Examples

Software Architecture VO/KU (706.706/706.707)

Roman Kern

Version 1.1.0

Institute for Interactive Systems and Data Science, TU Graz

1

Example Pattern - Disruptor
Example Project - wissen.de

Example Project - EEXCESS

Example Pattern - Disruptor

Concurrency

« Two or more tasks happen in parallel

« ... and also contend on access to resources
« Where resources might be files, database access, memory, ...
« The two main concepts here:

« Mutual exclusion - manage access to resource
« Visibility of change - controlling, when changes become visible to other threads

Basic Problem

Mutual Exclusion

« Is typically achieved via locking

« ... but locks are expensive

« and require support by the operating system

« Some platforms support CAS (Compare and Swap)

« ... far less expensive

« but will only work for words and within a single machine

Note: Developing concurrent programs that make use of lock is hard, developing programs that integrate CAS is
extremely hard

4

Basic Problem

« Ideally, there would be a single thread for all writes

« ... and all other thread just reading the results

« Today, CPUs are multi-core and free to conduct out-of-order execution
« ... therefore the reading/writing needs to be coordinated

« by the use of memory barriers

5
Queue Pattern

« Pattern to decouple producers from consumers

« Producers write into a queue (head)

« Consumers read out of the queue (tail)

« If the consumers handle more items that the producers generate

« ... the queue will be empty and the system inefficient

« If the producers generate more items than the consumers can handle
« ... the (unbounded) queue will explode

Note: Typically queue do not work well with CAS and other properties of modern architecture (cache lines)
6

Pipeline Pattern

« Pattern to decouple a series of data transformation steps

« Data is passed from one filter to another through pipes

« In asimple case the data is passed in a series of transformations

« ... in a more complex case there will be branches and parallel transformations
« In between the transformations there will typically be queues

Note: A mixture of queue and pipeline are common for complex systems

Disruptor Motivation

Problem Setting

Many incoming events
Process in parallel
Maximise resource utilisation

Maintain sequence of events

Disruptor Motivation

‘

Basic Structure

Ring buffer (instead of a queue) with index

Producers populate the buffer with items

Consumers take out items from the buffer

... where multiple consumers may process an item in a sequence

Optimisations: Preallocation of items, size of ring buffer 2"

Disruptor Motivation

‘

Separation of Concerns

Storage of items (being exchanged)
Coordination of producers (claiming the next sequence for exchange)

Coordination of consumers (being notified that a new item is available)

Disruptor Motivation

‘

Barriers

Producer barrier

... items are stored in the correct sequence

And an additional claim strategy

... which decides what producers should should do (e.g. blocked, busy wait)
Consumer barrier

... consumers take out items in correct sequence

With an additional waiting strategy

Disruptor

Disruptor Conclusion

Complex implementation

Easy to use

At least one order of magnitude faster than e.g. an ArrayBlockingQueue
Improved latency

Plays well for garbage collectors

Example Project - wissen.de

Wissen.de - Host

Wissen.de is a web-site hosted by wissenmedia
Wissenmedia is owned by Bertelsmann SE & Co. KGaA

Wissenmedia owns brands: Brockhaus, Bertelsmann, WAHRIG, CHRONIK,
JollyBooks

The brand Brockhaus is over 200 years old and is known by 93% people (in
Germany)

Wissen.de - Scope

13

Wissen.de is a free service

Content is added and curated by editors
Does not follow the Wikipedia model

Free content is not taken from Brockhaus
wissen.de articles differ from printed articles

In their style and their life-cycle

Wissen.de - Motivation

The project started out as an innovation platform:

« Be innovative in terms of business models

« Wissen.de is just a single portal to a complex system

« — Another example is a cooperation with a set-top box manufacturer
« Be innovative in terms of technologies

« — Try out new functionality

15
Wissen.de - Software Architecture

In terms of software architecture this puts an emphasis an specific quality

attributes:

« Flexibility
« quickly try out new features
« Evolvability
+ add new features without interfering with existing infrastructure
« Scalability
« need to manage millions of articles (more than the German Wikipedia)

« need to serve many users

16

Wissen.de - Software Architecture

Focus on specific quality attributes has implications on others:

« Configurability
+ Need to be high as well
« Testability

« Suffers, as the system is changing at a high pace

17

Wissen.de - Software Architecture

« More importantly, the architecture needs to be flexible
« And foresee possible directions
- Typically use YAGNI (“You ain’t gonna need it”) - as a guideline
« Complexity
+ The system has a high level of complexity
« — very hard for new developers in the project

PLAN A
[Q ,,,’g‘&‘

©Johnny Sajem * www.ClipartOf.com/1090873

0

Wissen.de - Software Architecture

Role of the software architect

Identify the main use cases

Derive requirements from the use cases
« In terms of functionality
« In terms of not directly functional requirements
« ... identify quality attributes

Assess risks in the project

Communication with project partners (iterate, document)
Decide on programming language, frameworks, ...

Decide on actual architecture (e.g. patterns, (a)synchronous, ...)

Plan the development of the individual aspects (project manager)

Wissen.de - Software Architecture

‘

High flexibility is achieved by

Loose coupling

« Individual components do not depend on other components
Generic interfaces and protocols

« Thus components can be easily swapped out and replaced
But this have an impact on:
Performance

+ System needs to be as generic as possible
« — no option to fine-tune algorithms

Wissen.de - Backend

Wissen.de is only one of multiple web sites
The whole infrastructure contains many sub-systems and components
Another part is the interface to the other systems (e.g. editor systems)

It is embedded into an existing landscape of tools — integrability

Wissen.de - Team

Developed by separate teams
Teams are from different companies

Know-Center, Key-Tec, EDELWEISS72,

wissenmedia, arvato, Nionex...
Teams are geographically dispersed

Graz, Munich, Giitersloh

20

21

22

Wissen.de - Overview

Cache Facade
RN
[—
P or
edtorsysiem
i

< ¢ -l

) B
.) e § ¥

LR

Database CMS Database Backend index (search) Index (indexing)

Wissen.de - Detail

Will focus on the backend part only
It is run on multiple (virtual) machines
Used by multiple components

Main tasks: Store articles, index articles, present articles

Articles

Articles are stored as XML

Combination of data and meta-data
Meta-data are title, date, category, ...

Data is XML, not restricted to a single format

Links between articles

Main Architecture

Web service as main interface
— Client-server architecture
Main architecture: n-tier style

Typical example for a heterogeneous architecture style

Media Editor

23

24

25

26

n-Tier Architecture

« Conceptual architecture: 3-tier
« Database layer
« Application logic layer

« Presentation layer

27

Architecture: 3-layer applications

Web
App Server

Presentation

App Logic:

Data Access

28
n-Tier Architecture

« Implementation architecture: 2-tier
« Framework library
« Presentation libraries

« E.g. web-service library, command line library

29

Database Layer

« Object-relational mapping (ORM)
« No direct interaction with the relational database

« Schema can be derived from the business objects

Example of ORM

@Entity

@Table (name = ”ARTIFACT”)

@NamedQueries({ @NamedQuery(name = “artifactByld”, query =

"SELECT_x _.FROM_ARTIFACT _x "WHERE_x . ARTIFACT_ID _=_: artifactldParam _AND_x.BOOK_ID_=_:bookldParam”
b

@XmljavaTypeAdapter (XmlArticle . Adapter . class)
public class Artifact implements Serializable {
@Embeddedid

private ArtifactPK id;

@ManyToOne

@Mapsld

@)JoinColumn (name = "BOOK_ID”, referencedColumnName = "BOOK.ID")
private Book book ;

@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn (name = "CONTENT_ID”, referencedColumnName = "CONTENT.ID”, nullable = false)
private Content content;

31

Presentation L

« XSLT scripts to transform the output into the target media
« Not only articles are transformed

« E.g. search results, error messages

« Different output target media

« E.g. mobile version, version for set-top boxes, product specific renderings

32

Presentation Layer

S——

33

Presentation L

Goethe, Johann Woltgang von

Sp—

34

Example of XSLT

<xsl:stylesheet version="2.0" xmlns="http://www.w3.0rg/1999/xhtml”

xmlns: xs|="http ://www.w3.0rg/1999/XSL/Transform”
xpath—default —namespace="http ://www.w3.0rg/1999/xhtml|”>

<xsl:template match="/">
<html xmlns="http ://www.w3.0rg/1999/xhtm|”>
<head>
<link type="text/css” rel="stylesheet” href="{$url—prefix}static/{$version}/{$template—dir}/hilfe—texte/web/default.css” />
</head>
<body>

<div class="artikel —inhalt”>
<xsl:copy—of select="S$textbaustein—header”/>

<!— Hier wird der eigentliche Artikel gerendert —>
<xsl:apply—templates />

<!— Inhaltsuebersicht fuer ge—chunkte Artikel —>
<xsl:if test="not(/+[1]/ws:kontext/ws:ws—intern)._and.//chunk”>
<xsl:call—template name="chunks—table”/>

</xsl:if> 35

Web Service Interface

« Multiple interfaces, for different use cases (e.g. read-only access, administrative

access, ...)
« Stateless
« Hybrid of REST and RPC style service
« Output is either XML or JSON

Information Extraction - Preprocessing

« Task: Transform an XML into a textual representation
« Three stages:

« Input XML

« — transformed into XHTML

« — transformed into plain text

37

Information Extraction - Preprocessing

« Style: Pipeline
« Batch-sequential, the next filter starts once the previous has finished

« The output of the previous filter is the input to the next

38

- I E =
- B BB B

Channel (’
- o

Figure 1: Pipe and filters style

39

Information Extraction - Execute

« Task: Extract information out of text
« Multiple sub-tasks:
« Split the text into sentences
« Split a sentence into token (words)
+ Mark certain words as stop-words (should be ignored)
« Assign word groups to individual tokens
« Detect named entities (E.g. person names)

40

Information Extraction - Execute

Realisation: Pipeline with shared repository

First the text is filled into a special data-structure

Each filter (sentence chunker, stop-word detection, ...) modifies the data-structure

Using so called annotations

Each annotation is a span (start, end) with addition features

Caveat: filters depend on the output of preceding filters

A

Example of Information Extraction Pipeline

public List<ExtractedInformationAnnotation> process(String text) throws InformationExtractionException {
AnnotatedDocument doc = new DefaultDocument ();
doc.setText (text);
for (Annotator annotator : annotators) {
annotator.annotate (doc);

}

42

Event Framework

Components can register to listen for events
Components can trigger events
Typically all events should be handled asynchronously (the sender is not blocked)

Architectural style: publish-and-subscribe

43
Notification Architectures
@
Figure 2: Notification architecture
44

Example of an Event Listener

eventlListener = new EventListener () {
@Override
public void onEvent(Event event, Task task) {
if (event instanceof MediaAddedEvent) {
isDirty = true;

eventManager. registerEventListener (eventListener);

// somewhere else
eventManager. fireEventAsync (new MediaAddedEvent(name));

Cluster Communication

45

Need to scale out (horizontally) to cope with the demand
Add redundancy to increase the availability
— instead of a single machine, have a cluster of machines

Works transparently with the event framework

Cluster Communication

« Dynamically detect all cluster members on start-up (discovery)

« Communication is based on either broadcast/multicasts (UDP) or direct

communication (TCP)
« All cluster nodes need to know each other

« Architectural style: peer-to-peer

47
Peer to peer

Client.

Client

Client

48

« Only asynchronous communication facilities

« Create synchronous communication via callbacks
« Each synchronous message contains a unique id and sent asynchronously

« Once the message has been processed by the remote note, a notification is sent

back passing the id

« Processing then can be continued at the sender side

49

The search index needs to be updated once articles have been changed

The component responsible to update the content of articles fires an event as soon

as an article has changed

The index components listens for these events

— Decoupling of components, as one component does not know the other

components

Disadvantage: no direct control of the process flow, hard to track the progress of

operations

50

Request Tracking

Track long running operations

For example: batch import of articles, which might take hours

Idea: collect all information regarding an operation in one place, called task
Store this information in the database

Notify user once the operation is done

51

Request Tracking - Task

Task consists of

ID: Unique ID of the task

Status: running, finished

Result: success, failed, cancelled

Messages: List of messages for the user

Attributes: Track the progress (— progress bar in the UI)

Properties: Store internal state information

52

Request Tracking - Task

A single task might spawn multiple machines
Synchronisation via the database
Administration console list all tasks

Helps to detect the root of problems

53

Logging

Common logging infrastructure
Logging is also collected in the tasks
Logging output also contains the task-id
Log output is collected in files

Log files are rotated

54

Error Handling

« Each layer produces its own type system of errors

« The presentation layer is responsible to report the error to the user

« For each error an unique ID is generated

« The ID is reported to the user and logged

« Thus no internal state is reported to the outside

Monitoring

55

« Monitor the current state of the system

« Web-based tool to monitor the state

« Current resource consumption, e.g. memory used

« List of recent error logs

« Support of administrative/analysis operations

Monitoring

£ Update © Onlinehelp _Choice of period : (7] Day (1] Week (=] Month (< Year 3 Al [Customized

Used nenory - 1 day

e N
0500 1z w00

B Whscinn dean '

% U~ 1day
T 00 1m0

B Mo ween 20
Vw2500 0

Http sesstons - 1 day

%50z w00
B Wiscimn dean 1

Active threads - 1 day

Active jdbc comections - 1 day

Used jdbc comections - 1 day

CERTa
Bren WhscinnHean 5 u
Vet 750000 1

0)
[T T —— 0
Vet 0

o CERETa

Bren Wi Hean
e

Http hits per winute - 1 day
3

Http nean tines () - 1 day
ER

% of ttp errors - 1 day
10

Blen Wiscun ten: 690
Nexinm 14503

Bl Wiasinm ean: 75
Vw6706

Blen Wi Hean B
Vexinn 51657 0

Sq1 hits per winute - 1 day
fici

Sal mean tines (ss) - 1 day
i

* of sal errors - 1 day
10

o

o
wo o

B Wi e
i

o
[

Do Wimomn wen: ta
Vsl

wo ww
B Wi e
T b

Runtime Performance

57

« Improve performance by use of caching

« Caches need to be in-sync across the multiple machines

« Therefore all changes need to be reported to all machines

« The event framework propagates these changes to all nodes and components

« Changes in the file-system need to be detected as well

58

Improve Flexibility

Improve flexibility by increase of configurability
Level of configurability rises with the power of the configuration language
Highest level if the configuration itself is some sort of programming language

— Interpreter architectural style

Support Infrastructure

Version control system
Bug/Issue tracking system
Continuous integration system

Documentation system

Rollout

Y
3

Development system

Virtual machine with all tools installed
Staging system

Replica of the production system
Production system

Only versions are deployed on the production system, which have been tested on
the staging system

Only a few people are allowed to deploy on the production system

Project Management

Agile project development
Short cycles, working software
Project communication via periodic conference calls

Additionally e-mail and via issue tracker

59

61

62

Example Project - EEXCESS

EEXCESS - Overview

EU Research Project (funded by the EU)
« “EEXCESS is a research project which aims to make cultural, scientific and
educational content easily accessible and available”
« Runs over multiple years, started in 2013
« High number of involved partners:
« Austria (3), Germany (3), UK (2), France (1), Switzerland (1)
« Different types of partners

« Technology partner, data providing partners, test bed partners, associated partners

EEXCESS - Overview

o
&

EU projects basics

« Base is a document, the description of work (DoW)
« This document outlines the project

« Typically organised in work packages

« Tracked via milestones and deliverables

« The project gets reviewed by the EC

EEXCESS - Stakeholders

3
i

Stakeholders:

« European Commission
« Partners (scientific and commercial interests)

« Main problem: No clearly defined goal, but many different ideas

65

EEXCESS - Approach

Procedure:

Demo scenario (to create a common understanding)

Ask partners for scenarios (got 25 scenarios)

Agree on use cases (4 scenarios)

Ask partners for functional requirements (non-technical)
Priorities and risks for requirements

Ask the work package leaders for requirements (technical)

Develop initial architecture

66

EEXCESS - Timeline Y1

WP 2

Design

WP 1
WP 3 Deliverable
Design
& Scenario Scenario WP 4 WP 7
EEXCESS Design Selection Design Deliverable
WP 5
Design

uswAodeq 1114

WP 2-6
Deliverable

WP 6
Design

Kick-off Design Passau Deliverables ~ M22
M1 Conference Meeting M11
M9
67

EEXCESS - Scenarios

Use case:

Includes a persona
Description of the scenario
Mock-ups

Relation to the project

68

EEXCESS - Example MockUp

x| -loli Mooy~ Desktip = i
My Qmg | Nowsdie Poter /

Step L\ Pleass sl the arbile thet gou
= would lik o reacl

= El

Nansdbe Ptls -

e St 2 Beasedd sn the cwdecks o your
%, Mgy e e #t o it
Gibe (7 read 7 W

P

] e
——f Step 3) Then g evad:

\ 69

EEXCESS - Scenario Analysis

D horidescrpion sconario suport rocommended njecton language faret ool platforn
P tochmology o umer e

[
comest
BY ppavgctmna coat ecbestons cotraamg ssywkipbgn geman taseners explot+ web
armiog e Casion mpporschouysws ©108) rpics
iy o samngsysom csion_ supper - pretes e
83 mproung sikamig ket cortart schestonal ostwraand bowssrphgn | geman tasehars expl+ web
Creon ot sehoay data e
84 rocommrsiono content ceatons webetes broweerpuain geman pupis sl + Wb,
Stana woning el consumpton ot i
museum cocs Consumpton spport i
K2 soach ocallbrry conant__ schoaly data st iomaton bowserpgn, geman scnists mplek web
ey Consmpton commurica reted o, sovr e
KB fchrs preparstonwih cortant schestonsl lca v, ocsl bowasepgn | german tschers implct e
Visipoda Conamotion wpport mseum obpcte
K8 Gotogue Martemrca na content genars matadataof vt imcaspogn geman scentets mplct web
Y s pobe resoumes
Eoueaton
M g oantproposal conant__ schoiay s papers doskiop oo, anglsh scenists sxpet + daskop
Consmpton commurica o racessor o
ton pugn
M2 nrsanding topcs win corant_ acucatonal scenfcpapers mandoiey angish scnists sxpli + web
e Conameton wpport r osop D et
MG whats o dasbhowd conont_ schoaly _ scenfc papers, mendeley sngish scntats expit s mabie
Conameton commurica bogk esop D, et
betspugin
Dogarensonwitn content sdwcatonal scniicpapers browserpugn o studeris mplit web
P2 rwitr oo genarstionconart_scbwaty _bitlrfoodstulorbodangibh _ scetsts mplet web
Consumpton communica

T Jty bookrark sppets w3 g scentats it wet.

content o -
Consumpton commurica of sounth poprs, boweer s
o on e

W proparng g9t somech contnt__gurard osturaand omspkgn geman gl implek web 70
Conmeton pashe sehoary data oty

EEXCESS - Requirements (excerpt)

1L Context-related Events

IL1. Listen on search queries for deriving profiles. Possible sites are
Google, Wikipedia etc.

H
1m.2. Listen on browsing history and events for deriving profiles. Browsing [Hl
history will allow to detect web-site changes and browser activities.
IL3. Include location information in user profiles/contexts. This informa- [M]
tion is needed for geo-context queries and visualisations.
11.4. Support the learning of topics of interest for topics of short and long [Hl
term profiles.
1L5. Support the automatic learning of expertise levels on the client. [H] H
111 Visualisation

1I.1. Visualise single recommender results and allow enhanced navigation

and exploration of those results.

11.2. Visualise a set of consecutive recommender results in order to show
relatedness among recommender results.

11.3. Provide explorative visualizations that facilitate exploration of recom-
mendation results.

1I.4. Share recommendations with other users to stimulate community
based annotations.

1L5. Share recommendations within user groups to stimulate community
based annotations.

BEEEEE
ElEEES

72

EEXCESS - Overview

« Initial architecture draft based on scenarios
« Top down: starting with high level goals

« Bottom up: each work package has its own understandings

Note: The first draft of the overall architecture existed before requirements have been

made explicit

73

EEXCESS - Architecture Overview

74

75

EEXCESS - Architecture Detail - Usage Mining

76
EEXCESS - Project Management

Project management by (scientific) coordinator

Monthly telephone conferences

Yearly architecture/scenario review

About four meetings per year (e.g. common hackathon)

Mailing list for the whole project

Common content management system for project documentation

Multiple source code control systems (SVN, Github)

Common issue tracking system (Jira)

EEXCESS - Lesson Learnt

« Hard to create a common understanding/architecture
« Hard to get the involved partners to be motivated
« Limited project horizon has implications on architecture

« Work package organisation strongly influences architecture

78

The End

79

