observations that T_n cannot handle
 - Assess robustness with
 - 1. Corrupt observation
 - 2. Check bias
 - 3. Repeat until worst possible output reached

Robust Statistics Breakdown Point: Example

- Some breakdown points
 - Mean $\beta_{\overline{X}}^{\star}(n) = \frac{1}{n}$
 - IQR $\beta_l^{\star}(n) = \frac{n}{4}$
 - Median $\beta_m^{\star}(n) = \frac{n}{2}$
 - Perceptron $\beta_p^{\star}(n) = \frac{1}{n}$
- Easy to test on small dataset
 - 1. Contaminate a few observations
 - 2. See how statistic/algorithm behaves

Robust Statistics Recap of last few slides I

- Robustness is about deviations from assumptions
 - Every meaningful statistic/algorithm T(·) assumes something (no-free lunch theorems)
 - Robust methods are consistent and become slowly biased towards contamination
- Robustness can be measured with the (asymptotic) breakdown point

Robust Statistics Recap of last few slides II

- Want to test if $T(\cdot)$ is robust?
 - 1. Find dataset X where assumptions of $T(\cdot)$ hold
 - 2. Compute T(X)
 - 3. Contaminate X to X' so that assumptions of $T(\cdot)$ are violated
 - 4. Compute T(X')

Robust Statistics Final Remark: Efficiency

- Robust methods are needed when anomalies in data
- Robustness alone is not enough
- $T(\cdot)$ also needs to be good at estimating θ
- Statistical efficiency

www.tugraz.at

Anomaly Detection

Anomaly Detection

- There are many "anomaly detection" methods
 - Density-based techniques
 - One-class support-vector machines
 - Artificial neural networks
 - ...
- Why are there so many?
 - Performance depends largely on dataset (Why?)
 - There are many types of anomalies
 - Different settings require different methods

Anomaly Detection **Objective**

- Apparent goal: Detect when something unexpected/abnormal happens
- What data is available?
 - Given data might contain very many anomalies
 - ...or none.
- \rightarrow True goal: Need to learn what is normal
- Normality is typically defined by the problem context, not by data

Anomaly Detection A classical pitfall

Anomaly Detection A classical pitfall

www.tugraz.at

Anomaly Detection How can we learn what is normal?

- Expert-based (traditional)
 - 1. Acquire domain expertise
 - 2. Analyze data and formulate rules
 - 3. Test rules

- Model-driven (traditional statistics)
 - 1. Understand problem
 - 2. Make assumptions and model
 - 3. Compare model with data
- Data-driven (data science)
 - 1. Analyze data
 - 2. Derive model from data & problem understanding
 - 3. Search deviations from model in data

Anomaly Detection How can we learn from data what is normal? I

1. Labeled data with normal and anomalous records

- Goal: Learn to detect labeled anomalies
- Reduction to classification problem
- + Super easy compared to other settings!
- What about new anomalies?

Anomaly Detection How can we learn from data what is normal? II

2. Labeled data with only normal records (and maybe unlabeled data)

- Goal: Learn boundaries of what is normal
- No assumptions made about anomalies
- + Best setting for successful anomaly detection!
- Setting very rare

Anomaly Detection How can we learn from data what is normal? III

- 3. Unlabeled data
 - Goal: Find deviating data
 - Hard to learn what is normal
 - Host common practical setting
 - Impossible to truly solve (needs strong assumptions)

Anomaly Detection Overview: Settings and Methods

- 1. Fully labeled data
- 2. Labeled normal data
- 3. Unlabeled data

Supervised anomaly detection Unsupervised anomaly detection Method-based anomaly detection

www.tugraz.at

Setting: Fully Labeled Data

Setting: Fully Labeled Data Overview I

- Setting
 - Labeled training set
 - Learn to classify normal and abnormal data
 - $\bullet \quad \rightarrow Classification \ problem$
- Examples
 - Distinguish between normal cell growth and cancer
 - Recognize attack signatures in normal web traffic

Setting: Fully Labeled Data Overview II

- Suggested approach: Supervised learning
 - Statistical regression methods
 - Support vector machines
 - Classical neural networks
 - Deep neural networks

...

Setting: Fully Labeled Data Method 1.1: K-nearest neighbor classification

- Class of query is class of kth nearest neighbor
- \rightarrow Anomalies are close to each other
- Critical component: Distance function
 - Euclidean distance
 - Mahalanobis distance

By Antti Ajanki AnAj - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2170282 Setting: Fully Labeled Data Method 1.2: Support Vector Machines

- Construct hyperplane that separates classes
- To solve nonlinear problems, needs extension
- Kernels
 - Polynomial
 - Radial basis function
 - Hyperbolic tangent

Setting: Fully Labeled Data Problems I

 While supervised methods learn to classify data as normal or anomalous...

- ... they do not learn what is normal
 - Only boarder between seen anomalies and normal learned
 - Unseen anomalies not considered

Setting: Fully Labeled Data Problems II

Only applicable when all possible types of anomalies are known

- Examples:
 - Detect cheating at simple gambling \rightarrow Always unusually high winnings
 - Classical (naive) anti-virus approaches \rightarrow Learn attack signatures

www.tugraz.at

Setting: Labeled Normal Data

Setting: Labeled Normal Data Overview I

- Setting
 - Dataset with only normal data
 - Learn what is normal
 - Decide how likely unlabeled data are normal

Setting: Labeled Normal Data Overview II

- This is the most promising setting!
 - Not restricted to certain anomaly types
 - Ideal for handling new anomalies
- Labeled normal data rare in practice
- Suggested Approach: Unsupervised Learning

Setting: Labeled Normal Data Method 2.1: Multivariate kernel density estimation

- Estimate probability density functions
- Assigns probabilities to entire space
- Assumption: Unlikely = Anomalous
- Needs good kernel function

Duong, Tarn. "ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R." Journal of Statistical Software 21.7 (2007): 1-16.

Setting: Labeled Normal Data Method 2.2: One-class support vector machines

- Planar approach
 - Hyperplane between data and origin
 - Maximize distance
- Spherical approach

(support vector data descriptors)

- Hypersphere around data
- Minimize volume
- Needs good kernel function

Muñoz-Marí, Jordi, et al. "Semisupervised one-class support vector machines for classification of remote sensing data." IEEE transactions on geoscience and remote sensing 48.8 (2010): 3188-3197.

Setting: Labeled Normal Data Method 2.3: Autoencoders

- Learn to replicate data
- Collect reconstruction error for unlabeled queries
 - Low error: normal
 - High error: anomaly
- Important: Needs large training data set!

By Chervinskii - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45555552
www.tugraz.at

Setting: Unlabeled Data

Setting: Unlabeled Data Overview I

- Setting
 - Unlabeled dataset
 - No context information available
 - Limited domain expertise
- Worst scenario
 - How distinguish between normal and anomalous?
 - No method for learning normality
 - How can detection results be evaluated?

Setting: Unlabeled Data Overview II

- Solution: Make assumptions
 - No learning without assumptions (no free lunch theorems)
 - Assume that outliers according to method *Y* are anomalies
- Important: Use simple detection methods!

Setting: Unlabeled Data Method 3.1: Local outlier probability

- Local Outlier Factor
 - Estimate local density
 - $\bullet \quad \text{Low local density} \rightarrow \text{anomaly} \\$
 - How to interpret deviation?
- Local Outlier Probability
 - Estimate local density
 - Estimate outlier probability

Kriegel, Hans-Peter, et al. "LoOP: local outlier probabilities." Proceedings of the 18th ACM conference on Information and knowledge management. ACM, 2009. Setting: Unlabeled Data Method 3.2: Isolation forest

Isolation tree

- 1. Randomly split data with hyperplane
- 2. Repeat until every point isolated
- 3. Evaluate number of partitions
 - Few partitions to isolate \rightarrow anomaly
 - Many partitions to isolate \rightarrow inlier
- Isolation Forest
 - 1. Grow many isolation trees
 - 2. Compare trees

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation forest." 2008 Eighth IEEE International Conference on Data Mining. IEEE. 2008.

Setting: Unlabeled Data Method 3.3: DBSCAN

- Cluster data according to density
 - 1. Compute k-NN distances
 - 2. Check which data have many neighbors
 - 3. Connect "dense" data
 - 4. Points in no cluster are anomalies
- Returns clustering and anomalies

LBy Chire - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17045963

www.tugraz.at

Final Remarks

Final Remarks

Robust statistics

- https://cran.r-project.org/web/views/Robust.html
- https://www.iumsp.ch/en/software/robust-statistics
- AstroPy

Anomaly detection

- DDoutlier
- ELKI
- anomaly (R package)
- scikit-learn
- Tensorflow, Keras

Final Remarks Further Reading

Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 15.

Zimek, Arthur, and Peter Filzmoser. "There and back again: Outlier detection between statistical reasoning and data mining algorithms." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8.6 (2018): e1280.

Campos, Guilherme O., et al. "On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study." Data Mining and Knowledge Discovery 30.4 (2016): 891-927.

Görnitz, Nico, et al. "Toward supervised anomaly detection." Journal of Artificial Intelligence Research 46 (2013): 235-262.

www.tugraz.at

Final Remarks

The End Thank you for your attention!

Barnett, V. and Lewis, T. (1974). *Outliers in statistical data*. Wiley.

Farman, J. C., Gardiner, B. G., and Shanklin, J. D. (1985). Large losses of total ozone in antarctica reveal seasonal clox/nox interaction. *Nature*, 315(6016):207.

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. *Technometrics*, 11(1):1–21.

Hawkins, D. M. (1980). Identification of outliers, volume 11. Springer.

Final Remarks References II

Quinn, T. P., Nguyen, T., Lee, S. C., and Venkatesh, S. (2019). Cancer as a tissue anomaly: classifying tumor transcriptomes based only on healthy data. *Frontiers in genetics*, 10.

Zimek, A. and Filzmoser, P. (2018). There and back again: Outlier detection between statistical reasoning and data mining algorithms. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*, 8(6):e1280.