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> Motivation: When generating insights from data, we have
to make many (explicit, or accidental) assumptions, and there
might be many biases - both will negatively influence the valid-
ity of our results.
> Goal: This lecture aims to make the implicit assumption ex-
plicit, understand their implications, be aware of the biases and
their countermeasures. Finally, one should be able to apply the
matching methods to a given problem se�ing and achieving
valid results.
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Example “Apple Heart Study” I

Study with 419,297 participants (volunteers, who responded)
to diagnose atrial fibrillation

Notification from the watch

Based on pulse measurements z

... should seek advice & follow-up analysis

2,161 got notification, 658 got further analysed (ECG), only 450 usable

Authors report 84% who got notification, actually were (later) diagnosed
with atrial fibrillation
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> Taken from https://catalogofbias.org/2019/11/14/
big-is-not-always-beautiful-the-apple-heart-study/.
> The study: Perez, M. V., Maha�ey, K. W., Hedlin, H., Rumsfeld, J.
S., Garcia, A., Ferris, T., ... & Hung, G. (2019). Large-scale assessment
of a smartwatch to identify atrial fibrillation. New England Journal of
Medicine, 381(20), 1909-1917.
> Not blinded design study (i.e., open-label).
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Example “Apple Heart Study” II

Ascertainment bias
Some participants are less likely to be included in the results

Compliance bias
Not all participants adhere to same protocol

Detection bias
Di�erent ways to measure the outcome
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> And potentially spin bias, hot stu� bias, and confirmation
bias.
> Although this study deals with patients/participants, this also
applies to other entities, e.g., machines.
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Motivation

In data science we are given some (observational) data, and we need to
gain (correct) insights from it!

For this to work, we have to make a number of assumptions

About the data generation process, about the nature of the data, ...

... since also our algorithms make (implicit) assumptions

→ A mis-match of these assumption will render the result invalid !
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> We always make assumptions, be it explicit, or accidental
(implicit, intrinsic)!
> In short, we always get a (numeric) result, but is it correct?
> Recall the danger zone in the data science Venn diagram.
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Motivation

Also, the data might have a (systematic) bias

... and our analysis will “inherit” this bias

→ invalid (biased) results F!

Also, algorithms might have a bias

... and our results will reflect this

→ invalid (biased) results F!
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> In any case, we need to be aware of the assumptions and the
bias.
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Assumptions
What we implicitly/explicitly take for given
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Smoothness Assumption

Basic assumption in statistics: smoothness assumption

e.g., Needed to estimate P(X) given a sample of data

Also applies to machine learning & data science

Assumption about a process or a data set

Intuition

The close vicinity of data point is “similar” to the data point

e.g., P(Y = y|X = x) ≈ P(Y = y|X = x + ε)
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> For example, a Kernel Density Estimator makes this assump-
tion.
> Without this assumption, ML might fail (see also universal
approximation theorem).
> Assumption about the data generating process.
> Whatever similar is in the actual context.
> For more detail please also see Lipschitz continuity for a more
rigorous definition.
> There is also a connection to Di�erential Privacy.

www.tugraz.at
Assumptions

Smoothness Assumption

The smoothness assumption does not hold for

Chaotic systems

e.g., Fractals

Stochastic systems

e.g., Random data

� Need to understand the generative process (domain)
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> Both may result in randomness, while the chaotic system fol-
lows a deterministic generation process.
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Smoothness Assumption

The smoothness assumption does not hold for

Non-continuous functions

e.g., Dirac δ function, step functions, ...
Less severe case

With local smoothness

e.g., A decision tree can model such behaviour

Categorical variables (incl. binary)

� Need to understand the datset
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> The data generation process needs to be continuous (in prac-
tical terms: watch out of “if-clauses” in the data generation
process).
> Deep neural networks are capable to approximate a piecewise
smooth function, e.g., a step function (https://arxiv.org/
pdf/1802.04474.pdf).
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Smoothness Assumption - Counter Measures I

More data

Increase instances

... will yield a be�er estimate (of local smoothness)

More data

Increase features

... may improve to explain the “unsmoothness”
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> See also https://www.linkedin.com/pulse/
smoothness-underlying-assumption-machine-learning-ravi-kothari/
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Smoothness Assumption - Counter Measures II

Pre-Processing

Transform feature (smooth)
e.g., spli�ing into multiple features

Fi�ing models

Avoid models that (heavily) rely on smoothness
e.g., linear models
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> Generally, it is a good idea at the beginning to look into the
features, e.g. with visual tools.

> As hinted, the model di�er on their dependence on the
smoothness assumption (deep neural networks with non-linear
activation function should be e�icient in such cases).
> ... but watch out for model bias!
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Unconfoundedness

Assumption: There are no hidden confounders (in our data)
Hidden confounders may systematically introduce variance

e.g., partial correlation between variables
e.g., visible as multi-collinearity in the data

Worst case scenario

Hidden confounder is constant throughout our (training) data set, but
changes to di�erent value(s) in the (test) set
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> Features may appear redundant, since they correlate to a high
degree.
> Due to some lurking variables, as common cause.
> If we want to understand the model (e.g., check if it is biased),
some proxy variables get (mistakenly) identified as most impor-
tant features (but not the true cause).
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Identically and Independently Distributed - IID

The IID assumption is well known in machine learning

The distribution does not change

... between the training and the test set→ identical

The instances are independent from each other

You could not predict the next data point

� sequence does not play a role
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> Not the case, if there are some confounders as stated in the
previous slide.
> The data follows a stationary distribution.
> i.e., P(Xtrain) = P(Xtest)
> Especially important, if our training dataset precedes the test
dataset, as typical in real-world scenarios (i.e., use historic data
to predict the present/future).
> Simple example, if we train a system to predict ice cream sales
with data from the summer month, but then apply them on win-
ter month, the results might be sub-optimal.

> Every row in training & test set must be identically distributed

> Another approach is non-random sampling, e.g., Kennard
Stone Algorithm
> R. W. Kennard & L. A. Stone (1969): Computer Aided Design of Ex-
periments, Technometrics, 11:1, 137-148.
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Non-IID - Countermeasures

Add features

Make non-independence explicit
... and the machine learning algorithms can make use of it
� requires domain knowledge
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> Dundar, M., Krishnapuram, B., Bi, J. and Rao, R.B. 2007. Learning
classifiers when the training data is not IID. IJCAI International Joint
Conference on Artificial Intelligence (2007), 756–761.
> Introduce synthetic features to capture the random e�ects,
e.g., hospital.
> For example, a decision tree can use this feature as spli�ing
criterion.
> ... so at least within this “bucket”, the IID assumption should
hold.

> Possible way to detect via statistical tests (compare distribu-
tions).
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Assumption in Time Series I

Stationarity (strict, weak)

Intuition

Mean and variance constant over time

The probability of observing a sub-sequence does not depend on time

Weak stationarity

Mean is constant, variance is finite

Autocovariance does not depend on time
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> See the lecture on time series in KDDM2 (especially for coun-
termeasures).
> IID implies strict stationarity, but strict stationarity does not
imply IID.
> We already know that time series data is typically not expected
to be IID (e.g., we expect autocorrelation).
> Stationary is hard to assess, typically requires domain knowl-
edge (of the data generating process).

> Strict & weak stationarity imply homoscedasticity.
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Assumption in Time Series II

Homoscedasticity (not limited to time series)

We assume that certain “statistics” will not change over time

e.g., variance, noise

If violated, it is called Heteroscedasticity
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> Not exclusive to time series, also an assumption in linear re-
gression.
https://towardsdatascience.com/
assumptions-of-linear-regression-algorithm-ed9ea32224e1.
> For example, if the noise is not IID.
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Cluster Hypothesis

Search Results

Closely associated documents tend to be relevant to the same requests

� justifies pseudo-relevant feedback

Machine Learning

Algorithms like k-means clustering or k-NN classification

... assuming close document to be similar
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> Documents that form clusters are expected to be similarly rel-
evant to queries.
https://ie.technion.ac.il/~kurland/
clustHypothesisTutorial.pdf.

> Where closeness is computed via a distance measure, which
sometimes is also called a similarity measure (i.e., the assump-
tion is also contained in the measure).
> In data science we encode our (domain) knowledge of similar-
ity within the distance/similarity function.

> Does other apply to other areas, e.g., in network analysis, the
assumption is that communities (densely-connected regions)
also share similarities, which is consecutively used for, e.g., rec-
ommender systems.
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Independent Variable Assumption

Bag-of-Words

Split a sentence/document into words, ignoring their sequence
Ê Words are clearly not independent from each other!

Naive Bayes

Each variable (feature) is assumed to be independent from all others
... and provides (o�en) good performance

e.g., Text classification
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> Why can it be that Naive Bayes works so (unreasonably) well,
if the assumption is obviously violated?
> Also called maximum conditional independence (induc-
tive bias).
> Should we even care about assumptions?
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Multicollinearity

A dataset might contain multicollinearity

If more then one variable are linear related

Perfect multicollinearity for identical variables

e.g., linear regression may behave erratically F

Small changes in the data may have big changes in the output
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> Multiple variables encode the same phenomena.
> O�en results of a confounder, yielding partial correlation.

> Most o�en the problem, if only a few data points (small
dataset) and increased risk with more correlating variables, see
spurious correlation.
> Here the problem might be that the di�erence between two
(highly similar) variables (e.g., due to randomness) appears to
have predictive power on the target variable.
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Multicollinearity - Countermeasures I

Less data

Remove “redundant” variables

More data

Additional observations (rows)
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Multicollinearity - Countermeasures II

Preprocessing

e.g., Principal Component Analysis
Multiple variables will be then represented by a single principal component

Regularise

e.g., Ridge regression
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> Since PCA is unsupervised it is agnostic to the spurious rela-
tions.
> ... but PCA is not robust.
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Assumptions Regarding Regularisation

O�en we regularise our model

... to include fewer features, e.g., L1 norm

Assuming less is “be�er”

Or, we make explicit feature selection

→ assuming fewer features yield a be�er model
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> There are many types of regularisation, some do a�ect the size
of the coe�icients.
> See also parsimonious models.
> The complexity of the model (here: amount of features) should
match the complexity of the problem.
> Also applies to Occam’s razor (see in a few slides).

> Hope that a sparser model also generalises be�er as is
should reduce the risk of overfi�ing.

> Use techniques from interpretability to manually check
model for plausibility.
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Assumptions in Causality

Causal inference and causal discovery

... do not work without making (strong) assumptions

For example

Faithfulness assumption: to see a correlation where there is causality

SUTVA: no interference, no hidden variance in treatment levels
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> Please see slides on causal data science for details.
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Gaussian Assumption I

O�en we assume that our data (or our noise) follows the Gaussian
distribution

Justified by the central limit theorem V

Given multiple random variables
... even if they are non-normally distributed

Their normalized sum will tends to be normally distributed
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> And since we assume that many natural processes are actually
a mixture of many underlying phenomena, we have a tendency
to a�ribute a Gaussian behaviour to many observations.
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Gaussian Assumption II

However, this is based on the assumptions

The random variables are independently and identically distributed

... and have finite variance

If the later is violated, but has power-law tails

... the sum will tend to a stable distribution

Some statistical tests, e.g., t-test, requires the data to be Gaussian
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> If the noise follows a Cauchy distribution, the mean and the
variance will not be defined (i.e., not finite).
> One can (technically) standardize a Cauchy to 0-mean and
1-variance (z-normalisation), because empirical mean and vari-
ance exist. However, this does not change population mean and
variance, all it might do is lead the analyst to spurious conclu-
sions.
> See also generalised central limit theorem.

> The estimated mean of a Cauchy distribution is also Cauchy
distributed across multiple datasets with the same Cauchy dis-
tribution (the empirical mean is the same as a random point
drawn from the Cauchy distribution).

> For example, the X 2 test can be used to assess, if a dataset
follows a given distribution (but there are many more).
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Homogeneity of Variances

Multiple sub-groups have the same variance

... required by some statistical tests, e.g., ANOVA

Check of this assumption

Visualisation of the data to identify
Special tests to assess if this is the case

Levene’s test, Fligner Killeen test, Bartle�’s test
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> See also https://www.real-statistics.
com/one-way-analysis-of-variance-anova/
homogeneity-variances/.
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Occam’s Razor

Occam’s razor dictates

Given two options

Pick the one with fewer assumptions

For machine learning

... this would relate to preference of simpler models

But, a too simple model may just have bad predictive performance
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> Similar to statistical tests, if there is no (statistical) evidence,
make fewer assumptions, i.e., assume the observed di�erence is
due to randomness (null hypothesis).
> Intrinsic methods to follow this guidance: regularisation,
pruning (of decision trees).
> It can also be seen as an inductive bias of some algorithms.

> See also Principle of Maximum Entropy (among multiple dis-
tributions, select the distribution which leaves you the largest
remaining uncertainty).
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Bias
What may influence our results?
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Many!
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> Image taken from https://catalogofbias.org/2020/02/
11/a-taxonomy-of-biases-progress-report/.
> The Catalogue of Bias list of 40 di�erent types of bias!
> Furthermore, this list is not specific to data science.
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Bias in Machine Learning

Bias is o�en an additional parameter

In neural networks, many regression methods, ...

Output =
∑

weights ∗ input + bias
� unrelated to statistical bias
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> This dummy parameter only shares the name with the con-
cepts discussed in here.
> See Bishop, C. M. (2006). Pa�ern recognition and machine learning.
for a more in depth analysis on the bias term (page 142f).
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Bias in Data - Simple Example

ID Weight Name Gender Age Label

e1 1.0 John M 20 1
e2 1.0 Joe M 20 0
e3 1.0 Joseph M 20 0
e4 1.0 Sally F 30 1
e5 1.0 Sally F 40 0
e6 1.0 Sally F 300 1

�ality impairments
Duplicates e2 & e3

Outlier age in e6

� Will introduce bias e.g., arithmetic mean of age will be biased
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> Example taken from: [1] Tae, K.H., Roh, Y., Oh, Y.H., Kim, H. and
Whang, S.E. 2019. Data cleaning for accurate, fair, and robust mod-
els: A big data - AI integration approach. Proceedings of the ACM
SIGMOD International Conference on Management of Data (2019).
> Task predict high income (label).
> Joe (e2, e3) has bigger influence on the results.
> Distribution of gender might be biased.
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Bias of an Estimator

Di�erence between the expected value of an estimator and the true
value

Unbiased estimator

... with zero bias
... does not exist without further assumptions

e.g., sample mean
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> Assumptions about a population.
> Mean-unbiasedness vs median-unbiasedness - it need to be
specified in relation to what an estimator is unbiased.
> In German called Erwartungstreue.
> e.g., assume the data does not follow a Cauchy distribution.
> No notion about what the bias actually is and where it comes
from.
> A good estimator should also have a low variance.
> So it appears, an unbiased estimator is always preferred?
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Stein Paradox

Biased combined estimator for multiple parameters

Is on average be�er than individual (unbiased) estimators

... even if the parameters are unrelated �

James–Stein estimator

Biased estimator of the mean

θ̂JS =
(

1− (m−2)σ2

‖y‖2

)
y.
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> Y = {Y1,Y2, ...,Ym} with unknown means, with m the num-
ber of parameters to estimate, and assumed to be Gaussian with
a known covariate matrix σ2I, and y are single observations.

> Stein’s Paradox is caused by using MSE, i.e. the problem is
with MSE and assumed Gaussianity.

> Example from baseball
» We want to estimate the ba�ing score of all players, e.g., of a
team
» Each player is a parameter, and the player’s history
» ... can be used to compute the respective sample mean and
variance
» The JS estimator gives on average be�er estimates than the
“average of averages”
» Sidee�ects: exceptionally good players will be over-corrected
to the average players (and vice versa)

www.tugraz.at
Bias

Inductive Bias
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> Recall Occam’s razor - guidance to make as few assumptions
as needed.
> Simple question: what is behind the tree?
> Image credits: https://www.datascienceafrica.org/
dsa2016/downloads/model_selection.pdf
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Inductive Bias

Assumption on unseen data given observed data

Examples

linear→ linear relationships

k-NN→ neighbours are similar

Maximum margin→ boundary b/w classes, generalisation via
distance to boundary

In a Bayesian se�ing via the prior
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> In machine learning bias is o�en seen as inductive bias or sta-
tistical bias (bias and variance).
> The inductive bias is part of the model, the main assumption.
> Also known as learning bias, variance hint.
> Declarative bias of the learner to choose a hypothesis/model.

> Bias is needed to obtain good generalisation:
> Mitchell, T. M. (1980). The need for biases in learning generaliza-
tions (pp. 184-191). New Jersey: Department of Computer Science,
Laboratory for Computer Science Research, Rutgers University.

> Priors are almost always chosen because they are mathemat-
ically convenient, not because they have any connection to re-
ality.
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Bias and Variance
Trade-o� between bias and variance ¤

A high bias represent models that make strong assumptions

e.g., a linear model assumes the response to be linear

A high variance represents models that can adapt well

... they can represent many hypothesis
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> For more detail look into VC-dimension and PAC learning.
> The dartboard analogy was put forward by Moore & McCabe
(2002)

> Please see here: (2011) Bias Variance Decomposition. In: Sam-
mut C., Webb G.I. (eds) Encyclopedia of Machine Learning. Springer,
Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_74

> More recently, with the progress in deep learning, some
authors argue that the trade-o� does not apply to deep
neural networks, see https://www.bradyneal.com/
bias-variance-tradeoff-textbooks-update
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Bias in Evaluation Measures

Accuracy is biased towards the majority class

In skewed data sets
e.g., 90/10 split between majority and minority class

Always returning the majority will yield a accuracy of 90%

Cross-validation (CV)

Try out multiple models

... pick to one with the best CV performance

No free lunch→ biased

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2

39

> Using accuracy is therefore less useful in such se�ings, prefer
F1, or Ma�hews Correlation Coe�icient.

> No free lunch theorem tells us that there is no best bias, there
are equally many problems where one model is be�er than
the other.

>→ Select the bias/model/algorithm according to the problem
(data), o�en domain knowledge is the key here V
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Confounding Bias

Bias due to common cause

Preferred solution: randomised controlled studies

Alternatively, condition on the common cause

i.e., render its e�ect out
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> Example: https://medium.com/causal-data-science/
understanding-bias-a-pre-requisite-for-trustworthy-results-ee590b75b1be
> More active users may skew the distribution of searching for
a product or seen an ad.
> “Activity bias”
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Funding Bias I

Relationship between eggs and (serum) cholesterol level

Analysis of studies

0% industry funded studies in the 1950s

60% in the timespan 2010 - 2019

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2

41

> Barnard, N. D., Long, M. B., Ferguson, J. M., Flores, R., &
Kahleova, H. (2019). Industry Funding and Cholesterol Re-
search: A Systematic Review. American Journal of Lifestyle
Medicine, 1559827619892198.
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Funding Bias II

Results of studies, in the results section

Non-industry: 93% report increase1

Industry: 83% report increase

Interestingly, 49% of industry funded studies found discordant

Statements in conclusion did not match results �

1not necessarily statistically significant
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> It might be that the funding bias had an e�ect on how the
authors presented the results of their work in the conclusions
of their studies.
> Readers should be aware of the implications.
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Selection Bias

Goal: hide the relationship between egg consumption and serum cholesterol

Selection bias

Patients with already high levels

... are not sensitive to additional dietary intake

Select them as study participants→ observe no treatment e�ect (e.g.,
one extra egg per day)
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> We have discussed selection bias already previously (yielding
the Berkson’s paradox).
> Recall the Apple heart study - are the participants a unbiased
sample from the population?
> Another idea would be to conduct a series of small studies
(few participants), and then only select those, where the re-
sults were (due to randomless) not significant, and the publish
a meta-study summarising the small studies.
> Selection (or sampling) bias is not limited to scenarios as de-
scribed, unfortunately in many data collection processes there
is an intrinsic sampling bias.
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Publication Bias

The outcome of a study has an e�ect on the publication of results

� Only good results are published, bias towards positive results

Creates incentive to p-value hacking and HARKing
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> Another selection on publication is novelty, papers that show
known relationships (e.g., egg→ cholesterol), will be less likely
wri�en/published.
> Similar to the combination bad film/bad book is rarely ob-
served, negative results in publication are rarely observed.
> p-value hacking - e.g., via many hypothesis (include many pa-
rameters) and due to randomness some results will yield false
positives (Type I error).
> Hypothesizing A�er the Results are Known - once a significa-
tion relationship has been found, a suitable hypothesis is build
to support the findings.
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Survival Bias

Special form of selection bias

“Men get tough fighting in the coliseum” vs
“only tough men survive the coliseum.”

Due to randomness (spurious) or systematic

If systematic, the selection process suppresses to
observe a fair, unbiased sample
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> If the same experiment is conducted by multiple teams, even if
there is no e�ect, one of the teams might be “lucky” to observe
an e�ect due to randomness - i.e., this team was “selected for
survival”.
> Image credits: https://xkcd.com/1827/
> See also: https://dataschool.com/
misrepresenting-data/survivorship-bias/
> Another example: stone age (a only stone tools survived the
times).
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Cognitive Bias

Even (domain) experts are not immune to bias

Confirmation bias

Prefer a hypothesis in line with previous assumption

Anchoring e�ect

Judgement changes depending on the sequence

Problematic, if dataset contains subjective “ground truth”
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> Since domain expertise plays an important role, and my biases
can only be detected via expert knowledge, it is important to
understand that there is bias as well.
> There are much more cognitive bias than listed here!
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Bias Detection

Benford’s Law

... for numerical data with multiple
orders of magnitude
Expect a power-law distribution

Of the first digit
Deviations indicate some
non-random process
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> By Drnathanfurious at English Wikipedia - Transferred from
en.wikipedia to Commons by Tam0031 using CommonsHelper.,
Public Domain, https://commons.wikimedia.org/w/index.
php?curid=6948975.
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Bias Countermeasures I

Scientific rigour (aka More Knowledge)

Understand the problem se�ing

Expectations on the data generating & collecting process

Repetition (aka More Data)

Bias is most harmful, if not in the data
Collect same data, but di�erent context

Where one would expect the same outcome
e.g., multiple domain experts, di�erent sequence, ...
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Bias Countermeasures II

Algorithmically (statistically) remove bias

Over-correcting for bias may introduce unwanted bias
... or moved true relationships
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> Correct for a mediator might render a relationship invisible.
> e.g., Correct for cholesterol level when measuring the impact
of a healthy diet on heart a�ack rates will make the influence
of the diet disappear, or a least appear less prominent.
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Fairness
When do we consider an algorithm to be fair?
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> Please also have a look at the privacy-preserving lecture,
where the notion of fairness has been introduced in a systematic
way.
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Introduction to Algorithmic Fairness

In a pre-algorithmic world

Humans made decisions

... taking the law and other constraints into account

Now, algorithms are expected to provide decisions

We can observe an algorithmic bias
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> https://fairmlbook.org/
> There are two types of scenarios:
> 1. Decision support systems - where the algorithms only
make suggestions, but the final decision it taken by a human.
> 2. Decision making systems - where the algorithms take the
final decision (without manual intervention).
> Suggested tutorial: https://mrtz.org/nips17
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Examples of Algorithmic Bias

Recruitment

Algorithms prefers gender/age/...

Face detection

Error rate vary w.r.t to ethnicity/smiling/...

Credit assessment

Based on location...
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> https://www.brookings.edu/research/
algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/

> Cases of unwanted bias in algorithmic outcomes, but also ex-
ample of wanted bias, e.g., Apple  users get targeted ads (for
more expensive products).

> Example from natural language processing:
> Gender bias in word embedding: “Man is to Computer Pro-
grammer as Woman is to Homemaker”
> Inherited from the underlying datasets.
> Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T.
(2016). Man is to computer programmer as woman is to homemaker?
debiasing word embeddings. Advances in neural information process-
ing systems, 29, 4349-4357.
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Algorithmic Fairness

Cause of algorithmic bias

Based on datasets capturing (human) decisions

... faithfully replicate

... including historical human biases

Obvious limitation

The algorithm does not directly “observe” the law & constraints
i.e., the machine only observes a subset of “features”
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> The supervised machine learning algorithm are trained on hu-
man decisions.
> Since the machine has no world knowledge, there is no way
to correct for biases in the data.
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Algorithmic Fairness

Other reasons for bias

Too small dataset

e.g., influence of randomness, sampling bias

Measurement errors

e.g., how to measure subjective judgements?
Watch out for automatically generated assessments

e.g., sentiment detection, spam, ...
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> If a minority class has just a few samples, the randomness
(or systematic di�erences) play a bigger role.
> For example, the quality of products may be judged by a per-
son; What happens when this person leaves the organisation
(see annotator shi�)?
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Algorithmic Fairness

Implications

Biased decisions

Feedback loops

Bias will be include in succeeding training data

� reinforcement
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Algorithmic Fairness

Detecting bias

Validation datasets / scenarios

e.g., comparison of expected value and output

Might be a dedicated (data science) project

Interpretability

Explainable AI (XAI)
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> For example, in an abduction study one tries to find out, how
certain results have been achieved.
> The field of explainable AI is large, many di�erent approaches
(e.g., Shaply values), include methods for interpretability.
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Algorithmic Fairness - Countermeasures

More Data

e.g., remove influence of randomness, & sampling bias

More Knowledge

Capture domain knowledge
Introduce via constraints

Algorithmic correction

e.g., via modelling causalities
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>
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Algorithmic Fairness

Prevention

Active inclusion

Fairness

Right of understanding

Access to remedy
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> Forum, W. E. (2018) How to Prevent Discriminatory Outcomes
in Machine Learning.
> Active Inclusion: The development and design of ML applications must actively seek a
diversity of input, especially of the norms and values of specific populations a�ected
by the output of AI systems.
> Fairness: People involved in conceptualizing, developing, and implementing machine
learning systems should consider which definition of fairness best applies to their
context and application, and prioritize it in the architecture of the machine learning
system and its evaluation metrics.
> Right to Understanding: Involvement of ML systems in decision-making that a�ects
individual rights must be disclosed, and the systems must be able to provide an expla-
nation of their decision-making that is understandable to end users and reviewable by
a competent human authority. Where this is impossible and rights are at stake, leaders
in the design, deployment and regulation of ML technology must question whether or
not it should be used.
> Access to Redress: Leaders, designers and developers of ML systems are responsible
for identifying the potential negative human rights impacts of their systems. They must
make visible avenues for redress for those a�ected by disparate impacts, and establish
processes for the timely redress of any discriminatory outputs.
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Types of Fairness

Individual fairness g

Similar individuals treated similarly

Group fairness �

Similar classifier statistics across groups
e.g., statistical parity
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> O�en assumed to be mutually exclusive.
> Again one has to clarify what similar means, and how to mea-
sure.
> Lipschitz continuity implies individual fairness (see smooth-
ness).
> See also: Cisse, M. and Koyejo, S. Fairness and Representation
Learning. Tutorial at NeurIPS 2019.

> https://pair-code.github.io/what-if-tool/
ai-fairness.html
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Private and Fair Presentations

Statistical parity For any value that the sensitive a�ribute takes we will
have the same amount predictions for each class.

Error parity For any value that the sensitive a�ribute takes we will have
the same error rates.

Su�iciency For any value that the sensitive a�ribute takes we will have the
same prediction probability.

Connection between fairness T privacy

It turns out, that the problem of removing confidential information from a dataset or
model is equivalent to ensuring statistical parity in algorithmic fairness.
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> Recap from the lecture on privacy-preserving!
> Let X be a dataset, Y is the true label, Ŷ is our prediction (the
representation Z = Ŷ ) and S ∈ {0, 1} is the sensitive (binary)
a�ribute we want to protect.

Statistical parity Ŷ⊥S P(Ŷ | S = 0) = P(Ŷ | S = 1)
Error parity Ŷ⊥S | Y P(Ŷ | Y = y, S = 0) = P(Ŷ | Y = y, S = 1)
Su�iciency Y⊥S | Ŷ P(Y | Ŷ = ŷ, S = 0) = P(Y | Ŷ = ŷ, S = 1)

> In statistical parity we want the same distribution for dif-
ferent values of a sensitive a�ribute. This is equivalent to a in-
dependence constraint between the algorithm output and the
sensitive a�ribute
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Achieve Algorithmic Fairness

Pre-Processing

e.g., find a metric to measure similarity, representation learing

In-Processing

e.g., constrains during learning

Post-Processing

e.g., adjustment of models
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> From NeurIPS 2019 tutorial:
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Shi�s
When does the data/process/... change?
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Stationary Distribution

Common assumption in machine learning

i.e., the data remains stable between training and test

Might not be realistic in real-life

Slight changes in the data generation (or collection) process, e.g.,
change in product portfolio of a retailer

� we need to understand types of shi�, & their causes
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> O�en the default route in data science project:

1. Acquire a (large enough) dataset
1a. Optionally annotated by domain experts (painful exercise)
2. Split the dataset (80/20, or Cross-Validation - optionally also
split for validation/hyperparameter optimisation)
3. Train the model (on the training split)
4. Get the evaluation results
4a. Assume this results will hold in the future �

> We still get results from our ML models, even if there is a shi�
in the data.
> But our results get increasingly “more invalid” F.
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Overview of Shi�s

1. Concept dri�

2. Covariate shi�

3. Prior distribution shi�

4. Domain shi�
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�ionero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence,
N. D. (2009). Dataset shi� in machine learning. The MIT Press.
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Concept Dri�

As seen in time series data, e.g., Ptrain(Y | X) 6= Ptest(Y | X)

� requires to update the model
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> One example from the time series lecture.
> It might be that the underlying generative process changes,
but we do not know from the data alone.
> We just know that the data is not stationary and therefore
methods that require stationary data are inappropriate.
> There are many approaches for dri� detection (in time se-
ries).
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Covariate Shi�

Change in distribution in (one or more) independent variables

Ptrain(Y | X) = Ptest(Y | X)

Ptrain(X) 6= Ptest(X)

Problematic, if the training dataset does not cover the full P(Y | X)

Consider the relationship b/w X and Y as ReLU

... and during training we only observed x < 0

→ we could false assume y = 0, and X ⊥⊥ Y
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> Let X be the independent variables and Y the dependent (tar-
get) variable to predict.
> See also https://gsarantitis.
wordpress.com/2020/04/16/
data-shift-in-machine-learning-what-is-it-and-how-to-detect-it/
> Recall the “car” behind the tree - this was the training data, in
testing we only get “samples” from behind the tree - only, when
we correctly guessed what is behind the tree, we will be correct.
> Causal interpretation: X → Y
> For imbalanced data, we may introduce a selector V that
depends on the target:
> X → Y ,Y → V
> If a sample selection bias causes the covariate shi�, with V
being the selector:
> X → Y ,X → V ,Y → V (without the last causal connection
there would be no bias).
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Covariate Shi� - Countermeasure

Learn a model

To distinguish between training and test split

If the model works su�iciently well

i.e., can discriminate samples from training and test split

� assume there is a covariate shi�
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Prior Probability Shi�

Change in distribution in (one or more) dependent variables

Ptrain(Y | X) = Ptest(Y | X)

Ptrain(Y ) 6= Ptest(Y )

Problematic, if the model uses P(Y )

e.g., Bayes rule to get P(Y | X) via P(X | Y )P(Y )

An assumption made by Naive Bayes
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> Can be detection as shi� in P(y) via statistical tests, paramet-
ric if we know/assume the distribution or non-parametric.
> Causal interpretation: Y → X (anticausal)
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Domain Shi�

(Systematic) change in the distribution

Intuition: independent variables depend on (latent) confounder

... change in confounder changes variables

Example from Natural Language Processing

Model learnt on text from newspapers
Model applied on text from social media
� performance drop

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2

69

> Causal interpretation: We cannot observe the true cause, x0,
just a transformation xnewspaper , or xsocialmedia, ...
> X0 → Y ,X0 → Xdataset , the la�er relationship may change (e.g.,
due to some other variables like a confounder).
> The relationship P(y | x0) remains the same.

> The given example could also be seen as shi� sample bias.

> Another example from industrial application:
> Change in sensors (in slightly di�erent behaviour), typical we
observe a slow degradation of sensor (dri�, e.g., temperature
sensors ), which are then rectified via a maintenance (either via
calibration, or swap in sensors).
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Same Concepts - Di�erent Names

Castro, D.C., Walker, I. and Glocker, B. 2020. Causality ma�ers in medical imaging. Nature
Communications. 11, 1 (2020), 1–10. DOI:h�ps://doi.org/10.1038/s41467-020-17478-w.
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> In di�erent domains (medical image analysis), the same
concepts are known under di�erent names.
> ‘population shi�’, ‘annotation shi�’, ‘prevalence shi�’, ‘manifestation shi�’ and ‘acquisi-
tion shi�’
... correspond to
> ‘covariate shi�’, ‘concept shi�’, ‘target shi�’, ‘conditional shi�’ and ‘domain shi�’

Note: the labels (a-f) do not correspond to the slide
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Dataset Shi� - Countermeasure

Transfer learning

Learn on a (large) dataset
Adapt to the (potentially small) target dataset

Which might be much smaller

The original and the target dataset should be related

Multitask learning

Machine learning model designed for change in task
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> Taken from https://en.wikipedia.org/wiki/Domain_
adaptation

> Multitask learning can be seen as special form of transfer
learning.

> Additional approach:
> Taking the causal perspective, if shi� are invariant w.r.t. the
causal model.www.tugraz.at

Shi�s

Model Unit Testing

Check if the model can cope with the expected nature of the data

e.g., via fuzz testing

Integrate into continuous integration

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2

72

> Taken from: Breck, E., Polyzotis, N., Roy, S., Whang, S.E. and
Zinkevich, M. 2019. Data Validation for Machine Learning. SysML.
(2019), 1–14.
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Summary

1. Understand the data generation/collection/... process

2. Check for bias in the data

3. Make reasonable assumptions

4. Select & apply matching algorithms

5. Check for bias in the results

6. Celebrate � (or goto 1 è)
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> If there is a bias in the data, one would need to recollect (more)
data.
> The assumptions of the algorithm should match the problem
se�ing.
> The algorithms introduce new bias, which need to be carefully
analysed.
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The End
Thank you for your a�ention!
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> Hope, that this course (and lecture) provided su�icient in-
sights to allow for elevation outside the danger zone into...


