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> Motivation: With purely observational data we are not able
to answer many questions that one would expect data science
to deliver. Taking into the causal perspective, one may (with
assumptions, or domain knowledge) answer these questions.
> Goal: Understand the importance and implications of the
data generation process and its implications of how to tackle
a data science analysis.
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> This lecture can only scratch the surface of causality, so large
sections of research are le� out.
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Overview & Motivation
Gentle introduction to causality, and how we ended up here...
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Root Cause Analytics - T-Shirts
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> Image a factory that produces t-shirts.
> Problem: some of the t-shirts have defects.
> Task: Root cause analytics to find out, what part of the pro-
duction process steps is associated (i.e., causally related) with
these faults.
> Data to solve this task: longitudinal data (mostly time series
data) from around the shop floor.
> Spoiler alert: we need domain knowledge to be�er under-
stand the data generation process (e.g., the causal e�ects).
> We need domain knowledge just to correctly segment our
data.
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Root Cause Analytics - T-Shirts
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> Each shirt is produced in multiple steps, each step may have
multiple (semi-)identical machines and each machine provide a
number of data (e.g., time series data).
> The arrows present the path a t-shirt takes throughout the
production process, this may already be the base for what we
will later call a causal graph.
> And already we can use time to our advantage, the root cause
need to always precede the e�ect.
> Knowing the production process will immensely help us in our
task!
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Starting Point

Correlation does not imply causation

Post hoc ergo propter hoc
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> We all learnt that we cannot jump to conclusions about the
true nature, just given observations.
> “Since event Y followed event X, event Y must have been
caused by event X”.
> In the 20th century we learnt to avoid phrases like “X causes
Y”, and go for the more vague/safe phrase like “X is associated
with Y”.
> The “Book of Why” of Judea Pearl gives a nice history lesson.
> Today, we progressed forward and be�er understand, when
(exactly) we are allowed to state “X causes Y” given just obser-
vational data.
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Regression to the Mean

The magazine “Sports Illustrated” features successful athletes on its
cover

But once they appear on the cover, their performance drops.

→ “The Sports Illustrated Cover Jinx”

It can be explained by the regression to the mean

Or, via reverse causation

i.e., good performance caused the cover, and the cover did not cause
bad performance
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> The sports illustrated curse!
> There appears a solid causation (title followed by dip in per-
formance), but in fact the good performance prior to the title
page caused the title page.
> There is even a hastag on Instagram: https://www.
instagram.com/explore/tags/sicurse/
> And it is mentioned in Kahneman’s book, Thinking fast, think-
ing slow.
> Initial insight:
> Correlation is symmetric, causation is directed.
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Role of Causality in Data Science

The gold standard to measure e�ects are randomised controlled
experiments

In practice they o�en cannot be conducted
A-B testing is a form of such experiment

Make use, if possible

Data-driven causal inference as next best option
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> Randomised controlled trial (RCT):
> - Want to study the impact of a treatment
> - Have a (large) number of people
> - Assign people randomly into 2 groups: gets treatment, don’t
get treatment (without them knowing)
> - Measure the di�erence
> Since the only di�erence is the treatment, any change can be
a�ributed to the treatment.
> Many reasons, why randomised controlled trials cannot be
conducted: ethical, financial, practical.
> One needs many participants (instances, e.g., t-shirts).
> Data-driven causal inference = causal inference from observa-
tional data.
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Nomenclature

Terminology Alternatives Explanation

causality causal relation, causation causal relation between variables
causal e�ect - the strength of a causal relation
instance unit, sample, example an independent unit of the population
features covariates, observables, pre-treatment

variables
variables describing instances

learning causal ef-
fects

forward causal inference, forward causal
reasoning

identification and estimation of causal ef-
fects

learning causal rela-
tions

causal discovery, causal learning, causal
search

inferring causal graphs from data

causal graph causal diagram a graph with variables as nodes and causal-
ity as edges

confounder confounding variable a variable causally influences both treat-
ment and outcome
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> See: Guo, R. et al. (2020) ‘A Survey of Learning Causality
with Data’, ACM Computing Surveys, 53(4), pp. 1–37. doi:
10.1145/3397269.
> In data science, we are mostly interested into learning causal
e�ects, i.e, we know (via domain knowledge) the causal relation-
ships, and with observational data we estimate the strength of
a relationship (instead of conducting a randomised controlled
experiment).
> O�en, the cause is called treatment and the e�ect is called
outcome - this is for historic reasons (as causality mostly pro-
gressed in these areas).
> Features are o�en also called independent variables, especially
in a se�ing, where one wants to predict the dependent variable
(also called target).
> Relationship to classical statistics: see if there is an e�ect:
statistical hypothesis testing, e.g. via p-values→ causal discov-
ery, measuring the strength of the e�ect: e�ect size, e.g. via
correlation→ causal inference.

www.tugraz.at
Overview & Motivation

Main Approaches

Potential Outcomes by Donald Rubin

Structural Causal Models (SCMs) by Judea Pearl
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> Two frameworks for causal learning.
> See also: https://blog.methodsconsultants.com/posts/
pearl-causality/.
> SCMs are o�en preferred when learning causal relations
among a set of variables, and PO for learning the strength of
relations.
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Recommended Literature

Suggested reading sequence

1. Glymour, M. M. and Greenland, S. (2008) ‘Causal diagrams’, Modern
epidemiology. Lippinco� Williams & Wilkins Philadelphia, PA, 3, pp. 183–209.

2. Guo, R. et al. (2020) ‘A Survey of Learning Causality with Data’, ACM Computing
Surveys, 53(4), pp. 1–37. doi: 10.1145/3397269.

3. Pearl, J., & Mackenzie, D. (2018). The book of why: the new science of cause and
e�ect. Basic Books.

4. Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A
primer. John Wiley & Sons.
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# Good book for find a match for practical se�ings:
# Hernán MA, Robins JM (2020). Causal Inference: What If. Boca
Raton: Chapman & Hall/CRC.
# https://www.hsph.harvard.edu/miguel-hernan/
causal-inference-book/
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Recommended Resources

Introduction to Causal Inference by Brady Neal,
https://www.bradyneal.com/causal-inference-course

Causal Data Science by Adam Kelleher, https://medium.com/
causal-data-science/causal-data-science-721ed63a4027

Causal Data Science with Directed Acyclic Graphs by Paul Hünermund,
https://www.udemy.com/course/causal-data-science/
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> Also interesting, the causal inference tutorial: https://
github.com/amit-sharma/causal-inference-tutorial/
> Also good starting point, a four-part lecture on YouTube
by Jonas Peters: https://www.youtube.com/watch?v=
zvrcyqcN9Wo
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Correlation without Reason
When do we observe correlations that we would not expect?
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Motivation

Correlation analysis is a central part of data science

... but are there cases, where correlations exists without proper reason?
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> In data science the correlation analysis (e.g., pairwise corre-
lation of all variables, including the target variable) is o�en one
of the first steps of the exploratory data analysis phase. O�en
with the goal to gain a be�er understanding of the dataset, or to
already select (or ignore) certain variables (feature selection).
> With correlation analysis we also include notions like condi-
tional probability.
> Example: In a production environment one wants to identify
defective items and wants to understand the root causes, i.e.,
what sensor data correlates with the defects.
> Even humans see correlations (make associations), where
there are no real reasons for these correlations, e.g., clouds just
happen to look like a horse, dog, etc. Note: Even worse, humans
o�en make causal assumptions starting with purely observa-
tional data (correlations).
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Overview

1. Spurious Correlation

2. Confounders

3. Berkson’s Paradox

4. Simpson’s Paradox
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> Here we will look at some key scenarios, which lead to cases,
where one may observe correlations in observational data (i.e.,
a data set), which do not represent the data generation process.
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Spurious Correlations

http://www.tylervigen.com/spurious-correlations
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> To clarify, there is no reason to believe that “oil imports” and
“killed drivers” are somehow connected.
> There are many documented cases where correlations just
happen due to random chance. In other words, the corre-
lation we see is just bad luck.
> There is a connection to statistical tests, if the p-value falls be-
low a previously defined α-value, we may only assess that the
probability of observing a certain phenomenon due to random-
ness is below our chosen threshold.
> When multiple hypothesis are considered (i.e., each correla-
tion b/w two variables is considered a hypothesis, thus for n
variables there are n2 hypothesis), the chance of observing at
least a single spurious correlation rises quadratically.
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Spurious Correlations

In big data se�ings one o�en combines di�erent data sets

→ might be a source of spurious correlations

Example

Di�erent se�ings on how the data sets have been collected, one data set
with only bad quality, and a second data set from only the night shi� → it
will appear as if the night shi� produces be�er quality!
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> Besides purely random reasons for spurious correlations, there
are cases of systematically introduced correlations.
> In fact, some authors consider the fusion of multiple data sets
(data sources) and a key component of the definition of big
data.
> Dataset di�er in their sampling bias will o�en cause spurious
correlations to happen (as the distributions (of many variables)
will di�er).
> In practice, o�en “special datasets” are collected with “special
properties” (e.g., many outliers)
> This type of spurious correlation is similar to the Berkson’s
paradox (= Berkson’s bias, collider bias).
> To detect such correlations: introduce a new “synthetic” vari-
able with the name of the dataset, if now there are some corre-
lations with this variable→ indicator for sampling bias.
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Spurious Correlations

https://www.google.org/flutrends/about/data/flu/at/data.txt
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> In 2008, researchers at Google made a nowcast of the flu
based on search query terms (the more people search with spe-
cific terms, the more flu infections are assumed to be there).
> The idea was published in Nature, claiming to be able to accu-
rately predict the flu 2 weeks before the o�icial (assuming based
on input for doctors).
> The data was calibrated using ground truth (from the health
organisations), to match the past, but due to the high amount
of search queries some were considered to be highly predictive,
without being related to the target (flu).
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Spurious Correlations

Failed in 2013 by being 140% o�!

Reason: overfi�ing to spurious data

Spurious correlations

Among the predictive search queries are seasonal terms like: “high school
basketball”
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> A critical analysis of the Google Flu was then pub-
lished in Science, which shows that the Google model
did overfit on the data https://www.wired.com/2015/10/

can-learn-epic-failure-google-flu-trends/
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Spurious Correlations

More data

More instances
e.g., held out data to confirm found correlations

Less data

Fewer variables
e.g., feature selection based on input from domain experts

More knowledge

e.g., validation of found pa�erns
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> So, how can we now prevent (or minimize the risk of) spurious
correlations, what strategies are there?
> More data should also apply to consider keeping the distri-
butions the same (of multiple dataset, if they are merged).
> Also, more diversity helps, e.g., in the example of the defec-
tive items, multiple root causes in the data may help to prevent
spurious correlations.
> Here fewer variables (= features) are equivalent to hypothesis.
> For example, one could look for all the search terms of
the Google Flu prediction and sort out all non-health related
queries.
> A variation of more data is: more (diverse) root causes, to
increase the variability of the phenomenon to study and hence
decrease the chance of spurious correlations.
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Confounding Factors

Example

People with healthy lifestyle

... tend to eat more healthy

... exercise more

... smoke less

... weigh less (lower BMI)

→ correlation between less smoking and low BMI.
Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2 (Version 1.0.4)

21

> ... and all other variables influenced by healthy lifestyle.
> Many people assume that smoking is associated with lower
BMI, but even if this is not true, one would still assume smoking
and BMI to be independent.
> Why do we see a positive correlation here, if they are indepen-
dent?
> ... because they have a common cause.

www.tugraz.at
Correlation without Reason

Confounding Factors

When is this a problem?

... if one is interested on the root cause of low/high BMI

... and healthy lifestyle is not in the data

→ In this se�ing, healthy lifestyle is a confounding factor for the relationship
between smoking and BMI.
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> In short, based on the data one would assume that quit smok-
ing might lower the BMI.
> Technically, “healthy lifestyle” is a confounding factor even,
if it would be observed (in this case it would be way easier to
identify the common cause).
> If it is not observed it is hard to obtain the true relationship
between smoking and BMI.
> This also applies to many cases in the industry. While one
would like to find/identify variables that correlate with e.g. bad
quality, such confounding factors imply relationships that do
not exist (and occlude true relationships).
> Confounders are also called lurking variables (if not ob-
served).
> The correlation between smoking and BMI is also called par-
tial correlation.
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Confounders

More data

More variables

e.g., include all potential
confounders in the dataset

More data

More instances, as we need to
control for confounders

e.g., split into healthy/non-healthy
groups

Less data

Fewer variables

e.g., reduce the collinearity

More knowledge

e.g., known confounders (and their
influence)

More data

More variables
e.g., include all potential confounders in the dataset

More data

More instances, as we need to control for confounders
e.g., split into healthy/non-healthy groups

Less data

Fewer variables
e.g., reduce the collinearity

More knowledge

e.g., known confounders (and their influence)
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> So, how can we now prevent (or minimize the risk of) spurious
correlations, what strategies are there?
> More data is related to include all possible influence factors
(confounders).
> We need to control for each value of the confounder, e.g.,
healthy and non-healthy instances individually as bins (i.e., cre-
ating two results, which might be combined via a weighted av-
erage, where the weighting needs to be based on the proportion
in the population (not in the sample)), see adjustment formula.
> Condition on confounders –> smaller bins –> skewed data sets.
, i.e., controlling for variables may create skewed datasets.
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Berkson’s Paradox
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> Typically, if one has read a really good book, then its movie
version is disappointing. Vice versa, there are many cases of
really good film, where the book is just mediocre. But, there are
seemingly only few examples of good book and good film!
> This is called the Berkson’s Paradox.
> Also called Berkson’s bias or collider bias.
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Berkson’s Paradox

The selection of books to make
movies from is not random!

... because we rarely observe
the combination

Bad book, and

Bad film

→ creating a skewed distribution
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> We do not observe (we did not sample, or they do not end up
in out dataset) the full population, hence creating an artificial
negative association between variables!
> Can be seen as an opposite of the confounder example: in-
stead of one common cause and multiple e�ects, we observe
multiple causes and a single e�ect (=the selection).
> This type of selection bias is common in many real-world
datasets.
> Another classic example is wet sidewalk (pavement), due to
rain or sprinkler.
> Also present, in cases of multiple root causes within a
dataset, each having an internal correlation structure, which
due to the sampling bias also mixed up (correlation b/w indi-
cators of di�erent root causes).
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Berkson’s Paradox

More data
More instances, including all combinations (if possible)
e.g., also equal amount of bad books/films

More knowledge
Document all sampling strategies
e.g., identify potential colliders, constraints (not plausible)

More data
More instances, to allow for controlling→ binning
e.g., tread the respective other variable as confounder
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> O�en, a fair sampling in not possible.
> Then, the other (spuriously correlating) variable(s) can be
treated as counfounders, and need to be controlled for. Again,
by binning with the risk of small bins and skewed datasets.
> Another domain knowledge might be the plausibility check,
e.g., it does not make sense that the be�er the book, the worse
the film!
> In many cases it only allows to detect implausible correlations,
but not correct for.
> Another example: Multiple root causes in the data cause a
collider, causing the root causes to be correlated with.
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Simpson’s Paradox
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> What do you see? A vase or a 2 faces on the le� side, and
dolphins or a couple on the right side?
> Both are correct, but it depends on the interpretation.
> The same (or at least similar) phenomenon can we observe in
data, but in data (with the help of additional information), we
can even answer which is (more) correct.

www.tugraz.at
Correlation without Reason

Simpson’s Paradox
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> �estion: Is the CRF higher in Italy than in China? I.e., is the
total with the blue background correct, or the individual age
groups with the yellow background? (CFR = Case Fatality Rate
= What fraction of people die being diagnosed with Covid-19)
> First approach: It depends on the question!
> For the question: I am an Italian, are my chances be�er than
a Chinese, the answer is no.
> For the question: I am an Italian and 33 years old, are my
chances be�er than a Chinese of equal age, the answer is yes.
> We cannot answer the question: I am an Italian and 33 years
old, would be chances be be�er, if I would live in China.
> With the help of domain knowledge we can answer the ques-
tion: To answer the original question, do we need to control for
age?
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Simpson’s Paradox

Explanation

Both variables (country, age) have an influence on CFR

The relations between the variables and their strength

... determine what we see

Solution

Country influences age more...

... the total (blue = Italy worse than China) is correct.
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> The di�erence is whether the data generating process con-
forms to a mediator or confounder.
> The solution is actually an assumption, i.e., age is not a con-
founder.
> It would be vice versa, if the age would be more influential,
i.e., if old people decide to move to Italy.
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Simpson’s Paradox

Observations

1. Correlation, where there should be none

2. No correlation, where there should be

3. Reversal of outcomes
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> Not only limited to correlations, but also for other types of
associations (e.g., Italy be�er than China, treatment A be�er
than treatment B, ...)
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Simpson’s Paradox

More knowledge

Understand/document data generation

e.g., identify potential mediators, confounders, etc.

More data

More instances per variable value

e.g., enough people per age group
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> The domain knowledge is most important here.
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Summary

Reasons
Randomness
e.g., too many variables

Data generation
e.g., confounder

Data collection
e.g., sampling

Data processing
e.g., fusion of datasets

Solutions
Domain knowledge
e.g., implausible, dependencies

More data
e.g., fair sampling, more
(controlled) experiments

Assumptions
e.g., smoothness, complete dataset

Constrains
e.g., time
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> Assumptions are then typically made by the data scientist.
> The assumption of complete dataset (there are no unobserved
confounders), is also called su�iciency in literature.
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Potential Outcomes
Causal Framework proposed by Donald Rubin
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Motivation

Based on the notion of treatment and outcome

With the treatment Ti ∈ {0, 1}

... and i indicating the instance, e.g., patient

Then the outcome yT
i consists of

y0
i outcome, not receiving the treatment

y1
i outcome, if received the treatment
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> https://blog.methodsconsultants.com/posts/
pearl-causality/
> For example, the treatment could be a drug (potential cure) a
patient receives (vs. a placebo).
> The outcome is here, if the patient recovered.
> Recommended literature:
> Rubin, D. B. (2005). Causal inference using potential outcomes:
Design, modeling, decisions. Journal of the American Statistical
Association, 100(469), 322-331.
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Definition

Potential outcome

Given the treatment and outcome: t, y

The potential outcome for instance i: y t
i

Outcome one would had observed, if i received treatment t
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> Potential outcomes is modelled a�er randomised controlled
experiments.
> Hard part: isolate the individual e�ect of the treatment.
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Average Treatment E�ect

Causal e�ect of intervention

Di�erence in outcome(s)

Individual Treatment E�ect (ITE)

τi = y1
i − y0

i

Average Treatment E�ect (ATE)

ATE = E [τi] = E
[
y1

i − y0
i

]
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> Since we want to measure how well our drug performs.
> ITE is on patient level, as the di�erence between potential
outcomes of a certain instance under two di�erent treatments.
> ATE is defined on population level, since we cannot admin-
ister a drug to a patient and not doing it at the same time.
> There is also conditional average treatment e�ect (CATE) for
analysis of specific sub-populations.
> Please note, the ATE is not specific to potential outcomes.
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Assumptions

Stable unit treatment value assumption (SUTVA)

Well-defined treatment levels

Same treatment value→ same treatment

No interference

The potential outcome is not influenced by other instances’ treatment
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> SUTVA can be split into two assumptions
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Assumptions (cont.)

Consistency

Outcome is independent of treatment assignment process
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> Additional assumption that needs to hold.
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Assumption - Ignorability

Treatment should be independent from outcome

Y 0
i ,Y

1
i ⊥⊥ Ti

This assumption is called ignorability (unconfoundedness)

There are di�erent ways to achieve this

Randomised controlled experiment

Propensity score matching

Regression discontinuity

Instrumental variables

...
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> We should not select the treatment based on the patient (or
her condition) - see Wikipedia example on Simpson’s Paradox
on kidney stones!
> Also called unconfoundedness.
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Matching methods

Divide the data into groups (strata, bins)

Grouping is defined via a function, f (x)
... with x being the features

... to create homogeneous groups

i.e., they di�er just in treatment and potential outcome

Each group is treated as randomised controlled experiment

Compute the ATE between groups
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> Propensity score matching being a special case of matching
methods.
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Propensity score matching

The propensity score is such grouping function

f (x) := P(t | x)
The probability of receiving a treatment

Needs to be estimated

e.g., via Logistic Regression
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Structural Causal Model
Causal Framework proposed by Judea Pearl
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Structural Equation Models (SEM)

Structural Equation Models (SEM)

e.g., Z = b0 + b1X + b2Y

Structural Causal Models (SCM)

Without assuming a functional form

Consider random variables Z1, ...Zn, and for each

Zi = fi(PAi,Ui)

where PAi are the direct parents,

and Ui is a noise term
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> SEMs are o�en assumed to be linear, and parametric (there
are important exceptions).
> SEMs are used in statistics since a long time, more popular in
the 70ties.
> Xi can also be seen as observables.
> Noise/unexplained terms Ui are o�en omi�ed for brevity, but
typically assumed to be there.
> Furthermore, the Uis are jointly independent from each
other.
> There is a single noise term for each variable, which repre-
sent all influences outside of the model (confounders, mea-
surement noise, ...).
> The dependencies given by the structural causal model (i.e.,
which parent each node Xi has can also be represented by a
graph, the causal graph).
> For computer scientists: A SCM is a program to generate data
(following the respective distributions).
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Pearl’s do() Notation

Conditional distribution for intervention on X

P(Z |do(X = x))

If we can compute this, we can compute the causal e�ect

P(Z = z | do(X = 1))− P(Z = z | do(X = 0))

Average treatment e�ect

ATE = E [y | do(t = 1)]− E [y | do(t = 0)]
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> The do() operator represents the intervention on the variable,
> e.g., in a dataset of smokers and non-smokers, artificially set
all to non-smokers.
> So, we only need to be able to compute P(Z | do(X)).
> ... it turns out that this is possible (in certain cases).
> Important take away: the interventional distribution,
P(Z |do(X = x)), is not the same as conditional distribution
P(Z |X = x) (even if there are cases, where there are identical)
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Pearl’s do() Notation

We need to map the do() operator to s/t we can compute

P(Z |do(X = x))

It might be

P(Z |do(X = x)) = P(Z ), or

P(Z |do(X = x)) = P(Z |X = x), or

P(Z |do(X = x)) =
∑

y∈Y P(Z |X = x ,Y = y)P(Y = y)

... even more complex
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Pearl’s do() Notation

How to map?

The mapping of the interventional space to the observational space, i.e., the
realisation of P(Z |do(X = x)), depends on the causal structure!
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> Additionally, Pearl makes the suggestion to prefer causal
graphs, instead of SEMs/SCMs since humans be�er cope with
graphical representations.
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Causal Graph
Simple graphical language to capture (relevant aspects of)

the data generation process
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Causal Graph

Causal graph

Extension of Bayesian networks

Nodes represent variables/observables/...

Edges represent causal relationships

With an arrow pointing from the cause to the e�ect

→ Directed acyclic graphs (DAG)
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> O�en unobservable and observable variables are included,
typically the ones we can measure are grey.
> The graphs do not need to be acyclic, but in practice it is hard
to model cyclic dependencies.
> Note: in di�erence with Bayesian networks, causal graphs can
be manipulated via interventions.
> Note: The causal graph might be part of a causal model, but
a causal graph alone is not a complete causal model.
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Causal Graph

X Z

UZ

Represents the SCM: Z := fZ (X ,UZ )

The combination of X and UZ cause Z
→ X 6⊥⊥ Z
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> Typically, the noise term is omi�ed (and in the following slide
it will not be shown).
> To be more clear: Any change in X will likely to e�ect changes
in Z , but not vice versa (as X and UZ are independent, X ⊥⊥ UZ ).
> If we would have a dataset that conforms to the causal graph,
we would (faithfully) expect that X and Z correlation, but
purely from the data alone we could not infer a causal relation-
ship (in general).
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Causal Graph - Chain

X Y Z

Chain (cascade): X causes Y , Y causes Z
→ X 6⊥⊥ Z , X ⊥⊥ Z | Y
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> No coincidence this looks like a Markov chain.
> In fact, P(X ,Y ,Z) = P(X)P(Y | X)P(Z | Y).
> X and Z are not independent, but once we “know” Y, we no
longer need X, since all we could learn about Z (from X) is al-
ready “contained” in Y.
> Another relationship is the data processing inequality, here
X might be the raw data, Y is the preprocessed dataset, and Y
the processing results.
> The data processing inequality states, that Y cannot “invent”
new data that is helpful for Y.
> In data science, from a purely theoretical standpoint, we can
only loose information while (pre-)processing the data.
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Causal Graph - Fork

X

Y

Z

Fork, or common cause: X causes Y and Z
→ Y 6⊥⊥ Z (spurious), Y ⊥⊥ Z | X
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> One cause, with multiple e�ects.
> With X as the common cause, Y and Z are no longer inde-
pendent (i.e., we will expect them to correlate), also known as
partial correlation.
> But conditioned on X, the will be independent (i.e., knowing X
will render them independent).
> For example, healthy lifestyle causes exercise and causes
healthy diet.
> See also Reichenbach’s common cause principle, which
combines the fork with time:
> ”If an improbable coincidence has occurred, there must exist
a common cause”
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Causal Graph - Confounder

X

Y

Z

Confounder: X causes Y and Z , and Y causes Z
Assuming Z is the depended variable, X is a confounder for the relationship

between Y and Z
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> In this case, Y might be the treatment and Z the e�ect.
> The presence of X modifies the relationship between treat-
ment and e�ect.
> For example: X are genes, Y is smoking, and Z is lung cancer.
> If we want to compute the influence of smoking on lung can-
cer, we have to remove the influence of genes.
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Causal Graph - Mediator

X

Y

Z

Mediator: Y causes Z directly and via X
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> For example: Y is smoking, X is tar in the lungs, and Z is lung
cancer.
> For completeness sake, there is also a moderator (similar to the
mediator), and mediated moderation, and moderated mediation
(can be seen as part of the noise variable, but then the noise is
no longer independent from the causal parent).
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Causal Graph

Causal Graph - Mediator

X

Y

Z

Mediator: Y causes Z directly and indirectly via X
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> If we want to compute the influence of smoking on lung can-
cer, we have to inspect two causal pathways.
> In practice o�en challenging to estimate.
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Causal Graph - Collider

X

Y Z

Collider: Y and Z causes X .
→ Y ⊥⊥ Z , Y 6⊥⊥ Z | X
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> For example: Y is smoking, Z is air pollution by cars, and X is
lung cancer.
> Smoking and air pollution are independent, but once we ob-
serve lung cancer, they longer longer are.
> i.e., conditioning on the collider will cause the causes to cor-
relate.
> Note: If Y and Z were not independent, we need to see an edge
between them.
> Same as the example with the good film, good book.
> Collider bias is created via sample selection, stratification, or
covariate adjustments.
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Causal Graph - Variations

X

Y ZL Q

C

Some additional notation: Explicit connection for collider causes,
unobserved variable via do�ed line, conditioned variable via boxes, observed

variables via grey nodes
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> There is currently no universal agreement on the actual graph-
ical notation.
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d-Separation

About

The d-separation helps to identify

All influence factors
For example: building a prediction model

e.g., We want to predict y , and x is d-separated
→ we do not need to include x in the model

Its counterpart is the d-connectedness
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> For the example, the two sets might be (i) the depended vari-
able (we we would like to predict), and (ii) all independent vari-
ables (with the goal to find these that actually have an influ-
ence).
> Applications: feature selection, parsimonious models.
> See also: http://bayes.cs.ucla.edu/BOOK-2K/d-sep.
html
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d-Separation

Given two nodes (or set of nodes): A,B

1. Identify all paths between the nodes, ignoring the direction

2. Identify all nodes on the paths that are conditioned on, add to set C

3. Use the direction to identify colliders
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> All independent variables that are d-separated, can be ignored.
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d-Separation

d-sep(A, B, C) - the covariates b/w A and B will are zero, if C is given

1. A node in C separates, but

2. A collider in C does not, but

3. A collider not in C does separate
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> In short, conditioned/observed nodes to separate (recall con-
dition on the “middle” variable in the causal chain) and un-
conditioned node do not.
> For colliders it is just the opposite.
> e.g., for a regression the coe�icients will be zero and the vari-
ables will be C (one leave out)
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Causal Graph

Causal graphs and causal discovery

Given some observational data, can one infer the causal graph?

... and only with some (strong) assumptions

→ only up to a point, i.e., Equivalence classes

Di�erent graphs, but cannot be distinguished
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> This directly addresses the question, of how the observational
data (e.g., conditional probabilities, correlations) and the causal
graph are related.
> e.g., If two variables correlate, do we expect them to be con-
nected via an edge in the causal graph?
> e.g., If two variables are connected in the causal graph, do we
expect them to correlate in the observations?
> Cannot distinguish chain and forks.
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Causal Graph - Summary

Causal graph represents the data generation process

One part of a causal model (e.g., SCM)

Intuitive for humans

Many cases su�icient to conduct causal inference

Allows to assess the “causal influences”
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> The d-separation guides us, which variables are expected to
be independent (assuming we already observe others).
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Causal Inference
Given data and a causal model, how do we estimate the causal e�ects?
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Motivation

Want to measure e�ect of treatment, T , on the outcome Z

Depending on the causal structure12

... it will be easy

... it will be possible

... it will be impossible

1Given su�iciently many observations
2Given some assumptions
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> For example, what is the impact of smoking on lung cancer?
> What is the impact of pressure of the printing machine on the
quality of the t-shirts?
> What is the impact of increase the “buy” bu�on on my shop-
ping web site on the purchase behaviour?
> Recall the causal e�ect:
P(Z = z | do(X = 1))− P(Z = z | do(X = 0))
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Trivial Case

If there is no connection and there are no confounders

P(Z |do(T = t)) = P(Z ), i.e., there is no e�ect

T

Z

No edge/path between T and Z , no confounders between T and Z
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> For example, an intervention on smoking (ge�ing a smoker
to quit smoking), is not expected to change the quality of the
t-shirt factory.
> While this may sound trivial, the causal graph and the d-sep()
guides us to infer, which relations are independent.
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Simple Case

If there are no confounders and no causal parents

P(Z |do(T = t)) = P(Z |T = t), only the direct e�ect

T

Z

No incoming edges on T , no confounders between T and Z
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> Then our observations directly match the e�ects.
> There might even be some mediators in the path between T
and Y.
> Or there might also many other outgoing edges from T, which
can all ignore here.
> Note: Variables, which have no incoming edges are also called
exogenous variables.
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Backdoor Case

If there are no confounders, but causal parents

We close/block the backdoor of PA onto T

P(Z |do(T = t)) =
∑

pa∈PA P(Z |T = t,PA = pa)P(PA = pa)

T PA

Z

Incoming edges on T from its causal PA, the backdoor
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> Since we are interested on the isolated e�ect of the treatment,
but not on the combined influences that go into the treatment,
we need to remove (debias) their influence.
> If all peers smoke, influencing the decision on smoking, but
one is not interested to learn the influence of the peers on lung
cancer.
> Note: Consider a more complex causal graph, where PA also
has a cause - we can close the backdoor with any variable on
the “backdoor path”, (i.e., the grand parents).
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Backdoor Collider Case

If there is a backdoor, which is collider

We do not close/block the backdoor of the collider W

P(Z |do(T = t)) = P(Z |T = t), since the unconditioned collider blocks

T W

Z C

Collider W creates an additional path between T and Z (T →W ← C → Z )
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> If we in this case control for the collider, we would introduce
an unwanted bias.
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Confounded Case

If there are observed confounders (not blocked)

For a single confounder C

P(Z |do(T = t)) =
∑

c∈C P(Z |T = t,C = c)P(C = c)

T

C

Z

C is a confounder influencing both, the treatment T , and the outcome Z
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> This formula is also known as adjustment formula.
> We adjust for the bias introduced by the confounder, i.e., we
seek to remove its influence.
> Classical example: e�ect of smoking on lung cancer, with the
genes being the confounder.
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Instrumental Variables

If there are unobserved confounders

Idea: introduce variation independent from confounders

T

Y

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2 (Version 1.0.4)

69

> See also: https://p-hunermund.com/2018/10/30/
you-cant-test-instrument-validity/.
> The IV can be seen as experiment, also called surrogate ex-
periment and surrogate variable.

www.tugraz.at
Causal Inference

Instrumental Variables (IV)

An instrumental variable, IV, satisfies
IV 6⊥⊥ T | X
IV ⊥⊥ Y | X, do(T = t)

with T being the treatment, Y the outcome, and X the features, and C
unobserved confounders

IV T X1...n

Y C
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> The IV influence the outcome only via the treatment:
> ... no direct path
> ... no unobserved confounders between IV and outcome
> The shown causal graph is just an example, the relation b/w
IV and T could also be a chain, or a conditioned collider.
> The second assumption is important, since we use IVs to com-
pute the e�ect of T on Y.
> Note: There is no way to judge if the assumptions for IV are
fulfilled by the data alone, we require domain knowledge (a sin-
gle unobserved confounder may render our results useless).
> Tools like Dagi�y allow to automatically find IVs,
https://cran.r-project.org/web/packages/dagitty/
vignettes/dagitty4semusers.html
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Instrumental Variables

Instrumental variables allow to estimate the local average treatment
e�ect (LATE) of T and Z

Assumption: relationship between IV and T needs to be monotone

Specific to the chosen IV

Estimator needed

e.g., Wald estimator for binary treatment and instrument

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2 (Version 1.0.4)

71

> Not always clear, if the LATE is representative for the full pop-
ulation.
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Front-Door Case

If there are unobserved backdoors, and confounders

The font-doors F blocks all direct paths b/w T and Z

P(Z | do(T = t)) =
∑

f P(f | t)
∑

t′ P(z | t ′, f )P(t ′)

T

F Z

C

All backdoor path (of F ) are blocked by T , no unblocked path b/w T and F
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> For example, T is smoking, C are genes (unobservable con-
founder), Z is lung cancer, and our front-door F would be tar
deposits in the lung.
> We assume, that genes do not play a role in tar disposition.
> This is also called the front-door adjustment.
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Simpson’s Paradox
Recall Covid’19 case
A - age, C - country, CRF - case fatality rate

A

C

CFR

Age (A) is a confounder

A

C

CFR

Age (A) is a mediator

We assumed age to be a mediator→ CFR is higher in Italy
(and the total causal e�ect (TCE) is the di�erence in CFRs).
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> Here the intervention can be seen as change the country
from China (no treatment) to Italy (treatment).
> What is the correct question if we want to find out: what is
the e�ect of the country (Italy) on CFR?
> Possible questions:
> - What is the average e�ect of the country? (mediator)
> - What is the age group e�ect of the country? (confounder)
> In our case we assume age to be the mediator, as Italy causes
people to get old→ we now know, which is the right question
to ask.
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Causal E�ects

Total causal e�ect (TCE)
“What would be the e�ect on mortality of changing the country from China to Italy?”

Controlled direct e�ect (CDE)
“For 50–59 year-olds, is it safer to get the disease in China or in Italy?”

Controlling for a value of the mediator (i.e., di�erent for each age group)

Natural direct e�ect (NDE)
“For the Chinese case demographic, would the Italian approach have been be�er?”

Natural indirect e�ect (NIE)
“How would the overall CFR in China change if the case demographic had instead been that from Italy,
while keeping all else (i.e., the CFR’s of each age group) the same?”
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> Measuring the causal e�ect in various ways to learn about the
causal implications.
> Mediation analysis to split the total causal e�ect into direct
and indirect e�ect.
> Real world scenarios it is o�en di�icult or even impossible to
control both the treatment and the mediator
> Much more, e.g. Sample Average Treatment E�ect (SATE),
Population Average Treatment E�ect (PATE), Population Aver-
age Treatment E�ect for the Treated (PATT), Conditional Aver-
age Treatment E�ect, ...
> For mediation analysis also see: https://david-salazar.
github.io/2020/08/26/causality-mediation-analysis/
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Causal E�ects

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2 (Version 1.0.4)

75

Evolution of TCE, NDE, and NIE of changing country
from China to Italy on total CFR over time. We com-
pare static data from China [27] with di�erent snapshots
from Italy reported by [10]. The direct e�ect initially was
negative, meaning that age-specific mortality in Italy was
lower; however, it changes sign around mid-March when
an overloaded health system in northern Italy was re-
ported [1]. The indirect e�ect remains mostly constant
at a substantial +3–3.5%.

> von Kügelgen, J., Gresele, L. and Schölkopf, B. (2020) ‘Simpson’s paradox in Covid-19

case fatality rates: a mediation analysis of age-related causal e�ects’, pp. 10–19.
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Simpson’s Paradox #2
Example: Kidney Stone Treatment

Stone size vs Treatment Treatment A Treatment B Interpretation

Small stones 93% (81/87) 87% (234/270) A > B
Large stones 73% (192/263) 69% (55/80) A > B

Both 78% (273/350) 83% (289/350) A < B

Patients, who su�er from kidney stones receive either treatment A or B, and then the success of the treatment is
measured, for multiple patients then a success rate can be computed.

We are interested to know: Which treatment is be�er?
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> Example taken from Wikipedia: https://en.wikipedia.
org/wiki/Simpson’s_paradox
> There are two treatments (A, B) for kidney stones, where the
stones have di�erent sizes (small, large).
> The outcome is the success rate of the treatment (in percent).
> When conditioned on the stone size, treatment A appears to
be be�er than B (for both small and large stones), but in total
the direction is reversed.
> Note: The numbers in the brackets specify the size of the
groups, where we can observe a skewed distribution (while there
as many receiving the two treatments, in this case 350 patients
for each treatment).
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Simpson’s Paradox #2

Size

Treatment

Success

Stone size is a confounder, i.e., A > B

Size

Treatment

Success

Stone size is a mediator, i.e., A < B

Since the doctors already assume treatment A to be be�er, they assign more severe cases (i.e., larger stones) to
treatment A (and less severe cases to treatment B)→ the size of the stone has a causal e�ect on the treatment
(stone size is a confounder), A > B.
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> Crucially, the size has an influence on the outcome as well, in
fact in this case we expect that the “influence” of the stone size
if bigger than the influence of the treatment alone, known as
Cornfield’s conditions:
> P(success | small stone) − P(success | large stone) >
P(success | treatment B)− P(success | treatment A)
> In this case: 0.16 > 0.05
> Schield, M. and Milo Schield (1999) ‘Simpson’s paradox and
cornfield’s conditions’, ASA Proceedings of the Section on Sta-
tistical Education, 1999, pp. 106–111.
> This is a classical example of bias in data science and we of-
ten assume that the treatment to be randomised, while in prac-
tice it o�en is not.
> e.g., if the workers/engineers in the t-shirt manufacturing
plant already assume a certain machine to provide be�er/worse
results, this may bias the results.
> Practical problem of data science: how do we find these
potential confounders?
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Causal Inference - Summary

We need to study the causal relationships

Which we assume to be given (and correct)

We study, which variables are observed (conditioned)

We select the approach and derive the matching formula

Finally, apply on the data
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> In many case it may happen that we require binning.
> Is is important that the bins are then su�iciently large, i.e.,
enough data points/instances available per bin.
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Causal Discovery
Given data, can we infer the causal model?
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Assumptions

Su�iciency, there are no hidden confounders

Markov assumption, an event is independent from non-descendants, if
conditioned on its parents

(Weak) faithfulness, there might observe a correlation if there is a
causal relationships

Faithfulness, there expect to observe a correlation if there is a causal
relationships
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> O�en, faithfulness is required, because, if due to spurious rea-
sons we do not observe a correlation, even if the data generation
process (causality) may indicate so, there is li�le chance to suc-
cessfully recover the correct causal structure.
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Additive Noise Model

Recall SCM

Yi = fi(Xi,Ui)

For the Additive Noise Model (ANM) we assume

Yi = fi(Xi) + Ui , assuming, Xi ⊥⊥ Ui
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Additive Noise Model

We further assume a non-linear function and a “bounded” noise

→ expect the noise on Y to be independent from X

While, vice-versa, do not expect this behaviour

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2 (Version 1.0.4)

82

> Image taken from: Lopez-Paz, D. et al. (2017) ‘Discovering
causal signals in images’, Proceedings - 30th IEEE Conference
on Computer Vision and Pa�ern Recognition, CVPR 2017, 2017-
Janua, pp. 58–66. doi: 10.1109/CVPR.2017.14..
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Additive Noise Model

Application

Regress Y on X

Non-linear, good-fit

Compute residuals E

If X and E are not independent, then X causes Y
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Granger Causality

Identify causal relationships in multivariate time series

Intuition

If Xi is uniquely helpful to predict future values of Xj ,
in the presence of other predictive time series Xk (may be multiple)
... then we assume Xi → Xj , i.e., Xi forecasts Xj

Conditional ignorability assumption is not satisfied

→ assumes no hidden confounders
e.g., for stock market prediction need to know influence of other
stocks, economy, ...
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> Extended intuition: ablation study to single out the predictive
power of Xi on Xj

> e.g., compare prediction using P(Xj | Xk) vs P(Xj | Xk ,Xi)
> �ote: “it cannot be used to discover real causality”, as
“the values of both treatment variable X and control variable
Y maybe driven by a third variable”
> Tsapeli, F., Musolesi, M. and Tino, P. (2017) ‘Non-parametric
causality detection: An application to social media and finan-
cial data’, Physica A: Statistical Mechanics and its Applications.
Elsevier B.V., 483, pp. 139–155. doi: 10.1016/j.physa.2017.04.101.
> “Transfer entropy is a model-free equivalent of Granger
causality.”
> Does not detect causality, but mere temporally related phe-
nomena.
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Granger Causality

Typically solved via (linear) regression

Individual coe�icients for lagged causality

i.e., The causal relationship may manifest itself only a�er some
observations

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2 (Version 1.0.4)

85

> The lag is typically assumed to be constant and independent
from other factors.
> Another typical assumption is stationarity of the time series.
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Conclusions
Practical Aspects and Conclusion

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2 (Version 1.0.4)

86

www.tugraz.at
Conclusions

Causal Data Science Process

Gain an understanding of the domain

e.g., causal graph, what happens when, five whys, Ishikawa diagram,
FMEA

Gain an understaning of the data

e.g., correlation anlaysis, visual tools, dimensionality reduction, EDA

Formulate questions/hypothesis

Find answers (by following the causal pathways)

Iterate! (e.g., refine questions, gather more data)
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Causal Data Science Process
Best practice

Check, if the causal relationships (from the domain expert) hold true in
the data (faithfulness)

Collect constraints not available as causal relationship

Keep held-out data to validate findings

If possible, run controlled experiments to experimentally validate
findings

Be aware of assumptions and their implications
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Practical Aspects

Confounders

Unobserved confounding nonetheless remains a major obstacle in practice

→ include more data (more variables) into the dataset

Roman Kern, ISDS, TU Graz
Knowledge Discovery and Data Mining 2 (Version 1.0.4)

89

> https://fairmlbook.org/causal.html.
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Practical Aspects

Building causal graphs is not trivial3

Important: the causal graph is the statistical, causal interpretation
of the underlying data generation process

When to merge/split nodes?

What confounders realistically exists? Which can be simply ignore?

Which causal relationships are transitive?

Mediator vs. moderator?

3Even with domain knowledge
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> The data scientist should draw the causal graph, not the do-
main expert.
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Practical Aspects

Split the event/variable into an unobservable and observable

O�en assumed a measurement equals the treatment

T T ∗

Y

T is the true treatment (not observed), T ∗ is a measurement (observed)
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Takeaway Message

Causality is a powerful tool

Guides the data scientist to ask the correct questions

... and to correctly answer them (e.g., unbiased)

But, purely data-driven causal inference is not possible

... domain knowledge (e.g., via causal graphs) is always needed

... if not available, avoid jumping to (causal) conclusions
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The End
Thank you for your a�ention!
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