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Motivation

What is motion? A problem from the 300’s B.C.

Aristotle’s Motion

• Motion is the fulfillment of that which exists potentially

• As many types of motion as there are meaning of the word is.

Newton’s Laws of Motion, XVII century

• Do little to answer many of the questions about motion which Aristotle
considered.

• It is about the movement of point particles
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Motivation

What is Privacy? A problem for the 2000’s A.D.

Newton’s Laws of Motion = Motion ∩ Point Particles

Privacy ∩ Data Science = ?
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Motivation

Dataset anonymization

Dataset anonymization substitute/remove identifiers and sensitive
information.

Netflix Challenge (2008) by finding the best match⇒
Netflix anonymized data + public ImDB data = Re-identified Netflix data

Anonymized Data Isn’t

Dataset anonymization is a fundamentally broken technique and should
not be used.
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Motivation

k-anonymity (1998)

Idea Make sure there are more people with the same set of combinations of
pseudo-identifiers.

Terminology

• Identifiers name or ssn – unique

• Pseudo identifiers (zip, dob, gender) – not unique, but together they
identify a person

• Sensitive attributes diagnostic, income, ...
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Motivation

k-anonymity (1998)

Solution

• Redact information from individual records so that a set of characteristics
matches at least k− 1 individuals.

• If for any setting of pseudo-IDs, there are at least k− 1 other subjects with the
same setting of pseudo-IDs, then we have k-anonymity.
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Motivation

k-anonymity (1998) – a faulty solution

Problems
• Does not prevents record re-identification if multiple datasets are released –

linkage attacks

• The k-anonymous sets with homogeneous sensitive attribute leak information –
no plausible deniability (ability to deny something)
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Motivation

Reconstruction Attack

Diffix and Aircloack Challenge (2017) Reconstruct private database with
unlimited number of queries, but limiting the query type

1 Get aggregated statistics by querying database

• How many rows satisfy [CONDITION] and have has_secret= True

2 Generate constraints (e.g. 0<age<125 )

3 Find feasible point using constrained optimization solver.

• NP-Hard because of integer constrained values
• In practice, easy to solve
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Motivation

Aggregated Statistics

Genome Wide Association Studies (GWAS) release relative proportions
of each allele frequency

• There are hundreds of thousands or millions of Single Nucleotide
Polymorphisms (SNPs)
• Minor allele frequency, χ2-statistics, p-values, ...

Homer et al. (2008) Simple correlation test is enough to test whether a
particular individual was part of the GWAS group – a membership
inference attack

National Institutes of Health (NIH) ended up restricting free access
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Motivation

Memorization in Neural Networks

• Model parameters are also vulnerable, since they are another kind of
aggregated data.

• Are training set observations predicted with higher confidence than
observations in the test set? Low perplexity⇒ NN memorized data point.

• Membership inference attacks determine if a target individual is in the
dataset or training set.
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Motivation

Memorization in Neural Networks

On the left there is an image recovered using a new model inversion attack and, on
the right, a training set image. The attacker is given only the person’s name and
access to a facial recognition system that returns a class confidence score.
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Cryptography

• Cryptography solves a different problem. A lot of times it deal with the
security, not the privacy of the data

• Privacy guarantees in case the encryption is compromised? The lifetime of
cryptosystems is usually short.

• Cryptographic techniques increase computation and communication
cost a lot
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Motivation

Privacy Preserving Data Science

• In the data science life cycle we want to ask arbitrary queries, visualize,
manipulate the data at will

• We want to publish the data or statistics or models.

• Generally we want to release some properties about data to the world –
we worry about unwanted inferences by an adversary.
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Privacy Expectations

Unreasonable

• Privacy for free Removal of information without accuracy loss

• Absolute privacy your friend and family habits are correlated with yours, they
leak your information with theirs.

Reasonable

• Quantitative control accuracy vs. privacy and quantify accuracy loss.

• Plausible deniability yours presence in a database cannot be ascertained.

• Prevent targeted attacks limit information leaked even in the presence of side
knowledge.
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1. Let’s set the expectation for Privacy-preserving statistics or data
science ...

2. There is no removal of information without loss of accuracy in
statistical privacy. Meaning there is no privacy for free.
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Differential Privacy

Recap

Releasing "too many" and "too accurate" aggregated statistics makes one
vulnerable to:

• Database Reconstruction

• Linkage attacks

• Membership inference attacks

Aggregated statistics are not safe
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Differential Privacy

Intuition

Why Differential Privacy? A quantitative theory for "too many" and "too
accurate".

1 An individual data point will have almost no impact on the output of a
differential private algorithm – DP is an algorithm’s property.

2 A privacy notion centered on hiding participation in a dataset

3 Provides plausible deniability and doesn’t ban any particular use of
data

4 Protection against linkage attacks from multiple data releases (even
future ones)
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Differential Privacy

Statistical Learning Theory Perspective

Related with the generalization/stability properties of learning algorithms
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1. Your fitted model does not change much even if you change/remove
and individual point
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Differential Privacy

Definition

Given the input space X of databases, a privacy-preserving mechanism
M :X →Y provides ε-differential privacy (ε ≥ 0) if for all events E ⊆ Y
and for all datasets x, x′ ∈ X , such that x ≈ x′, we have:

P[M(x) ∈ E]
P[M(x′) ∈ E] ≤ exp(ε)

The neighbouring relation ≈ is symmmetric and captures what is
protected. E.g. replace/remove one entry; in location privacy it means to
move by d much
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1. DP is a quantitative definition of privacy. DP is also a property of
algorithms.

2. Given and input space x of databases, a privacy-preserving
mechanism M provides epsilon DP if for all events and for all
neighboring databases, we have the following bound.

3. Mechanism Stochastic mapping, randomized algorithm, a random
variable.

4. For location privacy, the neighboring relation mean to move by d
much
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Differential Privacy

Comments

• Worst-case definition for every pair of datasets x and x′ and possible
outputs: Hard to verify algorithmically!

• Quantitative definition parameterized by ε: should be small 0.1≤ ε ≤ 5

• Any DP algorithm must be randomized: M(x) needs to be a random
variable.
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1. We can say that DP bounds the multiplicative increase in the
probability of M’s output satisfying any event when you change one
data point.

2. Epsilon should be small. However, there are cases in the literature
where ε is even 100.

3. Also, any DP algorithm must be randomized. We see that in the
definition where M is a random variable.

4. DP is an information theoretical definition of privacy, because it does
not depend on computational assumptions of the adversary

5. We can also say that DP is a privacy definition against statistical
inference.
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Differential Privacy

Isn’t

What would be known even with the individual’s data removed.

◦ E.g. If you smoke your insurances rates go up, even if you didn’t participate in
any study that connect smoking with increased risk of lung cancer

What others tell about you – family genome, social network friends, etc.

◦ Facebook likes allow to discover political affiliation, religion, use of drugs,
cigarettes, and alcohol, if parents divorces before user turned 21, etc.
(Cambridge, 2013)

◦ Strava case aggregated data from fitness tracking devices revealed location of
US bases (state secrets) while protecting individual jogging routes.
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1. What isn’t Differential Privaccy
2. DP does not protect you from study results. Whether you participated

or not.
3. It also doesn’t protect against what other tell about you. DP is not

appropriate for social networks data, or in the case of scarce data in
location data analysis.
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Differential Privacy

History

1 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith
(2006) Calibrating Noise to Sensitivity in Private Data Analysis

2 Test of Time Award 2016 Dwork et al.

3 Gödel Prize 2017 Dwork et al.

4 Knuth Prize and IEEE Richard W. Hamming Medal 2020 Cynthia
Dwork

Oldest DP Algorithm is Randomized Response (Warnen, 1965)
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Differential Privacy

Randomized Response

Goal: find the proportion p of students that cheated in the final exam.

1 Answer truthfully with probability 1/2+ γ

2 Lie with probability 1/2− γ
Provide plausible deniability for each individual answer to illicit a honest
answer.
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1. Randomized Response was created for sensitive surveys. For example
we might want to find out how many students cheated. Normally
they will not answer truthfully, so RR devises a strategy to illicit that.

2. It survey student with a binary question: "did you cheat?"
3. But this is not asked directly. So... This provides...
4. With γ= 1/2 we have maximum utility, but zero privacy. Students

with always answer the truthfully - doesn’t solve our reponse bias
problem.

5. With γ= 0 we have zero utility but maximum privacy wit han
uniformly random response. Answer truthfully and lies with
probability one half.
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Differential Privacy

Randomized Response – Analysis

X1, . . . , Xn ∼ Ber(p) p= E[Xi]

Yi = RRγ(Xi) =

¨
Xi w.p. 1/2+ γ
1− Xi w.p. 1/2− γ γ ∈ (0, 1/2)
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1. Let’s say we have n students, and their true response X follows a
Bernoulli with parameter p

2. p is the true proportion of cheating students
3. Xi are unobserved, while Yi, the output of the RR algorithm, are

observed
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Differential Privacy

Randomized Response – Analysis

Goal

E[p̃(Y1, . . . , Yn)] = p

We know that:

E[Yi] = (1+ γ) Xi + (1− γ) (1− Xi)
= 2γXi + 1/2− γ
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1. The Goal is to find an good estimator p̃ of p. Remember that an
estimator is a random variable, while p is the true value and a
deterministic number

2. We know that Yi and Xi are related by the expectation of Yi
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Differential Privacy

Randomized Response – Analysis

Thus, we can find the unbiased estimator for Xi,

E
�

1
2α

�
Yi −

1
2
+ γ
��
= Xi

We can get a cadidate estimator p̃ of p if we average the the Xi estimator

p̃=
1
n

n∑
i

1
2α

�
Yi −

1
2
+ γ
�

This estimator is also unbiased: E[p̃] = p
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Thus we can find the estimator with some simple arithmetic and properties of
expectation
We can also check that this estimator is unbiased
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Differential Privacy

Randomized Response – Analysis

From the properties of variance and given that Yi are independent,

Var[p̃] =
1

4γ2n2

n∑
i

Var[Yi]≤
1

16γ2n

From Chebyshev’s Inequality (k> 0)

P
�
|p̃− p|< k

4
1
γ
p

n

�
≥ 1− 1

k2
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1. Yi is also Bernoulli distributed, and the variance of a Bernoulli r.v. is
at most 1/4

2. Chebyshev inequality allows to check that the absolute difference
between the true parameter and the estimator decreases with square
root of n.
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Differential Privacy

Randomized Response – Analysis

How ε-DP is RRγ?

X = (X1, . . . , Xn) X′ = (X1, . . . , X′n)

For any particular binary string b ∈ {0,1}n

P[RRγ(X) = b] =
n∏
i

P[Yi = bi]

João Machado de Freitas, Know-Center GmbH, TU Graz
KDDM2

27

1. Finally, how epsilon-DP is gamma-Randomized Response?
2. Consider two datasets X and X’ (X prime) that differ only in one entry,

the last one.
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Differential Privacy

Randomized Response – Analysis

∏n
i P[Yi = bi]∏n
i P[Y ′i = bi]

=
P[Yn = bn]
P[Y ′n = bn]

≤ 1/2+ γ
1/2− γ = exp(ε)

RRγ is
�
log

1/2+γ
1/2−γ
�
-DP
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1. For all events, there is only input that changes Xn. To most factor are
eliminated as we have the following bound.
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Differential Privacy

Randomized Response – Comments

Privacy of our estimate p̃ will follow by the post-processing property of
DP – essentially saying that a function of a differetially private object is also
private.

Stronger notion than global-DP. RR provides local-DP, there is not need
for a trusted curator – central aggregator.

• Local-DP |θ̂ − θ | ≤ O(1/εpn)
• Global-DP |θ̂ − θ | ≤ O(1/εn)
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1. Also RR is more than DP. Is local-differentially private, since the
individual can protect it’s own privacy and there is no need for a
trusted curator, also known as, trusted aggregator
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Differential Privacy

Laplace Mechanism

Global-DP with Laplace mechanism for computing a mean

1 Curator holds an observation xi for each of the n observations

2 Computes sample mean µ= 1/n
∑n

i xi

3 Sample noise Z ∼ Lap(1/εn)

4 Reveals the noisy mean µ̃= µ+ Z

|µ̃−µ| ≤ O(1/εn)
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1. The Laplace mechanism for computing means is the following ...
2. Part of a larger family of mechanism that perturb the output.
3. For instance, if we have Gaussian noise, we will have the Gaussian

mechanism. However, the Gaussian mechanism is not ε-DP (next)
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Differential Privacy

Approximated DP

A randomized algorithm is (ε,δ)-DP if

P[M(x) ∈ E]≤ exp(ε) P[M(x′) ∈ E] +δ

The slack delta δ ∈ [0, 1] accounts for "bad events" that might result in
high privacy losses. It should be very small δ� 1/n

Laplace mechanism is ε-DP Gaussian mechanism is (ε,δ)-DP
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1. The Gaussian mechanism is approximated DP, which is needed also
for some other mechanisms.

2. Account for the probability of releasing the true statistic of the data.
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Differential Privacy

Properties

1 Robustness to post-processing If M is (ε,δ)-DP, then F ◦M is (ε,δ)-DP

2 Composition (
∑

i εi,
∑

iδi)-DP

3 Group privacy If M is (ε,δ)-DP, then M is (kε, kδ)-DP for k changes.

4 Protect against side-knowledge if attacker has a prior and computes
the posterior after observing the output of a (ε,δ)-DP mechanism M,
then distance(prior, posterior) is bounded by ε
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1. DP itself, is a property of algorithms. But what other properties DP
algorithms have
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Differential Privacy

Applications

Google, Apple, Microsoft, LinkedIn, US Census
E.g. Collect telemetry data from browser, operating system, etc.
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There are already some commercial application using differential privacy.
Apple and Microsoft use it to collect telemetry data from their operating systems.
And Google uses in Chrome browser and to learn from your Android’s keyboard
The US Census uses it to publish aggregated statistics.
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Differential Privacy

Beyond DP

Differential Privacy captures much what we could
(reasonably) want in a privacy definition

The Ethical Algorithm
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It seems to exist a consensus that differential privacy captures much what we
could (reasonably) want in a privacy definition. But there are some limitations
to DP that need to be considered (next)
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Differential Privacy

Limitations

• The choice of the privacy budget ε is difficult: in the literature we can find
values varying from 0.01 to 100.

• Unrealistic assumption that adversary has unlimited computational and
knowledge penalizes model utility too much.

• Guarantees decrease exponentially with the size of the group – it is vulnerable
to correlated data.

• ε-DP algorithm does not provide any guarantee against information leakage.

• Applications have large sample complexity and provides very limited utility
for small data.
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1. It places unrealistic assumptions that adversary has unlimited
computational power and knowledge and this penalizes model utility
too much. Utility is not considered explicitly.

2. Information leakage It does not guarantee that an adversary cannot
learn something about a specific feature of the dataset. Often there
are things we don’t want the model to learn - invariances, nuisances,
biases, and so on.
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Differential Privacy

Limitations

DP does not protect against what correlations in an whole dataset tell about you
or a fact.

• How to remove confidential information from datasets?

• How to remove correlations from datasets or models before releasing or
sharing them?

• How to prevent unintended inferences about a secret from the entire
datasets or model?
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From protecting each entry individually to protecting some secret about an entire
dataset
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Fair and Censored Representations

Private and Fair Presentations

Let X be a dataset, Y is the true label, Ŷ is our prediction (the representation
Z = Ŷ) and S ∈ {0,1} is the sensitive (binary) attribute we want to protect.

Statistical parity Ŷ⊥S P(Ŷ | S= 0) = P(Ŷ | S= 1)
Error parity Ŷ⊥S | Y P(Ŷ | Y = y, S= 0) = P(Ŷ | Y = y, S= 1)
Sufficiency Y⊥S | Ŷ P(Y | Ŷ = ŷ, S= 0) = P(Y | Ŷ = ŷ, S= 1)

Statistical parity For any value that the sensitive attribute takes we will
have the same amount predictions for each class.

Error parity For any value that the sensitive attribute takes we will have
the same error rates.

Sufficiency For any value that the sensitive attribute takes we will have
the same prediction probability.
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1. It turns out, that the problem of removing confidential information
from a dataset or model is equivalent to ensuring statistical parity in
algorithmic fairness.

2. In statistical parity we want the same distribution for different values
of a sensitive attribute. This is equivalent to a independence
constraint between the algorithm output and the sensitive attribute
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Federated Learning

Federated Learning
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1. Federated Learning is about collaborative learning, or learning from decentralized data. The main idea is
the following,

2. In Federated learning, we have a shareable model that is sent to multiple devices, like our cellphones, or
PCs.

3. For example, Android’s keyboard suggests new word while you type. When you accept or reject the
suggestion you are labelling the data. Then, during the night your cellphone computes the gradients for
the language model that makes the suggestions, and sends this data, encrypted, to a central server.

4. There, the gradients can be aggregated while encrypted. At this point it can also be used differential
privacy to ensure that average gradients will not leak individual information. Then, they are
de-encrypted and this differentially private gradients estimate is used to train the model further.

5. The gradients or parameters are being estimated with data from a single user. So we no longer have the
IID assumption that normally we consider in statistics and machine learning. This introduces biases
while training.

6. Also some users produce much more data than others and we should ensure that the model doesn’t
overfit to them. (next)
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Federated Learning

Federated Learning - Limitations

• Each dataset may have some bias w.r.t. the general population. E.g.
different size.

• Local datasets vary with time - temporal heterogeneity.

• Nonexistence of global training data: data is non-IID.

• Attacker might try to poison the global model by feeding it fake data.
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1. Also, not all devices are available at the same time.
2. The model are vunerable to data poisoning attacks where the user or

bot labels data incorrectly to make the model learn stuff incorrectly.
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Applications

Other Applications

• Text representations Learn privacy-preserving language models.

• Genomic Privacy hide sensitive genotypes e.g. that allow identification

• User feedback software monitors collect user statistics without compromising
privacy. Enable data/model sharing.

• Smart meters1 allows third-party to establish a profile of the activities being
undertaken. E.g. Protect type and number of appliances.

1Electricity, water, heating and gas readings
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Applications

Other Applications

• Self-driving cars Federated learning can represent a solution for limiting
volume of data transfer and accelerating learning processes.

• Personal assistant systems Protect interactions to avoid unintended uses, like
voice identification and voice cloning for speech synthesis.

• Public Health Public health monitors for Influenza. Privacy for contract tracing
and flow modelling.

• Census tools to disclose data to the public.

• Location privacy Bike sharing, car sharing etc.

• Vehicular networks privacy Improving safety coordination and services in
traffic management and real-time information sharing.
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Conclusion

Thank you!
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